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Abstract—We develop a method for self-interference miti-
gation in wideband full-duplex multiple-input multiple-output
regenerative relays, taking into account transmitter impairments
and limited receiver dynamic range. The method combines
a cancellation and suppression architecture by incorporating
feedforward filters at both sides of the relay. The design criterion
is to maximize the signal-to-interference-plus-noise ratio (SINR)
at the relay input. On the transmit side, linear constraints are
imposed in order to control the effect on the information signal
at destination. Simulation results show the effectiveness of the
proposed method both in terms of self-interference reduction
and SINR improvement.

Index Terms—full-duplex, MIMO, regenerative relay, relaying,
self-interference, cancellation, suppression.

I. INTRODUCTION

Achieving full-duplex communication in a relay network
requires each element of the network to be carefully designed.
At the relay, simultaneous transmission and reception in the
same frequency results in self-interference distortion. This
distortion can be tens of dB higher than the information signal,
which can prompt an inadmissible interference level [1]–[5].

To overcome this problem, passive physical isolation be-
tween transmit and receive antenna arrays as well as analog
cancellation are provided during the relay design. Those
techniques are able to attenuate the self-interference in ap-
proximately 60-70 dB [1], [6], which is usually insufficient for
optimal relay performance. Residual interference reduces the
available dynamic range of the information signal, and conse-
quently, the SINR. Further mitigation of the self-interference
is attained in the relay, after analog-to-digital conversion, by
using digital cancellation [7], [8]. However, the performance
of digital-domain cancellation, in which a digital estimate of
the interference signal is subtracted from the relay input, is
fundamentally limited by the aforementioned reduction of the
dynamic range due to the residual self-interference [2].

We present a design for wideband full-duplex regenera-
tive MIMO relays which outperforms baseline cancellation
techniques by introducing additional feedforward filters at
the receive and transmit sides of the relay [9]. To maximize
the SINR, the transmit filter is designed to reduce the self-
interference signal before digital conversion, while the receive
filter is designed to mitigate other noise sources. In contrast to
other works, our SINR maximization design takes into account
nonlinear distortion and transmission impairments at the relay
transmit side and limited dynamic range at the relay receive
side using the noise model presented in [2].

II. SYSTEM MODEL

We consider a full-duplex MIMO relay link consisting of a
source node (S) with Mt antennas, a destination node (D)
with Mr antennas and a relay (R) with Nr receive and
Nt transmit antennas, respectively. Node S transmits signal
st[n], D receives signal dr[n], and R receives rr[n] while
simultaneously transmitting rt[n]. The number of independent
streams transmitted by S and R are ms and mr, respectively.
The received signals at R and D are given by

rr[n] = Hsr[n] ? st[n] + Hrr[n] ? rt[n] + nr[n] (1)
dr[n] = Hsd[n] ? st[n] + Hrd[n] ? rt[n] + nd[n] (2)

where operator ? denotes convolution and Hij [n], i ∈ {s, r}
and j ∈ {r, d}, is the channel impulse response matrix, of
order Lij , between nodes i and j. Vectors nd[n] and nr[n]
denote the noise components at D and R, respectively, with
nr[n] containing the receiver input noise, the transmitter noise
that couples back through Hrr[n], and the noise due to limited
dynamic range of the receiver, i.e.,

nr[n] = ni[n] + Hrr[n] ? vt[n] + vr[n] (3)

where the input noise ni[n] ∼ CN (0, σ2I), and the transmitter
noise, denoted by vt[n], is statistically independent of rt[n],
temporally white and vt[n] ∼ CN (0, δ diagE{rt[n]rHt [n]}),
with 0 < δ � 1, models transmitter imperfections [2]. Limited
receiver dynamic range is modeled by injecting a noise-
like signal vr[n], which is statistically independent of rc[n],
temporally white and vr[n] ∼ CN (0, γ diagE{rc[n]rHc [n]}),
with 0 < γ � 1 and rc[n] = rr[n] − vr[n] the signal before
digital conversion [2].

The relay implements a decode-and-forward protocol, which
will introduce enough processing delay to assume that samples
of the received and transmitted signals are uncorrelated, i.e.,

E{řr[n]rHt [n− k]} = E{řr[n]nH
r [n− k]} = 0 , for k ≥ 0

with řr[n] = Hsr[n] ? st[n] the information signal arriving at
R from S (cf. Fig. 1). We define SINR at the relay input as

SINRR =
E{‖řr[n]‖2}

E{‖ir[n] + nr[n]‖2} (4)

where the self-interference signal, ir[n] = Hrr[n] ? rt[n] (cf.
Fig. 1), constitutes the major source of distortion at R [1]–
[5]. Moreover, when Hrr[n] has high gain and řr[n] is weak,
vt[n] has a significant impact on the performance [9].
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Fig. 1. System model of a relay incorporating the cancellation-suppression
architecture.

III. PROPOSED DESIGN

Next we present the cancellation-suppression architecture,
whereby we aim at maximizing the post-processing SINR. We
assume that channel state information (CSI) of Hsr[n], Hrd[n]
and Hrr[n] as well as γ, δ and σ2 are available at R.

A. Architecture

Figure 1 depicts the relay node incorporating the inter-
ference mitigation scheme, which consists of the following
components: the Lr-th order feedforward filter Gr[n] of size
ms × Nr, the Lt-th order feedforward filter Gt[n] of size
Nt ×mr, and the La-th order cancellation filter A[n] of size
Nr × Nt. In the relay, cancellation with A[n] takes place
first, whereas filtering with Gr[n] is subsequently performed.
After being processed by pr(·) and before analog conversion,
the information signal, r̂t[n], is filtered with Gt[n]. Function
pr(·), see Fig. 1, aggregates all the operations associated with
the relay protocol, such as demodulation, equalization and data
decoding.

The post-processing SINR is measured at the input of the
pr(·) block, and is therefore

SINRReq
=

E{‖ř(eq)r [n]‖2}
E{‖i(eq)r [n] + n

(eq)
r [n]‖2}

(5)

where ř
(eq)
r [n] = Gr[n] ? řr[n], i(eq)r [n] = Gr[n] ? (Hrr[n] +

A[n]) ? Gt[n] ? r̂t[n] and n
(eq)
r [n] = Gr[n] ? nr[n] are,

respectively, information signal, self-interference and noise
after mitigation. Note that n(eq)

r [n] depends on Gt[n] through
vt[n] and vr[n]. The relay performance depends directly on
(5), thus filters Gt[n], Gr[n] and A[n] should be designed in
order to maximize (5):

maximize
A[n],Gt[n],Gr[n]

SINRReq

subject to E{‖rt[n]‖2} ≤ Pmax

(6)

with Pmax > 0 the maximum transmit power. In view of
(5), the optimum value of A[n] is A[n] = −Hrr[n], which
renders i(eq)r [n] = 0 and requires that La ≥ Lrr, i.e., the order
of A[n] should be, at least, equal to the order of Hrr[n]. The
optimization of Gt[n] and Gr[n] is discussed in the following
sections.

B. Maximization of SINRReq
with respect to Gt[n]

When A[n] = −Hrr[n], the residual self-interference
i
(eq)
r [n] vanishes, and the only dependence of (5) with Gt[n]

is through n
(eq)
r [n]. Therefore, problem (6) amounts to min-

imizing E{‖n(eq)
r [n]‖2}, which also depends on Gr[n], so

designing both filters is a coupled problem. To circumvent this,
and since n

(eq)
r [n] is a function of both ir[n] and vt[n], we

slightly modify the optimization criterion in (6). Concretely,
Gt[n] is designed as the solution to the following optimization
problem

minimize
Gt[n]

E{‖ir[n]‖2}+ E{‖Hrr[n] ? vt[n]‖2}

subject to Hrd[n] ?Gt[n] = H
(eq)
rd [n]

E{‖rt[n]‖2} ≤ Pmax

(7)

The design criterion in (7) aims to minimizing self-interference
and transmitter noise arriving at R. As a result of that, not
only is (7) decoupled from Gr[n] but it is also formulated as
a quadratic minimization problem, allowing us to use ordinary
convex optimization techniques.

The inequality constraint in (7), i.e., E{‖rt[n]‖2} ≤ Pmax,
limits the maximum transmitted power to Pmax > 0, which
results in Gt[n] = 0 or disruption of the R-D link, i.e.,
rt[n] = 0, if no additional constraints are imposed. In order
to preclude trivial solutions and avoid excessive distortion in
the received signal at D, we introduce the linear equality
constraints Hrd[n]?Gt[n] = H

(eq)
rd [n], where H(eq)

rd [n] denotes
the target (Lt + Lrd)-th order channel between R and D.
The constraints will ensure that the information signal at D
undergoes the controlled and predictable distortion specified
in H

(eq)
rd [n], which is typically selected based on precoding or

equalization techniques [10], [11].
By introducing the vector gt = vec{[Gt[0] . . .Gt[Lt]]},

which stacks the columns of Gt[n] into a vector of size
mrNt(Lt + 1), problem (7) is reformulated as

minimize
gt

gH
t (Pi + Ri)gt

subject to H̃rdgt = h
(eq)
rd

gH
t R̂gt ≤ Pmax

(8)

where matrices Pi and Ri are easily obtained by expressing
E{‖ir[n]‖2} and E{‖Hrr[n]?vt[n]‖2} in terms of gt, respec-
tively. The linear constraints H̃rdgt = h

(eq)
rd are expressed by

Hrd[n] ?Gt[n] = H
(eq)
rd [n], while R̂, which depends on the

autocorrelation of r̂t[n], is obtained by expressing E{‖rt[n]‖2}
in terms of gt.

In order to solve (8), note first that the degrees of freedom
in gt should be sufficiently large so as to allow for a feasible
linear equality constraint in (8). Noting that H̃rd is of size
Mrmr(Lt+Lrd+1)×mrNt(Lt+1), this means that we must
have, mrNt(Lt + 1) > rank{H̃rd}, or, in general, Nt > Mr

and Lt > (MrLrd/(Nt−Mr))−1. Therefore, the relay should
have more transmit antennas than D and the required order of
Gt[n] grows linearly with the order of Hrd[n]. All the possible



gt belong to the manifold given by

gt = H̃#
rdh

(eq)
rd + Nw (9)

with w is an arbitrary vector of size mrNt(Lt + 1) −
rank{H̃rd}, # denotes pseudo-inversion and N represents the
basis of the nullspace of H̃rd.

The problem in (8) is reduced to finding the vector w
minimizing gH

t (Pi+Ri)gt subject to gH
t R̂gt ≤ Pmax. Using

the square root factorization Pi+Ri = QH
i Qi and R̂ = SHS,

we rewrite (7) as

minimize
w

‖Aw − b‖2

subject to ‖Cw − d‖2 ≤ Pmax

(10)

where matrices A = QiN, C = SN and vectors b =
−QiH̃

#
rdh

(eq)
rd , d = −SH̃#

rdh
(eq)
rd .

The problem in (10) has the form of a standard least-
squares problem with a quadratic inequality constraint which
can be solved semi-analytically by diagonalizing both A and
B using their generalized singular value decomposition [12].
After the optimal w is computed, Gt[n] can be recovered by
unvectoring the gt computed via (9).

C. Maximization of SINRReq
with respect to Gr[n]

With A[n], Gt[n] designed as above, rr[n] consists of
the information signal řr[n], and the noise signal nr[n].
Consequently, see (6), the filter Gr[n] is the solution to the
following problem

maximize
Gr[n]

E{‖ř(eq)r [n]‖2}
E{‖n(eq)

r [n]‖2}
⇔ maximize

gr

gH
r Prgr

gH
r Pngr

(11)
where, as in Sec. III-B, we have substituted Gr[n] with
gr = vec{[Gr[0] . . .Gr[Lr]]} of size msNr(Lr + 1). Note
that the term E{‖n(eq)

r [n]‖2} depends on the covariance of
řr[n], ni[n] and ir[n], therefore on gt, which means that gt

needs to be computed first. Finally, matrices Pr and Pn are
obtained respectively by expressing ř

(eq)
r [n] and n

(eq)
r [n] in

terms of gr.
Problem (11) is recognized as a generalized eigenvalue

problem [12]. Using the square root factorization Pn = LHL,
its solution is given by

gr = ρL−1vmax (12)

where vmax is the principal eigenvector of L−HPrL
−1 and

ρ is an arbitrary constant.

IV. SIMULATION RESULTS AND DISCUSSION

Next we present numerical results from simulations of a
relay link with the following characteristics: S andR transmit,
respectively, ms = 2 and mr = 2 independent streams, while
Mt = ms and Mr = mr. The relay protocol pr(·) regenerates
the received signal using the same modulation scheme as S.
Each stream consists of a 64-QAM modulated OFDM signal
with 8192 subcarriers and a normalized cyclic prefix length
of 1/4. The oversampling factor is 2, i.e., the data signal
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Fig. 2. Self-interference power isolation in terms of nonlinear distortion noise
level at the transmitter.
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Fig. 3. Additional isolation in terms of the nonlinear distortion noise level at
the transmitter for different orders of Gt[n].

covers approximately half of the available bandwidth. Chan-
nels Hsr[n], Hrd[n] and Hrr[n] are drawn from a complex
Gaussian distribution, have orders Lsr = Lrd = Lrr = 2 and
gains of 0 dB, 0 dB and 30 dB, respectively. Additionally,
E{‖st[n]‖2} = 0 dB and E{‖r̂t[n]‖2} = 0 dB, while
La = Lrr, Lt = Lr = 2, and Pmax = 20 dB. The target
channel is

H
(eq)
rd [n] =

{
I, n = 0

0, n 6= 0
(13)

Note that with (13) and if no direct link between S and D
exists, i.e., Hsr[n] = 0, no channel equalization is needed at
D. Finally, σ2 = −20 dB, while parameters Nt, Nr, δ and γ
are varied across simulations.

Fig. 2 shows the self-interference isolation as a function of
the transmitter noise level for different antenna configurations.
Isolation is defined as Piso = E{‖iref [n]‖2}/E{‖ir‖2}, where
iref [n] is obtained by using the reference system Gt[n] = µ1
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Fig. 4. SINR improvement in terms of the dynamic range of the receiver.

with Lt = 0 and 1 an all-ones matrix of size Nt ×mr, i.e.,
Gt[n] equally distributes the data streams over the different
antennas. Constant µ matches the transmitted power of the
reference system to the power of the actual system. In view
of Fig. 2, the achieved isolation roughly depends on the relay
transmission redundancy Nt/Nr, achieving higher isolation
for larger values of this ratio. When Nt/Nr ≈ 1 or less,
isolation tends to 0 dB, because Gt[n] does not have enough
degrees of freedom. On the other hand, when the redundancy
is large, e.g., Nt = 8, Gt[n] has enough degrees of freedom
to mitigate the self-interference up to several tens of dB.
Therefore, in terms of isolation, having more transmit antennas
than receive antennas is preferable while designing the relay.
Additional isolation can be achieved by increasing the order
of Gt[n], which is denoted by Lt. Fig. 3 represents the
additional isolation in terms of Lt and Nr when Nt = 4, i.e.,
values above 0 dB represent additional isolation with respect
to the case of Lt = 2. Larger values of Lt/Nr provide better
additional isolation, e.g., up to 10 dB for Lt = 6 and Nr = 2.

Fig. 4 shows the SINR improvement, SINRReq
/SNRR,

in terms of γ, i.e., the receiver dynamic range for differ-
ent antenna configurations. To compute SNRR we use the
reference system and δ = −30 dB. We can approximately
distinguish two cases based on the receiver dynamic range:
wide range for γ ∈ (−45,−30) dB, and narrow range for
γ ∈ (−30,−15) dB. When the receiver has wide dynamic
range, the noise due to the self-interference is relatively low
and, consequently, the isolation level is not critical. In fact,
as seen in Fig. 4, the best performance is achieved with a
large number of receive antennas, see case Nr = 6. The
performance improves when the number of transmit antennas
is reduced, and, hence, the receiver redundancy Nr/Nt is a
good indicator of the achievable performance. On the other
hand, when the receiver has narrow dynamic range, the noise
caused by the self-interference is relatively high, and larger
isolation is required to obtain a good performance. As a result,
configurations with a larger number of transmit antennas, see

cases Nt = {6, 8}, perform better. Thus, in contrast to the wide
dynamic range case, a large number of transmit antennas is
preferable while designing the relay.

Note that due to the tradeoff between noise and self-
interference, different configurations can result in the same
performance. For example, when γ ≈ −35 dB, configurations
with Nr = 6 yield about the same SINR.

V. CONCLUSIONS

A method for SINR maximization in wideband full-duplex
MIMO relays under limited dynamic range has been presented,
making use of a combined cancellation-suppression architec-
ture incorporating feedforward filters at both sides of the relay
together with a feedback filter. Each of these three elements
is designed by solving a convex optimization problem. On
the transmit side, additional linear constraints are imposed to
limit the distortion in the information signal at the destination.
Results from simulations show that the method is able to
reduce the self-interference at R up to several tens of decibels,
and the overall SINR improvement is, for a typical example
case, over 40 dB.
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