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Abstract The availability of accurate location infor-

mation of constituent nodes becomes essential in many

applications of wireless sensor networks. In this context,

we focus on anchor-based networks where the position

of some few nodes are assumed to be fixed and known

a priori, whereas the location of all other nodes is to be

estimated based on noisy pairwise distance measure-

ments. This localization task embodies a non-convex

optimization problem which gets even more involved by

the fact that the network may not be uniquely localiz-

able, especially when its connectivity is not sufficiently

high. To efficiently tackle this problem, we present a

novel soft computing approach based on a hybridiza-

tion of the Harmony Search (HS) algorithm with a local

search procedure that iteratively alleviates the afore-

mentioned non-uniqueness of sparse network deploy-

ments. Furthermore, the areas in which sensor nodes

can be located are limited by means of connectivity-

based geometrical constraints. Extensive simulation re-

sults show that the proposed approach outperforms other

previously published soft computing localization tech-

niques in most of the simulated topologies. In partic-

ular, to assess the effectiveness of the technique, we

compare its performance, in terms of Normalized Lo-

calization Error (NLE), to that of Simulated Annealing
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(SA)-based and Particle Swarm Optimization (PSO)-

based techniques, as well as a naive implementation

of a Genetic Algorithm (GA) incorporating the same

local search procedure here proposed. Non-parametric

hypothesis tests are also used so as to shed light on the

statistical significance of the obtained results.
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1 Introduction

The last decade has witnessed an evergrowing research

interest in Wireless Sensor Networks (WSNs), which

consist of hundreds or even thousand of nodes oper-

ating with high level of autonomy, while communicat-
ing to each other without the need of any wired link

(Akyildiz et al., 2002). These densely-deployed sensor

meshes permit to efficiently monitor a wide range of

physical parameters in a cost-effective fashion. Origi-

nally restricted to military and defense applications, re-

cent advances in wireless communications and electron-

ics, along with the availability of low-cost smart sen-

sors, have made WSNs also appealing for several emerg-

ing applications, such as infrastructure security, habi-

tat monitoring (e.g. temperature, humidity, water, in-

door air quality), precision agriculture, industrial sens-

ing, traffic control, vehicle and animal tracking, etc.

In such applications, automatic and accurate loca-

tion of the underlying sensor nodes is highly desirable

in order to make collected data meaningful (Hu et al.,

2004). Indeed, the knowledge of the location of the

nodes plays an important role in the design of efficient

network routing protocols and in security applications

(Mauve et al., 2001). However, due to the constraints

on the size, the cost and the limited energy available
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at sensor nodes, the installation of a Global Position-

ing System (GPS) on each device is not always feasible

in practice, since it may jeopardize the network auton-

omy. Furthermore, GPS is not accessible in some envi-

ronments, being generally not suitable for indoor and

underground deployments. Consequently, most of the

efforts so far have been aimed at developing alternative

approaches to this problem, and thereby localization in

WSNs is still deemed as an open research problem by

the scientific community.

In this context, we focus on the anchor-based WSN

scenario, where a few static nodes of the network (re-

ferred to as anchor nodes) know their exact positions

in advance by means of either on-board GPS devices

or their manual placement beforehand. The main goal

is to estimate the coordinates of all non-anchor nodes,

assuming that each sensor can infer the distance (sub-

ject to some error) to its neighbor nodes, based on

Angle of Arrival (AoA) measurements (Niculescu et

al., 2003), time-related measurements (e.g. Time of Ar-

rival or Time Difference of Arrival (Savvides et al.,

2001)) or Received Signal Strength Indication (RSSI)

profiling techniques (Alippi et al., 2006). In particular,

we focus on the latter, for which the most straightfor-

ward localization algorithm reduces to the statistical

Maximum Likelihood (ML) estimation method. How-

ever, formalizing the localization problem as an ML

estimation results in a multivariate non-convex opti-

mization problem (Moré et al., 1997), for which dif-

ferent computationally-efficient approaches have been

proposed in the literature.

Localization techniques can be broadly classified into

one-hop and multi-hop localization schemes. In one-hop

localization techniques, the non-anchor nodes to be lo-

calized must be located inside the coverage area (i.e.

must be one-hop neighbors) of a minimum number of

anchor nodes, while in multi-hop approaches this is not

a necessary condition. In both cases, the localization

algorithm exploits the distance and/or connectivity in-

formation – i.e., “who is in the range of whom” (Shang

et al., 2004) – to estimate the positions of the whole set

of non-anchor nodes in the network.

The use of connectivity information has coined the

so-called connectivity-based and range-free localization

concepts (see (Bulusu et al., 2000; Niculescu et al.,

2001) and references therein). As for distance-based

multi-hop localization algorithms, centralized and dis-

tributed approaches have been thoroughly reported in

the related literature. In centralized localization algo-

rithms such as those proposed in (Kannan et al., 2006;

Biswas et al., 2004; Shang et al., 2003), each node only

reports its estimated distances data to a fusion cen-

ter, which takes the estimation task in charge, thus

minimizing the computational load required at each

node. On the contrary, in distributed schemes (He et

al., 2003; Priyantha et al., 2003) each sensor node pro-

cesses the locally available distance measurements to es-

timate its position, and eventually communicates with

neighboring nodes to improve such estimation. Gener-

ally, centralized algorithms are less complicated, likely

to provide more accurate location estimates but also

less scalable, with respect to their distributed counter-

parts. Three main approaches for centralized localiza-

tion algorithms can be found in the literature: Multi-

dimensional Scaling (MDS) (Ji et al., 2002; Costa et

al., 2006), Semi-Definite Programming (SDP) (Biswas

et al., 2006) and stochastic optimization (Kannan et al.,

2005, 2006). MDS consists of a set of data analysis tech-

niques that represent the distance measurements in an

N -dimensional space, based on which the relative coor-

dinates of each node are obtained based on a starting

distance matrix. On the other hand, semi-definite pro-

gramming relaxes the original non-convex problem so as

to obtain an approximate solution with reduced compu-

tational effort (Biswas et al., 2006; Tseng, 2007). Since

the relaxation may incur significant estimation errors

(Wang et al., 2008), a gradient search procedure (Liang

et al., 2004) is often used to improve the initial solu-

tions obtained by SDP (Biswas et al., 2004). Finally,

the third class of techniques considers heuristic opti-

mization methods for efficiently solving the localiza-

tion problem, such as Simulated Annealing (SA) (Kan-

nan et al., 2006), Particle Swarm Optimization (PSO)

(Gopakumar et al., 2008) and Tabu Search (Shekofteh

et al., 2010). In this paper we concentrate on a central-

ized distance-based multi-hop localization technique be-

longing to the third class of localization approaches.

Unfortunately, when the sparsity of the network is

high enough to have a number of non-anchor nodes not

connected to any anchor node, the network may be-

come not uniquely localizable. In such situations, sev-

eral different estimated topologies are compatible with

the inter-node distance measurements, mainly due to

the so-called flip ambiguity phenomenon. The flip ambi-

guity problem has been extensively analyzed in order to

identify possible flipped nodes and mitigate their effects

on the location estimations (Kannan et al., 2007, 2010).

In particular, this effect can be catastrophic – from a

localization point of view – when the estimation algo-

rithm relies on the location estimations of flipped sensor

nodes, because the localization error is propagated to

subsequent estimations affecting, in turn, the estima-

tion positions of the entire network. Figure 1 gives a

glimpse of this concept: as the neighbors of node A (i.e.
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nodes B, C, D, E) are nearly collinear, we have that

dAB ∼ dA′B , dAC ∼ dA′C ,

dAD ∼ dA′D, dAE ∼ dA′E .
(1)

It follows that node A can be reflected (flipped) with

respect to the virtual line connecting its neighbors to

position A′, while satisfying the distance constraints

and maintaining its connectivity with anchor nodes C

and E.

A’
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Fig. 1 Example of the flip ambiguity problem.

To alleviate this issue, an algorithm tackling the

node localization problem in presence of the flip ambi-

guity phenomenon has been recently proposed in (Kan-

nan et al., 2005). Basically, it consists of a two-phase

optimization scheme relying on Simulated Annealing

(SA) for both phases. In the first phase, SA is applied

to obtain an initial estimate of the node locations by

minimizing the squared error between the estimated

and the measured inter-node distances. In the second

stage, a refinement phase first identifies and then re-

locates the non-uniquely localizable nodes which may

have been flipped during the first stage, by including

an additional error term in the cost function, when

the estimated location of a node violates the connec-

tivity constraints defined by the network configuration.

Similarly, Gopakumar and Jacob in (Gopakumar et al.,

2008) have proposed to apply a Particle Swarm Opti-

mization (PSO) algorithm to tackle the problem, but,

unlike SA, they rely on a single execution of the PSO al-

gorithm and, instead of minimizing the sum of squared

errors between each non-anchor node and all its neigh-

bors (anchor and non-anchor nodes), they only take

into account those computed between each non-anchor

node and its neighboring anchor nodes. Thus, in sparser

scenarios, as the average node connectivity (and con-

sequently the anchor to non-anchor connectivity) de-

creases, the single-hop PSO-based algorithm fails to

obtain an accurate estimation of the positions of the

whole non-anchor nodes set.

This work joins the upsurge of research on meta-

heuristic centralized distance-based localization tech-

niques. Specifically, we propose to combine the Har-

mony Search (HS) algorithm with a novel Local Search

(LS) procedure that aims at mitigating the flip ambi-

guity phenomenon by exploiting the intrinsic connec-

tivity constraints of the network configuration. In par-

ticular, the localization problem is formulated as the

minimization of the sum of two different, yet mutu-

ally related terms: the first represents the squared er-

ror between the estimated and the measured inter-node

distances, whereas the second establishes a penalty for

all neighborhood violations in the estimated network

topology. Based on this rationale, our proposal, here-

after referred to as HS-LS, can be regarded as a central-

ized connectivity- and distance-based localization ap-

proach with flipping mitigation. Extensive simulations

run over 12 different network topologies will compare

the performance of the proposed HS-LS with that of

the aforementioned meta-heuristic schemes proposed in

(Kannan et al., 2005; Gopakumar et al., 2008), as well

as with that of a Genetic Algorithm (GA) incorporat-

ing the same local search procedure herein presented

for a number of different topologies and connectivity

ranges. Results will be discussed based on a number

of statistics and hypothesis tests utilized for assessing

their statistical significance.

This paper is organized as follows: in Section 2 the

node localization problem is formally posed, whereas

Section 3 delves into the proposed HS-LS algorithm.

Section 4 thoroughly describes the alternative meta-

heuristics (the algorithms in (Kannan et al., 2005; Gopaku-

mar et al., 2008) and the implementation of a GA with

the proposed LS procedure) against which the proposed

approach is benchmarked. Next, Section 5 presents the

simulation framework and discusses the obtained ex-

perimental results and finally, Section 6 concludes the

paper.

2 Problem Statement

We consider WSNs composed by n nodes uniformly de-

ployed in T , [0, 1] × [0, 1] ⊂ R2, from which m nodes

(with m < n) correspond to the anchor nodes whose

coordinates pi = (xi, yi) ∈ T (i ∈ {1, . . . ,m}) are per-

fectly known a priori. The remaining n −m nodes are

the non-anchor nodes, whose positions p̂i = (x̂i, ŷi),

∀i ∈ {m+1, . . . , n} are to be estimated by the localiza-

tion algorithm. We define a n × n binary connectivity

matrix C, such that cij = 1 if sensor nodes i and j are

within the connectivity range of each other i.e., rij ≤ R,

where rij , ||pi − pj || is the actual distance between

nodes i and j (‖ · ‖ denotes the Euclidean norm) and

R represents the circular transmission range, common

to all nodes. We further assume that each node knows
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which nodes it can communicate with, thus this infor-

mation – embedded in matrix C – is a priori available.

The measured inter-node distances dij can be obtained

by resorting to any of the techniques introduced in Sec-

tion 1, and will be modeled as

dij =

{
rij if (i, j) ∈ {1, . . . ,m} × {1, . . . ,m},
rij + eij otherwise,

(2)

where rij stands for the actual inter-node distance be-

tween node i and j, and eij represents the measurement

error, modeled as a Gaussian distributed random vari-

able with zero-mean and variance σ2. Let us now define

the set of neighbors of node i as

Ni , {j ∈ {1, . . . , n}, j 6= i : rij ≤ R} , (3)

and its complementary setN i, which contains the nodes

located outside the connectivity range of node i. Note

that the positions of the anchor nodes and the value

of R determine the regions in which each non-anchor

node may (or may not) be located. In particular, those

non-anchor nodes inside the coverage area of a certain

anchor node i ∈ {1, . . . ,m} should be placed in the cir-

cle of radius R and centered in pi = (xi, yi), whereas

the remaining non-anchor nodes (i.e., those not con-

nected to any anchor node) should be located outside

the union of the circles of radius R and centered in all

anchor nodes. Observe that this information, roughly

depending on R and {pi}mi=1, can be exploited during

the localization procedure to further refine the position

estimates of the non-anchor nodes.

With these definitions in mind, the objective of our

localization algorithm is to estimate the positions of all

non-anchor nodes by minimizing the sum1 of two ob-

jective functions, labeled as CF (Cost Function) and

SCV (Soft Constraint Violation). CF simply represents

the squared error between the estimated and the mea-

sured inter-node distances between nodes that are in

the range of each other, and can be defined as

CF ,
n∑

i=m+1


∑

j∈Ni

(dij − d̂ij)2

 , (4)

where dij and d̂ij ,
√

(x̂i − x̂j)2 + (ŷi − ŷj)2 represent

the measured and the estimated distances between node

i and its neighbor j, respectively. SCV takes into ac-

count the connectivity neighborhood violations in each

candidate topology, acting as follows: if a node j has

1 Unity-valued weights and no normalization have been
considered in the sum fitness, since the values of both con-
stituent metrics result to be in the same order of magnitude
and thus, comparable for the scenario at hand.

been placed in the neighborhood of node i whilst j ∈
N i or, alternatively, its position is estimated such that

d̂ij > R while j ∈ Ni, then it is likely the node has been

incorrectly placed: in such situations, an error term

(d̂ij − R)2 is added to SCV2. Therefore, SCV can be

formally defined as

SCV ,
n∑

i=1



∑

j∈Ni
d̂ij>R

(d̂ij −R)2 +
∑

j∈Ni
d̂ij≤R

(d̂ij −R)2


 . (5)

The defined SCV metric helps alleviating the flip

ambiguity phenomenon, especially in dense scenarios

where a local minima in the CF metric may come along

with some connectivity violations in the estimated topol-

ogy. If so, an error term is added to the cost function

SCV, hence increasing the overall cost.

Finally, we evaluate the goodness of the estimated

topology by means of the Normalized Localization Error

(NLE), which is calculated as

NLE ,
100

R

√√√√ 1

(n−m)

n∑

i=m+1

||pi − p̂i||2. [%] (6)

It is important to emphasize that the computation

of the above defined NLE parameter requires the knowl-

edge of the real coordinates {pi}ni=m+1 of non-anchor

nodes, thus it can not be regarded as an optimization

metric, but instead serves as a measure of the accuracy

of the estimated location solution {p̂i}ni=m+1.

3 Proposed HS-LS Algorithm

To efficiently seek the optimum set of position estimates

of all non-anchor nodes, we propose to hybridize the

well-known heuristic HS algorithm with a novel local

search procedure that attempts at reducing the flip-

ping ambiguities in the candidate topology. As first

presented by Geem, Kim, and Loganathan in (Geem

et al., 2001), the HS algorithm belongs to the class of

meta-heuristic population-based stochastic search ap-

proaches, and is based on mimicking the improvisation

process of musicians when jointly composing a harmo-

nious melody. This algorithm has been widely used in

several hard optimization instances framed in distinct

application fields, e.g. multicast routing (Forsati et al.,

2008), engineering design (Liao, 2010), multiuser detec-

tion (Zhang et al., 2009; Gil-Lopez et al., 2009), or radio

resource allocation (Del Ser et al., 2010, 2011). How-

ever, to the best of our knowledge, no previous work has

2 Indeed, it is worth to notice that the proposed error term
represents the minimum error due to a localization flip.
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been reported in the scientific community dealing with

the application of HS to the node localization problem.

Let us elaborate further on the roots of the HS algo-

rithm, which in essence operates on a set ofK candidate

solutions or melodies, which are referred to as Harmony

Memory. In our optimization framework, each melody

encodes the position of all nodes of the network, thus

the Harmony Memory can be denoted as {{p̂ki }ni=1}Kk=1.

The first m pairs of real numbers represent the actual

(x, y) positions of anchor nodes (which, as said before,

are assumed to be perfectly known in advance), whereas

the remaining n−m pairs correspond to the estimated

coordinates of all non-anchor nodes of the network.

Such K constituent melodies are iteratively refined – in

terms of their associated sum metric CF + SCV – by

means of a stochastic improvisation process applied to

every compounding element {x̂ki , ŷki }ni=m+1 of the can-

didate solution. Observe that this stochastic improvisa-

tion procedure is only applied to the estimated positions

of non-anchor nodes, which are further bounded by the

topological constraints described in Section 2. We also

impose these constraints in the initialization phase of

the algorithm, where the starting candidate positions

of the non-anchor nodes in the Harmony Memory are

drawn at random from the areas defined by such topo-

logical constraints. After the improvisation procedure,

the value of the sum metric function is computed for

every improvised melody, based on which the best K

melodies – out of the newly produced ones and those

from the previous iteration – are kept for the next it-

eration. This refinement is repeated until a maximum

number of iterations I is reached. In the following, we

will describe the steps and the improvising operators

used by our proposed HS-based localization algorithm.

The proposed localization technique is sketched in

Algorithm 1, in pseudocode notation. There, the con-

nectivity radius R, the connectivity matrix C and the

actual positions of the m anchor nodes are provided

as input parameters to the algorithm. Moreover, a ≡ b

(mod c) denotes arithmetic congruence (i.e., a and b are

congruent modulo c if the difference (a− b) is a integer

multiple of c), whereas a:b (with a ≤ b given integers)

represents the sequence {a, a + 1, a + 2, . . . , b − 1, b}.
First, the estimated positions of all nodes composing

the Harmony Memory (K×n-dimensional variable pEs-

timated) are initialized at random (within the topo-

logical constraints). Next, three different probabilistic

operators are iteratively applied (lines 8 to 10) to pEs-

timated so as to produce tentatively refined candidate

positions represented by the variable p, namely:

– The Harmony Memory Considering Rate, HMCR

∈ [0, 1], sets the probability that the new value for

Algorithm 1 Algorithmic description of the proposed

HS-based localization approach.
1: for k=1 to K do
2: pEstimated[k,1:m] ← ActualCoordinates[1:m]
3: pEstimated[k,m+1:n] ← generateCoordinatesAtRan-

dom(C)
4: metric[k] ← evaluateFitness(pEstimated[k,1:n])
5: end for

6: for nIter=1 to I do
7: for k=1 to K do

8: p[k,1:n] ← applyHMCR(pEstimated[k,1:n])
9: p[k,1:n] ← applyPAR(p[k,1:n], C)

10: p[k,1:n] ← applyRSR(p[k,1:n], C)
11: p[k,1:n] ← checkCoordinates(p[k,1:n],networkSize)
12: if (I ≡ nIter (mod ILS)) then

13: p[k,1:n] ← localSearchProcedure(p[k,1:n], C)
14: end if
15: metric[K+k] ← evaluateFitness(p[k,1:n])
16: end for

17: (metric[1:K], pEstimated[1:K,1:n]) ← fil-
ter(metric[1:2K],pEstimated[1:K,1:n],p[1:K,1:n])

18: end for

19: NLE ← calculateNLE(pEstimated[1,1:n], ActualCoordi-
nates[1:n])

a certain note (x̂ki , ŷ
k
i ) (i ∈ {m+1, . . . , n}) is drawn

uniformly from the values of the same note in all

the other K − 1 melodies in the Harmony Memory

(HM).

– The Pitch Adjusting Rate, PAR ∈ [0, 1], establishes

the probability that the new value for a given note

(x̂ki , ŷ
k
i ) (again, i ∈ {m + 1, . . . , n}) is randomly

taken from its coverage area considering the geo-

metrical constraints imposed by the anchor nodes

for the non-anchor node at hand.

– The probability to pick a random value for the new

note (x̂ki , ŷ
k
i ) is controlled by another probabilistic

parameter RSR (Random Selection Rate) ∈ [0, 1].

As opposed to the PAR procedure, the RSR param-

eter operates network-wide along the subset Ti ⊂
T = [0, 1] × [0, 1], which is defined by the intersec-

tion of all geometrical constraints established by the

connectivity range of the anchor nodes.

Once the operators have been applied to ∀i ∈ {m+

1, . . . , n}, the algorithm checks whether the notes of ev-

ery newly improvised candidate coordinates of the Har-

mony Memory are within the network boundaries and

eventually modifies such values to the closer boundary

of T (line 11).

The proposed approach proceeds by performing a

local search procedure every ILS iterations. This pro-

cedure aims at improving the fitness value of the im-

provised candidate with potentially lowest metric value

and is applied to each non-anchor node lying outside

the connectivity range of any anchor node and whose

any of its neighbors in the estimated topology differs
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from those imposed by the connectivity matrix C. Fig-

ure 2.a and 2.b depict an example of the application of

the local search procedure to the estimated node 3′ in

a simplistic setup. In this scenario, the following nota-

tion is adopted: the anchor nodes are represented with

crosses (×), whereas the actual non-anchor nodes are

marked as circles (• for the actual node 3, ◦ for its

actual neighbors 4, 5, 6 and 7) and the corresponding

estimated coordinates as squares (� for the estimated

node 3′, � for its estimated neighbor nodes 4′, 5′, 6′, 7′,

8′ and 9′). Given that there are false neighbors in the

estimated network topology violating the connectivity

constraints imposed by C (i.e. 8′ and 9′), the proposed

local search procedure is applied by sequentially exe-

cuting the following steps:

1. Selection of a non-anchor node lying outside the

connectivity range of any anchor node and whose

neighbors in the estimated topology differs from those

imposed by C, i.e. node 3′.

2. Creation of the set of nodes that are going to be

moved together with node 3′: this group is filled

with the non-anchor nodes that are not connected

to any anchor node and are within the connectivity

range of node 3 in the actual topology. In our case,

since c3j = 1 only for j ∈ {4, 5, 6, 7}, nodes 1 and

2 are anchor nodes and c16 = c24 = 1, this set is

composed by nodes 5′ and 7′.

3. Identification of the anchor nodes located within the

connectivity range of the actual neighbors of node

3; in our setup, nodes 1 and 2.

4. Move the node at hand (node 3′) to the intersection

of the annuli with inner and outer radii R and 2R

respectively, centered in the selected anchor nodes 1

and 2, under the condition that the number of false

neighbors decreases.

5. Place the actual neighbors, which are not connected

to any anchor (i.e. nodes 5′ and 7′), randomly in-

side the circular coverage region centered in the new

location of node 3′ (see Figure 2.b).

The new generated candidate solutions are then eval-

uated (line 15) and the Harmony Memory is updated

based on the global metric function CF+SCV (line 17).

To this end, only those K harmonies improving the

fitness with respect to those from the previous itera-

tion are included in the next Harmony Memory. Once

this has been done, the harmony memory is sorted in

ascending order of the fitness values of its compound-

ing melodies. Consequently, the potentially best candi-

date topology within a certain iteration will be given by

pEstimated[1, 1 : n]. This procedure is repeated until a

fixed number of iterations I is achieved and finally, the

NLE value is computed in line 19 in order to assess the

quality of the final estimate.
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(b)

Fig. 2 (a) Example of an scenario to which the local search
procedure is applied; (b) resulting candidate topology after
applying the local search procedure.

4 Related approaches

In this section we summarize different approaches pre-

sented in the literature for solving the node localization

problem. Such schemes will be later used for assessing

the performance of our proposed algorithm with respect

to the state of the art in meta-heuristic localization in

wireless sensor networks.

First, let us delve into the SA-based localization

method presented in (Kannan et al., 2006). SA is es-

sentially a stochastic optimization algorithm inspired

by the physical process of annealing in metallurgy. As

opposed to gradient-based search methods which em-

ploy the idea of steepest descent at each iteration, SA

allows random uphill perturbations, thus preventing the

search process from getting stuck in local minima by ac-

cepting worse candidate solutions based on probabilistic

parameters. The specific SA localization approach in

(Kannan et al., 2006) performs a two-stage optimiza-

tion procedure: in the first phase, a preliminary esti-

mate of the positions of non-anchor nodes is obtained

by minimizing the CF objective function as defined in

eq. (4). This minimization is accomplished by executing

a first instance of the SA algorithm for a given num-

ber of iterations set beforehand. At the end of the first
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stage, the non-anchor nodes fulfilling all the connectiv-

ity constraints imposed by matrix C are identified and

elevated to the status of virtual anchor nodes, whilst the

remaining nodes (i.e., those non-anchor nodes under-

going the aforementioned flipping ambiguity) are relo-

cated during the second refinement round of SA which

minimizes a new cost function defined as

CFSA ,
n∑

i=m+1



∑

j∈Ni

(d̂ij-dij)
2 +

∑

j∈Ni
d̂ij≤R

(d̂ij-R)2


 . (7)

The pseudocode of the SA-based algorithm is shown

in Algorithm 2. First, the control temperature Tc is set

at a high value to perform a highly explorative random

search within the solution space of the problem. At each

iteration, the control temperature Tc is decreased from

T0 to Tf according to line 26 (with α < 1), whereas the

distance gap ∆D is also set decreasing from its start-

ing value ∆D0 at a rate β < 1 (line 27). On the other

hand, N · P · Q randomly selected non-anchor nodes

are perturbed (with N , n − m, and P and Q be-

ing arbitrary parameters). Each perturbed topology is

then evaluated and accepted if it is characterized by

a better fitness value with respect to the current one

(lines 11-15). Otherwise, the solution with a worse fit-

ness value is accepted with a probability exp{−∆CFTc
}

(lines 16 to 20), where ∆CF represents the difference

between the current and previous values of the met-

ric function. The control temperature Tc, which drives

the acceptance rate of worse candidate estimates, cools

down as the number of iterations increases.

On the other hand, the authors in (Gopakumar et

al., 2008) proposed a PSO-based localization algorithm

for WSNs. Unlike SA, PSO is inspired by the social

behaviors and movement patterns of bird flocks or fish

shoals. Each particle’s movement is influenced by its

best location estimate and the global estimate of the

whole set of particles. Following the notation in (Gopaku-

mar et al., 2008) and assuming a 2-dimensional local-

ization scenario, let

pbestk , (pbestxk, pbest
y
k) (personal best)

denote the best position vector attained by the k-th

particle during the search procedure, and let gbest ,
(gbestx, gbesty) represent the position of the global best

particle in the K-dimensional particle swarm, i.e. the

particle with the lowest metric function value. At the

i-th iteration of the algorithm, the particles’ velocities

{vk,i}Kk=1 , {(vxk,i, vyk,i)}Kk=1 and the estimated position

vector {pk,i}Kk=1 , {(pxk,i, pyk,i)}Kk=1 of all particles are

updated according to

vψk,i = ωvψk,i−1 + c1r1(pbestψk − p
ψ
k,i−1)

+c2r2(gbestψ − pψk,i−1), (8)

pψi = pψi−1 + vψi , (9)

where ψ ∈ {x, y}, r1 and r2 represents random numbers

∈ [0, 1], w refers to the inertial weight and c1 and c2
are known as cognitive and social scaling parameters,

respectively. The fitness function to be minimized by

the proposed PSO algorithm is set to

CFPSO ,
N∑

j=1

1

N Υ
j

NΥj∑

i=1

(
√

(x-xi)2 + (y-yi)2 − d̂i)2, (10)

where d̂i corresponds to the noisy measured distance

between the non-anchor node to be localized and its

neighboring anchor nodes; NΥ
j is the number of neigh-

boring anchor nodes of node j; (xi, yi) are the coordi-

nates of anchor nodes and (x, y) the coordinates of the

target node to be estimated. It is important to note

that the authors in (Gopakumar et al., 2008) explicitly

impose that N Υ
j ≥ 3 ∀j, since no further mechanism is

incorporated to the proposed PSO approach in order to

account for possible flipping ambiguities. Nevertheless,

we will use this single-hop algorithm in our benchmark

so as to evince the importance of reducing the flip am-

biguity phenomenon in sparse scenarios.

Finally, the meta-heuristics utilized for comparison

in the next Section include a naive implementation of

a population-based GA minimizing CF + SCV by ex-

ploiting classical uniform crossover and uniform muta-
tion as mating operators (with probability Pc and Pm,

respectively), together with the same LS procedure de-

scribed in Section 3.

5 Simulation Results

In order to assess the effectiveness of the proposed HS-

LS algorithm when tackling the localization problem in

WSNs, we have performed a number of computer sim-

ulations over synthetic networks with different levels of

sparsity. In order to compare its performance against

the previously mentioned soft-computing localization

techniques, we have executed the PSO algorithm for-

mulated in (Gopakumar et al., 2008) and the SA-based

scheme proposed in (Kannan et al., 2006) over the same

scenarios. Likewise, for the sake of completeness we also

have included a naive implementation of a standard GA

incorporating the local search procedure previously de-

scribed (Section 3).
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Algorithm 2 The SA approach proposed in (Kannan et al., 2006)

1: p[1:N] ← generateCoordinates(C)
2: Tc ← T0
3: ∆D ← ∆D0

4: CFold ← ∞
5: while Tc ≥ Tf do

6: for i ← 1 to Q do

7: indexNonAnchorPerm[1:N] ← randperm(1:N)
8: for j ← 1 to N do

9: for k ← 1 to P do

10: p[indexNonAnchorPerm[j]] ← perturbNode(indexNonAnchorPerm[j], ∆D)
11: CFnew ← evaluateFitness(p[indexNonAnchorPerm[j]])
12: ∆CF ← CFnew − CFold

13: if ∆CF ≤ 0 then
14: acceptPerturbedNode(p[indexNonAnchorPerm[j]])
15: CFold ← CFnew

16: else

17: randomvalue ← uniformRandomValue(0,1)
18: if randomvalue ≤ exp(-∆CF/Tc) then
19: acceptPerturbedNode(p[indexNonAnchorPerm[j]])
20: CFold ← CFnew

21: end if
22: end if

23: end for

24: end for
25: end for

26: Tc ← α · Tc
27: ∆D ← β ·∆D
28: end while

The simulation framework consists of 12 different

network topologies generated by uniformly placing n =

200 nodes in T , [0, 1] × [0, 1]. In all such topologies,

m = 20 nodes are set as anchor nodes, hence their po-

sitions are assumed to be known a-priori and fed to the

algorithms. Moreover, we have varied the connectivity

radius R ∈ {0.13, 0.15, 0.17}, so as to model 3 differ-

ent network sparsity levels, each composed by 4 topolo-
gies. In particular, TOP1 to TOP4 represent the sparse

topologies class (R = 0.13); TOP5 to TOP8 constitute

the class of medium-sparse topologies (R = 0.15); and

TOP9 to TOP12 form the class of dense topologies

(R = 0.17). Finally, the inter-sensor distance measure-

ments (2) are assumed to be based on RSSI, which is

commonly affected by log-normal shadowing with stan-

dard deviation of the errors proportional to the actual

distance rij between nodes i and j (Liu, 1998). Without

loss of generality, in the following and for all the scenar-

ios, the measurement errors eij are considered constant

through all experiments for a given topology, with val-

ues drawn from a Gaussian distribution with zero mean

and variance given by σ2 = λ2 · r2ij , with λ = 0.1.

Table 1 summarizes the parameters setup employed

by the different algorithms and deriving from a pre-

liminary simulation campaign conducted to choose the

most effective configurations. For the sake of the brevity,

this preliminary analysis is omitted.

PSO SA GA-LS HS-LS
Tc,i : 0.1

w : [0.8, 0.7] Tc,f : 10−11 Pc : 0.9 HMCR: 0.9
c1 : [0.8, 0.6] P : 10 Pm : 0.01 PAR: 0.01
c2 : [0.8, 0.6] Q : 2 K : 50 RSR: 0.01
K : 100 α : 0.80 I : 2000 K : 50
I : 2000 β : 0.94 I : 2000

∆D0 : 0.1

Table 1 Parameters setup used for the PSO, SA, GA-LS and
HS-LS algorithms.

First, with the goal of analyzing the computational

complexity, it is worth to characterize each approach

in terms of required number of fitness evaluations. On

the one hand, HS-LS and GA-LS employs a fixed num-

ber I = 2000 of iterations while, at each iteration, the

objective function is evaluated K = 50 times (one for

each newly generated candidate solution). Therefore, in

each trial the overall number of fitness evaluations for

both the algorithms is equal to K · I = 105. Moreover,

in these algorithms the local search procedure LS is ap-

plied to the best candidate topology every ILS = 100

iterations. Regarding the PSO scheme (Gopakumar et

al., 2008), a swarm size of K = 100 particles is eval-

uated during I = 2000 iterations. It follows that, in

each trial, PSO performs K · I = 2 · 105 fitness evalu-

ations. Finally, the number of fitness evaluations per-

formed by SA (Kannan et al., 2006) at each value of
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# R Value PSO in (Gopakumar et al., 2008) SA in (Kannan et al., 2006) Naive GA-LS Proposed HS-LS

1 0.13
Mean 246.02 85.08 38.17 34.37 (♦)
Min 222.06 45.06 22.73 17.22 (♦)
Std 11.60 17.47 10.29 13.69

2 0.13
Mean 278.55 43.44 (♦) 64.29 57.52
Min 245.73 16.31 (♦) 33.90 30.72
Std 11.99 15.92 24.67 22.53

3 0.13
Mean 251.46 34.19 (♦) 54.98 54.68
Min 217.48 13.01 (♦) 27.68 29.33
Std 23.04 18.10 16.08 12.30

4 0.13
Mean 274.20 25.91 (♦) 35.91 34.75
Min 211.13 9.17 (♦) 24.15 21.29
Std 34.79 8.28 9.28 9.09

5 0.15
Mean 205.41 79.80 24.83 17.79 (♦)
Min 183.14 17.48 16.41 10.69 (♦)
Std 12.78 30.62 7.57 6.58

6 0.15
Mean 197.28 28.42 19.64 16.75 (♦)
Min 180.86 7.96 (♦) 16.18 11.18
Std 11.70 11.95 6.03 5.94

7 0.15
Mean 211.12 26.88 19.60 16.91 (♦)
Min 176.31 7.63 (♦) 15.27 10.31
Std 16.64 17.49 2.76 6.24

8 0.15
Mean 187.50 39.19 21.47 19.56 (♦)
Min 171.54 8.57 (♦) 15.58 14.46
Std 8.59 22.49 2.72 2.42

9 0.17
Mean 173.43 43.11 15.21 12.17 (♦)
Min 156.39 5.40 (♦) 10.77 7.92
Std 10.27 32.98 3.17 3.89

10 0.17
Mean 185.67 36.53 18.22 16.61 (♦)
Min 172.56 4.95 (♦) 11.88 10.85
Std 8.56 28.60 4.03 4.15

11 0.17
Mean 156.34 37.55 15.36 13.30 (♦)
Min 140.86 5.22 (♦) 12.90 10.76
Std 9.58 23.16 1.69 1.83

12 0.17
Mean 153.40 25.08 12.90 9.89 (♦)
Min 137.97 5.59 (♦) 10.88 7.61
Std 8.04 14.92 1.65 2.56

Table 2 NLE statistics obtained by the SA in (Kannan et al., 2006), the PSO in (Gopakumar et al., 2008), a naive implemen-
tation of a GA algorithm with the proposed local search (LS) and the proposed HS-LS. Best values of the NLE mean and min
statistics among all compared algorithms have been highlighted with (♦).

the control temperature, during the first optimization

phase is equal to (n − m) · P · Q. Unfortunately, the

number of fitness evaluations performed during the re-

finement phase cannot be determined in advance, as the

number of non-anchor nodes promoted to virtual an-

chor nodes is variable. However, we have verified that

SA computes, on average, around 7.1·105 fitness evalua-

tions during each trial. Thus, HS-LS and GA-LS reduce

the computational load with respect to the PSO and

SA counterparts in approximately 2:1 and 7:1 ratios,

respectively. We remark that the rationale of selecting

configurations with different complexity levels lies on

the aforementioned preliminary off-line campaign, dur-

ing which we could verify that, by using the parame-

ters setup resumed in Table 1, the simulation results of

each algorithm become stationary and/or comparable

(in terms of the same order of magnitude in the results).

Table 2 shows the Monte Carlo results for the 12

simulated scenarios. Since all the tested methods are

stochastic, 30 independent runs of each algorithm over

a given scenario have been performed. Consequently,

the table includes, for each algorithm and scenario, the

mean, the minimum value and the standard deviation

of the NLE after I iterations. It is important to no-

tice that, independently on the particular fitness func-

tion employed by the different stochastic algorithms to

explore the solution space, the NLE indicator (6) en-

ables a fair comparison among the approaches. Indeed,

it represents the deviation of an estimation of the sen-

sor nodes’ locations with respect to the real topology,

normalized by the connectivity radius. Thus, assuming

that the estimate is unbiased, the NLE can be inter-

preted as the ratio of the standard deviation to the con-

nectivity radius. As aforementioned in Section 2 note
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Fig. 3 Boxplot of the NLE values of the different algorithms over the 12 network scenarios. ps, sa, ga and hs denote, respectively,
the PSO-based, the SA-based, the GA-LS and HS-LS approaches. Moreover, triangles (s), reversed triangles (t) and squares
(n) are used to mark in each group, the best median and the difference with respect to the best median with or without
statistical significance, respectively.

that, being the original topology unknown, the NLE

cannot be directly employed as fitness function during

the search phase, while it can be employed as an a-

posteriori, yet objective, quality assessment indicator.

First observe that the mean and the standard devia-

tion of the NLE obtained by the HS-LS localization ap-

proach are in general lower than those achieved by the

SA and the PSO algorithms, and similar (but still bet-

ter than) to those obtained by the GA-LS scheme. On

the other hand, the best (minimum) NLE values are in

general lower for the SA – though it needs 7 times more

function evaluations than its GA-LS and HS-LS coun-

terparts –, similar for the GA-LS and HS-LS schemes,

but significantly higher for the PSO technique.

Figure 3 shows the distributions of the NLE values

obtained by all the algorithms over the 12 topologies:

there, whiskers are used to represent the lowest and

largest NLE values of the corresponding distribution,

the boxes delimit the lower and the upper quartiles of

the distributions, the medians are depicted with solid

lines and the observations that may be considered out-

liers are possibly marked with asterisks. In the figure,

ps, sa, ga and hs denote, respectively, the PSO-based,

the SA-based, the GA-LS and HS-LS approaches. At

a glance it can be observed that the PSO approach

is characterized by the highest NLE distributions in

all the experiments. As previously stated, the bad be-

haviour of this technique is to be imputed to the ex-

cessive sparsity of the scenarios, not balanced by any

countermeasure to alleviate the catastrophic affects of

the flip ambiguity phenomenon. Indeed, we have veri-

fied that, even increasing up to seven times the num-

ber of fitness evaluations, the PSO technique is un-

able to accurately solve the localization problem for the

given scenarios. Regarding the SA-based approach, it

can be observed that it is quite effective on the class

of sparse topologies, especially on TOP2, TOP3 and

TOP4 where it could obtain the best median values of

the NLEs. As the average density of the networks in-

creases, the distributions of the NLE values obtained

by SA are more dispersed and characterized by higher

medians with respect to GA-LS and HS-LS counter-

parts. Finally, GA-LS and HS-LS reveal the most sta-

ble behavior, macroscopically highlighted by equally-

balanced lower and upper quartiles, whiskers close to

the quartile boundaries and a relatively low number of

outliers.

In order to statistically compare the distributions of

the NLE values obtained by the different algorithms on

each scenario (a group), we performed a non-parametric

test, namely the Kruskal-Wallis test. The latter repre-

sents the non-parametric version of the classical oneway

ANOVA, and is an extension of the Wilcoxon rank sum

test to groups larger than 2. Briefly, the test compares

the medians of the group, and returns the p-value for

the null hypothesis that all samples are drawn from the

same population (or equivalently, from different pop-

ulations with the same distribution) (Hollander et al.,
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1987). If the p–value is lower than α, we can deduce

that the null hypothesis does not hold, that is, at least

one sample median in the group is significantly different

from the others, with (1−α) percent level of confidence.

Then, to determine which sample medians are statisti-

cally different, we have applied the multiple compari-

son procedure with α = 0.05 (thus, with a 95% level

of confidence) (Hochberg et al., 1987). The results of

such procedure are depicted in Figure 3, by means of

triangles (N), reversed triangles (H) and squares (�).

In detail, within each group, a triangle marks the dis-

tribution with the best median (i.e., the lowest), while

a reversed triangle and square mean, respectively, that

the median of the corresponding distribution is larger

than the best median of the group with or without sta-

tistical significance. We can observe in this plot that

HS-LS produces the best NLEs results over 9 scenarios

(all except TOP2, TOP3 and TOP4). In the remaining

scenarios, SA achieves the best results, but with sta-

tistical significance with respect to HS-LS only in one

scenario (TOP3). Finally, GA-LS, though quite stable

and effective, could never obtain the best median, while

its worse results with respect to the best median dis-

tribution have a statistical significance in 5 scenarios

(TOP2, TOP3, TOP4, TOP7 and TOP12).

6 Concluding Remarks

In this paper we have presented a novel meta-heuristic

localization technique for wireless sensor networks based

on the harmony search algorithm, which is further aided

by a local search procedure aiming at alleviating the so-

called flip ambiguity phenomenon. The proposed algo-

rithm exploits the information on the node connectivity

by imposing geometrical constraints in order to restrain

the areas where sensor nodes can be placed. Through

extensive computer simulations, we have shown that

our approach embodies a cost-effective centralized lo-

calization scheme outperforming, for most of the simu-

lated scenarios, other recently proposed meta-heuristic

strategies such as SA, PSO and a naive GA incorporat-

ing the local search procedure here presented.
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