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† Universidade de Vigo, Vigo, Spain, Email: {roimr,crusu,nuria}@gts.uvigo.es

‡ The University of Texas at Austin, Austin, TX 78712, Email: {rheath}@utexas.edu

Abstract—The high cost and power consumption of the ra-
diofrequency chain and data converters at mmWave frequen-
cies introduce hardware limitations into the design of MIMO
precoders and combiners. MmWave hybrid precoding overcomes
this limitation by dividing the spatial signal processing between
the radio frequency and baseband domains. Analog networks
of phase shifters have been proposed to implement the radio
frequency precoders, since they achieve a good compromise
between complexity and performance. In this paper, we propose a
low complexity hybrid precoding design for the architecture based
on phase shifters. The new method is a greedy algorithm based
on the orthogonal matching pursuit algorithm, but replacing the
costly correlation operations over a dictionary with the element-
wise normalization of the first singular vector of the residual.
The main advantage is that the design avoids any assumption on
the antenna array geometry. Additionally, numerical results show
the superiority of the proposed method in terms of achievable
spectral efficiency over other previous solutions.

I. INTRODUCTION

Millimeter wave (mmWave) multiple-input multiple-output
(MIMO) systems overcome future rising spectrum needs by
enabling gigabit per second rates of communication for in-
door and outdoor wireless systems [1]–[4]. The decrease of
wavelength at mmWave makes possible large antenna arrays
at receiver and transmitter. The cost and power consumption of
the radio frequency (RF) components in the mmWave range,
however, make it challenging to use one complete RF chain
and one analog-to-digital (ADC) converter per antenna.

An immediate solution to overcome the limitation on the
number of complete RF chains is to perform beamforming in
analog using variable phase shifters [5]. This is the defacto ap-
proach in mmWave indoor communications in IEEE 802.11ad
[6], and it has been introduced as an optional functionality
in IEEE 802.15.3c [7]. The network of phase shifters steers
the beam along the dominant propagation path of the channel
using different strategies [8], [9], and supporting only single
stream MIMO communications. Moreover, the availability of
only quantized phase shifters limits the performance of the
analog beamforming solutions. A different analog beamform-
ing concept, beamspace MIMO [10], is based on a high-
resolution discrete lens array. This avoids the limitations of
the quantized phase shifters, but does not provide uniform
performance across a broad range of angles.

Another approach to deal with a limited number of RF
chains is to design hybrid precoders/combiners, which separate
the spatial signal processing into an analog processing network
and the baseband (BB) domain. This approach supports multi-
stream communication. In [11], the precoder is designed using

simple direct formulas approaching the waterfilling solution.
No assumption on the array geometry is needed. The work
considers dynamic power allocation with the number of data
streams being dynamically optimized. Additionally, with a
small number of data streams and large number of antennas,
the power allocation benefits achieved are not significant
versus low complexity equal power allocation solutions.

A hybrid solution especially designed for mmWave chan-
nels was recently proposed in [12], [13]. The method exploits
the limited scattering nature of the mmWave channel and the
presence of large antenna arrays. The design of the precoders
is formulated as a sparse optimization problem with hardware
constraints. It resembles the problem of sparse signal recovery
via multiple measurement vector problem. The main limitation
of this work is that it assumes known array geometries for
both transmitter and receiver. Additionally, solving the sparse
optimization problem still results in high complexity. The
works in [11]–[13] assume perfect channel state information
at the receiver. To overcome the high complexity limitation
another technique for the precoder/combiner design has been
proposed in [14]; a significant complexity reduction can be
achieved, but the solution still depends on the array geometry.

In this paper, we propose a low-complexity hybrid precod-
ing design using a fixed number of data streams and equal
power allocation. The main advantage is that it avoids any
assumption on the array geometry or channel structure. The
method is a greedy algorithm based on orthogonal matching
pursuit steps, as in [13], but replacing the correlation oper-
ations over a dictionary with the element-wise normalization
of the first singular vector of the residual. Only a number of
iterations equal to the difference between available RF chains
and data streams is needed to complete the design. This results
in a great reduction of the computational complexity with
respect to the method in [13]. Numerical results show the
superiority of the proposed solution in terms of achievable
spectral efficiency.

II. SYSTEM MODEL

A single user mmWave MIMO system is shown in Fig-1.
The transmitting BS is equipped with Nt antennas and Lt RF
chains while the receiving MS with Nr antennas and Lr RF
chains. Ns data streams are transmitted from the BS to the MS
assuming Ns ≤ Lt ≤ Nt and Ns ≤ Lr ≤ Nr.

The transmitter applies a hybrid precoder FT to the sym-
bol vector s ∈ CNs×1 with E[ss∗] = I. The discrete-
time transmitted signal is given by x = FTs. The signal
is transmitted through a narrowband flat channel assuming



Fig. 1: Block diagram of the transmitter-receiver single user
mmWave system architecture.

perfect synchronization to give the received signal

r =
√
ρHFTs + n, (1)

where H ∈ CNr×Nt is the channel matrix such that
E
[
‖H‖2F

]
= NtNr, ρ represents the average transmitted power

per symbol and n ∈ CNr×1 is the noise vector with CN (0, σ2
n)

entries. The MS applies a hybrid combiner WT to the signal.
Assuming flat-fading and perfect synchronization, the discrete-
time model for a single symbol period is

y =
√
ρW∗

THFTs + W∗
Tn. (2)

The hybrid precoder FT = FRFFBB is composed of an
RF precoder FRF ∈ CNt×Lt and a baseband precoder FBB ∈
CLt×Ns . Equivalently, the hybrid combiner WT = WRFFBB is
composed of an RF combiner WRF ∈ CNr×Lr and a baseband
combiner WBB ∈ CLr×Ns . The RF precoder and combiner
are implemented in the analog domain. Therefore, the pre-
coding and combining matrices FRF and WRF are subject to
the specific hardware constraints. The RF precoder/combiner
implemented with a network of variable phase shifters impose
the constraint of unit norm entries in FRF,WRF.

III. PROBLEM FORMULATION

Assuming perfect channel state information at the receiver,
we seek to design hybrid mmWave precoders and combiners,
FT = FRFFBB and WT = WRFWBB, to maximize the spectral
efficiency [15]

log2

∣∣∣∣INs +
ρ

Ns
R−1n W∗

THFTF∗TH∗WT

∣∣∣∣ , (3)

where Rn is the noise covariance matrix after combining. We
consider a total transmit power constraint given by ||FT||2F =
Ns, and a fixed number of data streams Ns ≤ min(Lt, Lr). We
are interested in designs with equal power allocation and low
computational complexity.

Given the singular value decomposition of the channel
H = UΣV∗, the optimal unconstrained hybrid precoder and
combiner that achieve the capacity are

Fopt = VLΓA (4)
Wopt = BUL. (5)

Here A can be any L×L unitary matrix with L = min(Lt, Lr),
B any full-rank matrix of the same size and Γ is the diagonal
matrix with the power allocation weights given by waterfilling
[16]. Denote with VL (UL) the matrix constructed by selecting

the first L columns of V (U). Therefore, our goal can be
formulated as the design of practical precoders and combiners
at RF and BB that approximate these optimal solutions.

In this context, a first design strategy with equal power
allocation and fixed Ns was proposed in [13]. The approach is
to first abstract the receiver operation, assuming a perfect max-
imum likelihood receiver, and focus on the precoder design.
Therefore, they jointly seek for FRF and FBB that maximize
the mutual information

argmax
FRF,FBB

log2

∣∣∣∣I + ρ

Nsσ2
n

HFRFFBBF∗BBF∗RFH
∗
∣∣∣∣

s.t. FRF ∈ FRF

‖FRFFBB‖2F = Ns, (6)

where FRF stands for the set of feasible RF implementable
precoders with phase shifters, i.e. precoders with constant
norm entries. Since (6) does not have a general solution
when constraints are imposed on FRF, some approximations
and assumptions are used. Further constraining the set of
feasible RF precoders FRF to the set of array response vectors
At = [at(φ1)...at(φN )], with N the angular resolution,

argmin
At,FBB

‖Fopt −AtFBB‖F

s.t. ‖diag(FBBF∗BB)‖0 = Lt

‖AtFBB‖2F = Ns, (7)

which can be solved with a variant of simultaneous orthogonal
matching pursuit (SOMP). An equivalent problem is solved to
design the combiner.

This solution is specifically designed for equal power
allocation and fixed number of data streams. When Ns < Lt, it
benefits from the extra RF chains and seeks for the best linear
combination that approximates the optimal precoder. The main
drawback is the use of a dictionary of array steering vectors
and the costly correlation operations. To build the dictionary,
some assumptions on the channel structure and array geometry
have to be made. The accuracy of the approximation depends
on the resolution considered to design the dictionary. Addition-
ally, by further constraining the set of feasible RF precoders to
the set of array steering vectors, the method does not exploit
all the available degrees of freedom in the RF domain.

Our final goal will be finding an alternative dictionary-
free solution to (6) which does not depend on the array
geometry and exhibiting at the same time a low computational
complexity.

IV. HOW MANY RF CHAINS ARE NEEDED?

An interesting question before designing the pre-
coder/combiner is how many RF chains are needed to achieve
the performance of the optimum unconstrained precoder with
a hybrid design with phase shifters constraints for a given
receiving antenna array size. The case where Ns = 1 was
analyzed in [11]. Any vector fopt ∈ CNt×1 can be written as

fopt = FRFfBB, (8)

with FRF ∈ FNt×Lt
RF and fBB ∈ CLt×1 if and only if Lt ≥ 2.

See [11] for the complete proof. The solutions are not unique,
a possible design with direct formulas is provided in [11].



For the general case with Ns ≥ 1 and Fopt ∈ CNt×Ns , the
aim is to find the minimum number of Lt for what there exist
FRF ∈ FNt×Lt

RF and FBB ∈ CLt×Ns providing

Fopt = FRFFBB. (9)

A sufficient condition is that Lt ≥ 2Ns. This result is a direct
consequence of the single stream result. Since each column
of Fopt can be decomposed as a linear combination of two
columns from the RF precoder, we can write

Fopt = [f1opt . . . f
Ns
opt ]

= [F1
RF . . .F

Ns
RF]

f1BB 0
. . .

0 fNs
BB

 , (10)

where FiRF ∈ F
Nt×2
RF and f iBB ∈ C2×1 for i = 1 . . . Ns.

Equation (10) is equivalent to f iopt = FiRFf
i
BB for i = 1 . . . Ns,

for which we know that there exists a solution. The same
formulas as for the single data stream case can be applied
to design the hybrid precoder.

Notice that for the case Lt ≥ 2Ns, the solution to the
Frobenius norm based optimization problem is exactly the
optimum solution that maximizes the spectral efficiency. We
focus on designing near optimal hybrid precoders when the
available number of RF chains is Lt < 2Ns.

V. DECOUPLED HYBRID PRECODING

The first simplest idea to reduce the complexity of the joint
analog/baseband optimization problem is to decouple problem
(3) into the analog and digital domains. The analog+baseband
decoupling strategy is stated as follows:

• Analog: Find the optimum FRF and WRF that maxi-
mize the spectral efficiency of the system

ŷ = W∗
RFHFRFŝ + n. (11)

• Baseband: Fixed FRF and WRF, find FBB and WBB
that maximizes the spectral efficiency of the equivalent
system

y = W∗
BBĤFBBs + W∗

RFn. (12)

The equivalent channel is Ĥ = K
−1/2
w W∗

RFHFRF,
with Kw = (W∗

RFWRF) the noise covariance matrix.

Finding the optimum feasible RF precoder/combiner that
maximize the spectral efficiency of (11),

log2

∣∣∣∣ILr +
ρ

Lr
R−1n W∗

RFHFRFF
∗
RFH

∗WRF

∣∣∣∣ ,
requires solving an intractable optimization problem. Follow-
ing the discussion in [13], near optimal RF precoders can
be found by minimizing the Frobenius norm with respect
to the optimum unconstrained solution. Given the singular
value decomposition (SVD) of the channel, H = UΣV∗, the
optimum precoder, Fopt

RF = VLt , and combiner, WRF
opt = ULr ,

are given by the first Lt, Lr singular vectors of U and V. The
idea is to solve the following optimization problem

argmin
FRF

‖Fopt
RF − FRF‖F

s.t. FRF ∈ FRF. (13)

This problem is easier to solve and has analytical solution. In
fact, it is equivalent to minimizing the square error of each
entry ‖[Fopt

RF ]i,k − [FRF]i,k‖22. Since
[
Fopt

RF

]
i,k

= βi,ke
jψi,k ,

the RF solution to (13) is given by the simplest selection
[FRF]i,k = ejφi,k with φi,k = ψi,k. FRF can be computed
efficiently as the element-wise normalization of FRF = Fopt

RF �
|Fopt

RF |. Equivalently, WRF = Wopt
RF � |W

opt
RF |.

The solution to the baseband problem is known. The
unitary optimal precoder/combiner that maximize the mutual
information is given by the singular value decomposition of
the equivalent channel Ĥ = ÛΣ̂V̂∗. The digital precoder and
combiner are FBB = V̂Ns and W∗

BB = ÛNsK
−1/2
w , where

V̂Ns and ÛNs are the first Ns eigenvectors of Û and V̂.

VI. GREEDY HYBRID PRECODING

The second proposed algorithm is a greedy method that
finds a near optimal solution to the problem of minimizing
‖Fopt − FRFFBB‖F with the hardware constraints. The algo-
rithm starts by initializing the first Ns columns of FRF with
the element-wise normalization of Fopt. When Lt = Ns, this
selection minimizes the Frobenius norm ‖Fopt−FRF‖F . Then,
FBB is computed with regular least squares FBB = FRF \Fopt.
When Ns ≤ Lt the algorithm follows a greedy strategy to
complete the Nt×Lt FRF after the initialization. In each step,
the objective is to add a column to FRF which leads to the
highest reduction of the residual R(k) = Fopt − F

(k)
RF F

(k)
BB . In

Lt − Ns steps the process is completed. After the initializa-
tion, the algorithms basically follows the steps of orthogonal
matching pursuit, replacing the costly correlation operation by
the computation of the main singular vector of the residual fol-
lowed by its element-wise normalization. The Greedy Hybrid
Precoding (GHP) is described in detail in Algorithm 1.

Algorithm 1 – Greedy Hybrid Precoding (GHP) .

Initialization: Perform the singular value decomposition of
the channel H = UΣV∗ and build the optimum uncon-
strained precoder Fopt using the first Ns columns of V.
Main steps:
1) Initialize F

(0)
RF with the element-wise normalization

F
(0)
RF = Fopt � |Fopt| .

2) For k = 0 . . . Lt −Ns − 1:
a) Update F

(k)
BB = F

(k)
RF \ Fopt.

b) Compute the residual R(k) = Fopt − F
(k)
RF F

(k)
BB .

c) Compute the first singular vector u1 of the singular
value decomposition R(k) = UΣV∗.

d) Append the element-wise normalization of u1 as the
new unital column F

(k+1)
RF =

[
F

(k)
RF u1 � |u1|

]
.

3) Final update FBB = FRF \ Fopt.
4) Normalization FBB =

√
Ns

FBB
‖FRFFBB‖F

Regarding the computational complexity of GHP, the main
differences with respect to an SOMP based algorithm as [13],
are the steps involved in the computation of FRF, steps (c)
and (d) of GHP. Step (c) computes the main singular vector
of the current residual. The main singular vector can be well
approximated by a few, in the order of Ns, iterations of the
power method. Step (d) is just an element-wise normalization



stage that enforces the unit magnitude constraint. The order
of complexity of steps (c) and (d) are O(NtN

2
s ) and O(Nt)

respectively. These steps substitute the correlation operation
over a dictionary and the selection of the atom that has the
largest total correlation with the current residual. Computing
the correlation takes O(N2

t Ns) operations for a resolution
O(Nt), while the atom selection step requires O(N2

t ). The
previous analysis holds for one iteration of both algorithms.
Notice that for Nt � Ns, GHP leads to a great complexity
reduction, since the number of operations depends only lin-
early on Nt. Additionally, GHP will run for Lt−Ns iterations,
less than the Lt iterations of SOMP. Overall, we do expect
GHP to perform faster than SOMP in any circumstances.
Furthermore, solving least squares problems with FRF that
increases in size, as in step (a), can be done efficiently by
avoiding a full Cholesky factorization of F∗RFFRF at each step
and just performing an update of the factorization computed
in the previous iteration.

Table I summarizes for each method the computational
complexity of each step. The first singular value decomposition
of the channel and the final normalization step are not included
since they are common to all the strategies. Notice that the
decoupled strategy provides the hybrid precoder and combiner
with only one run of the algorithm, while GHP and SOMP
have to be applied twice, one for each.

TABLE I: Computational complexity

Decoupled

Operation Complexity
FRF = VLt � |VLt | O(NtLt)
WRF = WRF � |WRF| O(NtLt)
Kw = (W∗

RFWRF) O(NtL
2
t )

K−1/2
w H̃ = W∗

RFHFRF O(N2
t Lt)

SVD(Ĥ) O(L3
t )

Overall O(N2
t Lt)

GHP

Operation Complexity
FRF = VLt � |VLt | O(NtLt)
(Lt −Ns)× FBB = FRF \ Fopt O((Lt −Ns)NtL

2
t )

(Lt −Ns)×R = Fopt − FRFFBB O((Lt −Ns)NtLtNs)
(Lt −Ns)× Rank 1 decomp. of R O((Lt −Ns)NtN

2
s )

(Lt −Ns)× u1 � |u1| O((Lt −Ns)Nt)
FBB = FRF \ Fopt O(NtL

2
t )

Overall O(NtL
2
t Ns)

SOMP

Operation Complexity
(Lt)× Correlation A∗R O(N2

t LtNs)
(Lt)× Atom selection O(N2

t Lt)
(Lt)× FBB = FRF \ Fopt O(NtL

3
t )

(Lt)×R = Fopt − FRFFBB O(NtL
2
t Ns)

(Lt)×R = R/|R‖F O(NtLt)
Overall O(N2

t LtNs)

VII. SIMULATION

We consider the narrow-band clustered channel model in
[13] with Ncl = 4 clusters and Nray = 8 propagation paths per
cluster. We assume all clusters are of equal power satisfying
the normalization constraint E[‖H‖2F ] = NtNr . The angles
of departure and arrival are normal randomly distributed with
mean cluster angle uniformly randomly distributed in [0, 2π].
The angle spread is set to 7.5. The same total power constraint
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Fig. 2: Achievable spectral efficiency. ULA system Nt = Nr =
32 antennas and Lt = Lr = 4 RF chains. Ns ∈ {1, 2, 4} data
streams are considered.

is fixed for all precoders with equal power allocation per
stream and SNR = ρ

σ2
n

.

Fig. 2 shows the spectral efficiency achieved by the pro-
posed hybrid precoders GHP and analog+digital, together with
the sparse hybrid precoder [13] and the optimum unconstrained
solution given by the SVD of the channel for different SNR
values. Both transmitter and receiver are assumed to have
ULAs with Nt = Nr = 32 antennas and Lt = Lr = 4 RF
chains with which they transmit Ns ∈ {1, 2, 4} data streams.
All the hybrid precoders achieve spectral efficiencies close to
those achieved by the optimum unconstrained solution, within
a small gap increasing for higher Ns. The GHP overcomes the
analog+digital and the sparse hybrid precoder for any number
of data streams. The analog+digital nearly overlaps with GHP
when the number of streams equals the number of RF chains
and performs slightly worse for Ns = 1 or 2.

Fig. 3 shows the spectral efficiency achieved by the hybrid
precoders in terms of the number of RF chains. The same
ULA system with Nt = Nr = 32 is considered with equal
number of RF chains in transmission and reception (Lt = Lr)
varying from 1 to 10. The number of streams equals the
number of RF chains Ns = Lt. The SNR is fixed to 0
dB. We see that the GHP and the analog+digital precoders
nearly overlap, both with a non-negligible improvement with
respect to the sparse hybrid precoder. The gap between the
spectral efficiency achieved by the hybrid precoders and the
unconstrained optimal solution increases with the number of
RF chains. To explore the performance when the number of RF
chains is greater than the number of data streams, Fig.-4 plots
the spectral efficiency for the same set up with the difference
that now the number of data streams is fixed Ns ∈ {1, 2, 4}. We
see that there is a slight improvement in the achievable spectral
efficiency when the number of RF chains increases over the
number of data streams with GHP and the sparse hybrid
precoder. It means that the singular vectors of the channel are
well approximated as a linear combination of unital vectors
with GHP and as a linear combination of steering vectors with
the sparse hybrid precoder. This gain is more noticeable for



1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

Number of RF chains

S
p

e
c
tr

a
l 
E

ff
ic

ie
n

c
y
 (

b
it
s
/s

/H
z
)

 

 

Optimum

Sparse Hybrid Precoding

Greedy Hybrid Precoding

Analog+Baseband
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Fig. 4: Spectral Efficiency as function of the number of RF
chains. ULA system Nt = Nr = 32 and Lt = Lr = 4. A fixed
number of data streamsNs ∈ {1, 2, 4} is considered.

high Ns, with GHP performing better than the sparse hybrid
precoder in all the cases. In this experiment, GHP needs a
number of RF chains equal to twice the number of streams
to achieve the optimal performance. On the other hand, the
decoupled analog+digital solution doesnt benefit from the extra
RF chains. Therefore, the applicability of the analog+baseband
precoder is limited to the case when Ns = Lt. We note that
although an increment on the number of RF chains over the
number of data stream represents an improvement with the
hybrid precoders, this gain is relatively small. In practice,
there will be a trade off between this marginal gain and other
consideration such as the high power consumption and cost
per RF chain.

VIII. CONCLUSION

In this paper we developed a low complexity hybrid
precoding design for mmWave MIMO systems including an

analog preprocessing network of phase shifters. The main
advantage of the method is the avoidance of any assumption
on the array geometry and the use of a dictionary with the
associated costly correlation operations. This results in a lower
overall complexity. Simulation results show that the achievable
spectral efficiencies are close to the unconstrained solution and
higher than other popular approaches.
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