
Secret dither estimation in lattice-quantization data hiding: a

set-membership approach∗

Luis Pérez-Freire, Fernando Pérez-Gonzalez and Pedro Comesaña

Signal Theory and Communications Dept.

University of Vigo

36310 Vigo, Spain

ABSTRACT

In this paper, security of lattice-quantization data hiding is considered under a cryptanalytic point of view.
Security in this family of methods is implemented by means of a pseudorandom dither signal which randomizes
the codebook, preventing unauthorized embedding and/or decoding. However, the theoretical analysis shows
that the observation of several watermarked signals can provide sufficient information for an attacker willing
to estimate the dither signal, quantifying information leakages in different scenarios. The practical algorithms
proposed in this paper show that such information leakage may be successfully exploited with manageable
complexity, providing accurate estimates of the dither using a small number of observations. The aim of this
work is to highlight the security weaknesses of lattice data hiding schemes whose security relies only on secret
dithering.

Keywords: Lattice data hiding, DC-DM, security, residual entropy, set-membership estimation

1. INTRODUCTION

Recently, there have been some attempts at addressing the concept of watermarking security1, 2 from a cryptan-
alytic point of view, where all the information about watermarking schemes is public, and security relies only on
the use of secret keys that parameterize the embedding and/or decoding processes. In additive spread-spectrum
methods, for instance, security usually depends on the secrecy of the pseudorandom sequence which is added to
the host signal. Theoretical studies1, 2 have shown that, for these methods, some information about the secret
key leaks from the observation of watermarked signals, so an attacker can take advantage of this information
leakage to obtain an estimate of that pseudorandom sequence. Thereafter, the attacker may use his knowledge
about the secret key to devise smart attacks to defeat the watermarking scheme.

In this paper we consider the security of lattice-quantization data hiding schemes for which security relies
only on the secret dither signal that randomizes the codebook.3, 4 In our set-up, the attacker is able to gather
a collection of No watermarked signals along with additional information in some instances. Depending on the
degree of additional information, three different scenarios are considered, following the nomenclature introduced
in1: a) Known Message Attack (KMA), where the attacker knows the messages embedded in each watermarked
signal; b) Constant Message Attack (CMA), where all watermarked signals are assumed to convey the same
message; and c) Watermarked Only Attack (WOA), where no additional information is available. Although all
these scenarios are addressed under theoretical and practical points of view, the main focus is put on the KMA
scenario because of its central role in the analysis of the other cases, showing the relationship between them.
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Figure 1. Block diagram of lattice-based DC-DM.

For the theoretical part, the measures of security used in this paper were introduced in2; following Shannon’s
approach to assess the security of cryptographic systems,5 information leakages are measured here by the mutual
information between the observations and the secret dither (a real-valued vector), and the remaining uncertainty
about the latter is quantified by the residual (conditional) entropy.

In the practical part, two different algorithms for estimating the secret dither are proposed and tested,
comparing their performance with that of the optimal estimator. The proposed algorithms are suitable for
performing dither estimation with arbitrary lattices in any number of dimensions, although the computational
complexity of such algorithms may be increased with the dimensionality (roughly speaking, the complexity will
depend on the number of facets of the Voronoi regions of the considered lattice). To the best of the authors’
knowledge no results in this direction were published before for quantization-based schemes, with the exception
of,6 but the problem was restricted there to scalar quantization with no distortion compensation, and as such
it can be regarded as a subproblem of our general formulation.

The main notational conventions used in the rest of the paper are the following: scalar variables and vectors
are respectively denoted by italicized letters and boldface letters; capital letters denote random variables, whereas
lowercase letters are their occurrences. Calligraphic letters are reserved for sets, and all vectors are regarded as
column vectors.

2. THEORETICAL SECURITY OF LATTICE DATA HIDING

Before proceeding with the theoretical analysis, we will briefly explain the basics of embedding in lattice data-
hiding; for more details and other aspects such as decoding, the interested reader is referred to.3 Consider a
n-dimensional lattice Λ and the set M = {0, . . . , LM − 1} of possible messages. For each message m ∈ M let us
define the associated coset of Λ as Um = Λ + dm, where Λ is a n-dimensional lattice, and dm is the minimum-
norm coset representative corresponding to message m. The codebook U is defined by the union of all cosets,
U =

⋃LM−1
m=0 Um. Given a certain host signal x and a to-be-transmitted message m ∈ M, each watermarked

signal is generated as

y = x + α(QUm,t(x) − x) = QUm,t(x) + (1 − α)(x − QUm,t(x)), (1)

where α is the distortion compensation parameter, and QU
m,t

(·) is an Euclidean quantizer whose centroids are

defined by the coset Um + t. The term t in (1) is the secret dither vector, which is known only by embedder and
decoder, and whose aim is to improve the security of the scheme by randomly translating the codebook.3, 4 The
second term of (1) is the so-called self-noise term. The data hiding scheme just described is commonly known
as Distortion Compensated - Dither Modulation (DC-DM),3 and is summarized in the block diagram of Fig. 1.
As it is usual in the analysis of quantization-based methods for data hiding,3, 4 we will assume a low embedding
distortion regime, thus we can consider that the host pdf is approximately uniform inside each quantization cell
and all centroids in U occur with similar probabilities. This assumption (which we will refer to in the sequel as
the flat-host assumption) implies that the statistical distribution of the self-noise is approximately uniform over
(1 − α)V(Λ), where V(Λ) denotes the Voronoi region of Λ, defined as

V(Λ) , {x ∈ R
n : QΛ(x) = 0}. (2)

The flat-host assumption permits us to simplify the theoretical analysis, restricting our attention to the modulo-
reduced random variable Ỹ , Y mod Λ = Y − QΛ(Y). Hence, the pdf of Ỹ conditioned on the embedded



message and the secret dither is

f(ỹ|m, t) =

{

vol(Z(Λ))−1, ỹ ∈ (dm + t + Z(Λ)) mod Λ
0 otherwise

(3)

where Z(Λ) , (1 − α)V(Λ). In our model, as is customary in theoretical analyses of watermarking methods,
the host samples are considered independent and identically distributed (i.i.d.). In case that the dimensionality
of the host is Nv = N · n, embedding is made in disjoint groups of n samples using a different secret dither
for each of them. Clearly, for maximizing the residual entropy about t, its samples should also be i.i.d. In the
following, we only consider n-dimensional hosts, but all the results on mutual informations and entropies are
easily generalizable to hosts of dimension N · n by multiplying them by a factor N , due to the independence
assumed.

Under these premises, a theoretical security analysis will be developed in the following for the three scenarios
introduced in Section 1. Obviously, the security level of the system will depend on the statistical distribution of
the secret dither, or better to say, of its modulo-Λ reduced version, T̃, due to the Λ-periodicity of the watermark
generation (see Eq. (1)). In other words, the watermarked signal depends in last instance on T̃, and hence the
secrecy of the codebook depends only on the statistics of T̃.† Therefore, we will assume hereinafter that the
support of T is bounded by V(Λ).

2.1. Known Message Attack

When a sequence of watermarked signals {Ỹ1, . . . , ỸNo
} and its associated messages {M1, . . . ,MNo

} are ob-
served, the information leakage about T can be calculated as

I(Ỹ1, . . . , ỸNo
;T|M1, . . . ,MNo

) = h(T) − h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

), (4)

since T is independent of the embedded messages. The second term of (4) is the residual entropy of the dither
after No observations, which depends on its statistical distribution conditioned to the observations. Through the
application of Bayes’ rule, it is easy to see that the conditional pdf of the dither is given by

f(t|ỹ1, . . . , ỹNo
,m1, . . . ,mNo

) =
f(t) ·∏No

i=1 f((ỹi − dmi
− t) mod Λ|Mi = 0,T = 0)

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

)
, (5)

where we have made use of the flat-host assumption. By recalling Eq. (3), it is clear that each term in the
numerator of (5) is nonzero iff (ỹi − dmi

− t) mod Λ ∈ Z(Λ), or equivalently, iff t ∈ Di, with Di given by

Di , (ỹi − dmi
−Z(Λ)) mod Λ, i = 1, . . . , No, (6)

Hence, it is clear that the support of t is contained in SNo
,
⋂No

i=1 Di, independently of the distribution of T. We
well refer to SNo

in the following as the feasible region. Obviously, the watermarker is interested in maximizing
the residual entropy, for which he should choose T ∼ U(V(Λ)). The reason is that in this case the conditional
pdf of the dither results to be uniform in SNo

, this way maximizing the residual entropy. Furthermore, we have
that

h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

) = E[log(vol(SNo
))], (7)

so for the case of a single observation (No = 1) it is straightforward to see that

h(T|Ỹ1,M1) = log(vol(Z(Λ))) = log((1 − α)nvol(V(Λ))), (8)

and it is immediate to notice that the information leakage is given by

I(Ỹ1;T|M1) = h(T) − h(T|Ỹ1,M1) = log(vol(V(Λ))) − log((1 − α)nvol(V(Λ))) = −n log(1 − α), (9)

independently of the specific lattice chosen for embedding. This result clearly shows a trade-off between security
and achievable rate: theoretical analyses4, 7 show that, in AWGN channels, the value of α must approach

†However, attacks at a cryptographic level might be indeed interested in knowing the exact value of t.



1 for maximizing the achievable rate in the high-SNR region; however, bear in mind that for α ≈ 1, one
observation suffices to get an accurate estimate of the centroids in Um, and consequently of the secret dither, due
to the structure imposed to the codebook. This is reflected in the residual entropy of the dither (8), for which
limα→1 h(T|Ỹ1,M1) = −∞.

For the general case of No > 1, one may be tempted to upper bound the mutual information by assuming
that all observations will provide the same amount of information, but the resulting bound will be too loose in
most cases. In fact, the mutual information can be shown to be a strictly increasing, concave function of the
number of observations No. This result will be checked in Section 2.4.

2.2. Constant Message Attack

The easiest way of addressing this scenario is to regard it as a collection of several KMA problems. When the
message embedded is unknown but unchanged for the whole sequence of observations, the conditional pdf of the
dither after No observations can be expressed as

f(t|ỹ1, . . . , ỹNo
,CM) =

1

|M|

|M|
∑

m=1

f(t|ỹ1, . . . , ỹNo
,m, . . . ,m), (10)

where CM stands for constant message. This means that the feasible region SCMA
No

for the dither in the CMA
case is simply the union of the feasible regions of |M| different KMA problems. Formally,

SCMA
No

=

|M|
⋃

m=1

(SNo
+ dm), (11)

where SNo
is the feasible region defined for the KMA case in the previous section. Since vol(SNo

) is reduced
with the number of observations, the different regions that constitute SCMA

No
will be disjoint for sufficiently large

No; in such case, the residual entropy is again maximized if T ∼ U(V(Λ)) is chosen. Due to (10), the residual
entropy can be upper bounded as

h(T|Ỹ1, . . . , ỸNo
,CM) ≤ h(T|Ỹ1, . . . , ỸNo

,M1, . . . ,MNo
) + log(|M|), (12)

resulting in a lower bound to the information leakage. Equality in (12) is achieved when the regions SNo
+ dm

are disjoint, thus the bound will be asymptotically tight for increasing No. Anyway, if the value of α is above a
certain threshold (which is increasing with the nesting ratio) the above upper bound is an equality for every No.
This value of α must be such that the conditional pdf’s of the watermarked signal conditioned to each message
do not overlap; it is easy to see that such value is given by αt = 1 − 1/|M| for any lattice, as long as the lattice
partition is self-similar.

2.3. Watermarked Only Attack

In this case we have to compute the residual entropy h(t|Ỹ1, . . . , ỸNo
). The pdf of the secret dither conditioned

on the past observations is given by

f(t|ỹ1, . . . , ỹNo
) =

f(t) ·∏No

i=1 f(ỹi|t)
f(ỹ1, . . . , ỹNo

)
=

|M|No
∑

i=1

f(t|ỹ1, . . . , ỹNo
,mNo

i ) · Pr{mNo
i |ỹ1, . . . , ỹNo

}, (13)

where mNo
i , i = 1, . . . , |M|No , covers the whole range of message sequences of length No. Notice that the pdf

(13) is not necessarily uniform, since it is, in fact, a weighted sum of uniform pdf’s.

Clearly, this is the most pessimistic scenario for the attacker, due to the additional uncertainty introduced
by the unknown message sequence. However, if the value of α is above a given threshold (that again depends on
the nesting ratio) which guarantees that there are only |M| message sequences with non-null probability, then
it is easy to see that the residual entropy in this case is given by

h(T|Ỹ1, . . . , ỸNo
) = h(T|Ỹ1, . . . , ỸNo

,M1, . . . ,MNo
) + log(|M|). (14)



The value of α that fulfills the condition necessary for (14) to hold can be shown to be α′
t = 1 − 1

2|M| for

self-similar lattice partitions. For values of α below α′
t, the residual entropy may be larger, in general.

Finally, one interesting observation is that, in an asymptotical regime of low embedding distortion it is
possible to achieve perfect secrecy in Shannon’s sense, i.e., the information leakage about the secret dither is null,
no matter how many observations are available to the attacker. It is easy to realize that this is possible if and
only if I(T; Ỹ) = 0 for No = 1. In the low embedding distortion regime that we are considering, it is possible
to find values of α that allow to achieve perfect secrecy. For instance, using self-similar lattice partitions, such
value is given by α0 = 1 − 1/|M|.

2.4. Lattice comparison

The comparison given in this section will be focused on the KMA problem, although it can be extended to the
CMA scenario taking into account the comments given in sections 2.2 and 2.3. Recall that, from Eq. (7), the
residual entropy is given by the expectation of the log-volume of the feasible region. In order to simplify the
analysis, hereinafter we will assume that α ≥ 0.5, since in this case the feasible region SNo

can be shown to be
always a (modulo-Λ) convex set. Thus, if the problem is properly shifted, the modulo operation can be dropped
out from the expressions of the feasible regions; bear in mind that the entropy is invariant to translations, so this
simplification does not change the results. Moreover, notice that the conditional pdf of T does not depend on the
specific sequence of messages embedded, as long as the latter is known; this implies that, for the expectation, the
message sequence can be assumed to be deterministic. Despite these simplifications, exact analytical evaluation
of (7) for arbitrary lattices may be extremely involved; this is why one must resort to Monte-Carlo simulations
and bounding techniques. A possible upper bound to the residual entropy can be derived as follows:‡

E[log(vol(SNo
))] =

∫

V(Λ)No

log(vol(SNo
))f(ỹ1, . . . , ỹNo

)dỹ1, . . . , dỹNo

≤
∫

Z(Λ)No

log(vol(Su
No

))f(ṽ1, . . . , ṽNo
)dṽ1, . . . , dṽNo

≤
n
∑

k=1

∫

ΩNo
k

log(wk)f(ṽk
1 , . . . , ṽk

No
)dṽk

1 , . . . , dṽk
No

, (15)

where 1) Su
No

is an outer bound to SNo
, and is defined as Su

No
,
⋂No

i=1 D′′
i , with D′′

i , ṽi − (1 − α)B(Λ); 2)

B(Λ) is an orthotope that outer bounds V(Λ); 3) f(ṽk
1 , . . . , ṽk

No
) is the joint pdf of the vector formed by the k-th

components of ṽ1, . . . , ṽNo
; 4) Ωk = [−µk, µk) is the support interval for ṽk

i , i = 1, . . . , No; 5) wk is the volume

(length) of the bounding feasible region (interval) in the k-th dimension, given by wk = vol(
⋂No

i=1(ṽ
k
i − Ωk)).

The last inequality in (15) follows from the fact that, in the case of independent observations with independent
components, the residual entropy can be written as the sum of entropies per dimension. The above upper bound
is an equality only for the scaled cubic lattice§ ∆Z

n = (x1, . . . , xn), xi ∈ ∆Z, and in particular for the well-known
Scalar Costa Scheme (SCS) proposed by Eggers,4 which uses the scalar lattice ∆Z for embedding. Furthermore,
for the cubic lattice it is possible to arrive at a closed-form expression: from (15), the residual entropy in the k-th
dimension is given by E[log(wk)]; it can be shown, under the assumption of α ≥ 0.5, that the residual entropy
per dimension is

1

n
h(T|Ỹ1, . . . , ỸNo

,M1, . . . ,MNo
) = log((1 − α)∆) − HNo

+ 1, (16)

where HNo
=
∑No

i=1
1
i is the No-th harmonic number.

In order to compare the security level offered by different standard lattices, numerical experiments through
Monte Carlo simulations were carried out. To provide a fair comparison, the lattices were conveniently scaled so
as to present the same embedding distortion per dimension as the cubic lattice ∆Z

n with ∆ = 1, that is, 1/12.
For the low-embedding-distortion regime that we are considering, the embedding distortion in DC-DM is given
by σ2

e = α2P (Λ), where P (Λ) denotes the second order moment per dimension of V(Λ).

‡Note that the message sequence is dropped out from the pdf’s, for the sake of compactness.
§Although the scaling factor need not be the same for each dimension.
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Figure 2. Residual entropies per dimension for different lattices (KMA, alpha = 0.5)

For the comparison, we considered the root lattices and their duals8 (the best known quantizers for n ≤ 8).
Monte-Carlo simulations showed that the lattices that maximize the residual entropy for each n are those with the

best source coding properties, i.e., those with the smallest normalized second order moment, G(Λ) ,
P (Λ)

vol(V(Λ))2/n .

This could be explained by the fact that, for fixed P (Λ), the lattice with the smallest G(Λ) provides the maximum
volume of V(Λ), and consequently the highest a priori entropy, due to the uniformity of T. Fig. 2 gives a
comparison between the residual entropy per dimension using the cubic lattice and that using the best quantizer
for each dimensionality. It is a well-known result that the region of R

n with the smallest normalized second order
moment is the sphere, thus we conjecture that it provides an upper bound to the residual entropy, and is indeed
so for the cases considered (this is illustrated in Fig. 2 with the result for sphere in 8 dimensions). Unfortunately,
the space can not be tessellated with spherical regions (except for n = 1), although it was shown in9 that as n
increases there exist lattices whose normalized second order moment tend to that of a sphere. It can be shown
that the upper bound (15) to the entropy per dimension with a hypothetical spherical Voronoi cell, for large n,
may be approximated as

1

n
h(T|Ỹ1, . . . , ỸNo

,M1, . . . ,MNo
) ≤

∫

ΩNo
k

log(wk)f(ṽk
1 , . . . , ṽk

No
)dṽk

1 , . . . , dṽk
No

≈ log

(

2r − 2
√

2 · r√
2 + n

·
[

log

(

No

2

)]
1

2

)

+ log(1 − α), for No ≥ 2, (17)

where r =
√

2+n

2
√

3
is the radius of the n-dimensional sphere necessary to yield P (Λ) = 1/12. This result implies

that the residual entropy, for a given No, is always increasing with n. Finally, we want to note the results given
in (16) and (17), as well as those obtained by Monte Carlo integration, are in agreement with the concavity of
the mutual information mentioned in Section 2.1.

2.5. Security of DC-DM vs. Costa

Lattice DC-DM schemes are deeply rooted in the theoretical construction developed by Costa.10 However,
the generation of the codebook is totally different in both schemes: whilst U is structured due to the lattice
quantizer, the codebook in Costa’s construction is completely random. The purpose of the brief comparison
given in the following is to show how much can be gained in terms of security by using a codebook with these



characteristics. Due to the lack of space, the security analysis for Costa’s scheme is not included in this paper;
some of the results that we use here were already published in,11 whereas others will be published elsewhere.

For the KMA case with No = 1, it can be shown that

I(Y;U|M) =
n

2
log

[

P + σ2
X

(1 − α)2σ2
X

]

, h(U|Y,M) = h(U) − n

2
log

[

P + σ2
X

(1 − α)2σ2
X

]

, (18)

where σ2
X and P stand for host and watermark power, respectively, and h(U) denotes the entropy of the codebook,

given by h(U) = n·|U|
2 log

[

2πe(P + α2σ2
X)
]

. Although (18) depend on the ratio σ2
X/P it is easy to see that, for

σ2
X/P → ∞, the information leakage for Costa tends to −n log(1 − α), exactly as for DC-DM (see Eq. (9)).

Actually, the information leakage in DC-DM also depends on the ratio σ2
X/P , but the results in sections 2.1 to

2.3 were derived for the asymptotical regime of low embedding distortion (equivalently, high-rate quantization),
which is that of practical interest in real applications. Nevertheless, the results are radically different if the
comparison is made in terms of residual entropy: whereas for DC-DM the entropy of the codebook is bounded
by log(vol(V(Λ))), the residual entropy in Costa’s scheme is unbounded when σ2

X/P → ∞, because of the
dependence of |U| with this ratio. This shows the clear advantage, in terms of security, of the scheme based on
random codebooks over the scheme based solely on the dither.

For No = 1, the CMA and WOA cases are totally equivalent. Assuming that the watermarker is transmitting
information at the reliable rate allowed by the channel, we have that

I(Y;U|CM) = I(Y;U) =
n

2
log

[

(P + σ2
X)
(

Pσ2
X(1 − α)2 + σ2

N (P + α2σ2
X)
)

P (P + σ2
X + σ2

N )(1 − α)2σ2
X

]

= I(Y;U|M) − I(Y;M |U), (19)

where σ2
N is the noise power introduced by the channel. This result is clearly related to those given in (12)

and (14) for DC-DM. Here, we can see that the uncertainty about the codebook increases exactly in the same
quantity as the reliable transmission rate. Contrary to what happened in DC-DM, there exists no value of α
that yield null information leakage; this is only possible when σ2

N = 0, since I(Y;M |U) = ∞.

Finally, for large values of n, if |Um| >> No, which is reasonable since |Uj | increases also exponentially with
n, then the information leakages for No > 1 in Costa’s scheme can be accurately approximated as

I(Y1, . . . ,YNo
;U|M) ≈ No · I(Y1;U|M),

I(Y1, . . . ,YNo
;U|CM) ≈ No · I(Y1;U|M) − I(Y1;M |U),

I(Y1, . . . ,YNo
;U) ≈ No ·

[

I(Y1;U|M) − I(Y1;M |U)
]

.

Thus, the information leakages for Costa’s scheme increases (approximately) linearly with the number of obser-
vations, contrarily to the concave increase in DC-DM. The above approximations are based on the fact that the
probability of observing two or more watermarked signals related to the same codeword vanishes exponentially
with n, as long as No ≤ |Um|.

3. PRACTICAL ALGORITHMS FOR SECRET DITHER ESTIMATION

The algorithms proposed here are mainly intended for the KMA case; the modifications needed to cope with
the CMA and WOA cases will be addressed in sections 3.3 and 3.4. These algorithms take advantage of the
boundedness of the feasible regions SNo

(which will be also termed feasible solution sets) for the dither. Recall
that in the KMA scenario, the conditional pdf of t is uniformly distributed over SNo

(because we assumed
T ∼ U(V(Λ))). Thus, the optimal estimator (in an ML sense) simply computes iteratively the series of solution
sets {Sk}, k = 1, . . . , No, and chooses randomly (with equal probability) a vector t̂ ∈ SNo

. Although intuitively
simple, such estimator is not practical in general, since exact computation of the solution sets may be extremely
involved for non-trivial lattices, because of the arbitrary shape of the feasible region for No > 1. Nevertheless, the
attacker may not be interested in obtaining the exact {Sk}, but may be satisfied with an accurate approximation
of the solution sets. This is the approach that will be adopted.



The algorithms that will be considered here work well when the considered sets are convex. As it was said in
Section 2.4, the feasible region is a (modulo-Λ) convex set whenever α ≥ 0.5. If we translate all observations by
−ỹ1 + dm1

, then the modulo operation is transparent, so the feasible regions for each observation (Eq. (6)) can
be now simplified to¶

Di = ṽi + (1 − α)V(Λ), i = 1, . . . , No, (20)

where ṽi , (ỹi − dmi
− ỹ1 + dm1

) mod Λ, rendering the problem convex.

3.1. Algorithm I: Inner polytope algorithm

Assuming that we know the equations of the hyperplanes that bound the Voronoi region, the feasible solution set
can be described through a set of linear inequalities, which in turn describe a polytope in n-dimensional space.
Hence, the feasible solution set can be expressed as

SNo
=
{

z ∈ R
n : φT

k z ≤ φT
k ṽi + φT

k z0,k

}

, k = 1, . . . , nf ; i = 1, . . . , No, (21)

where φk is a vector outward-pointing and normal to the k-th facet of V(Λ), and z0,k is a point in such facet.
We are interested in computing an approximation of the feasible region. For such an approximation to be valid,
it must outer bound SNo

(as tightly as possible), since we do not want to discard any point in SNo
a priori;

furthermore, it would be desirable that the approximate region is easy to describe, thus an ellipsoid is a reasonable
choice. Since the problem of finding the ellipsoid of minimum volume that contains SNo

is ill-posed, we follow
the alternative albeit suboptimal approach of finding the maximum volume ellipsoid E(θ,P) contained in SNo

,
and scaling it by a factor of n around its center. This way, the resulting ellipsoid is guaranteed to bound the
polytope SNo

.12 The computation of the center θ∗ and the positive definite matrix P∗ of such ellipsoid can be
written as a convex minimization problem with second order cone constraints12:

(θ̂, P̂) = arg min
θ,P

log det(P−1/2)

subject to ||P1/2φk|| ≤ φT
k ṽi + φT

k z0,i − φT
k θ,∀ k = 1, . . . , nf ; i = 1, . . . , No.

(22)

As it will be checked in Section 3.5, this approach yields tight approximations to SNo
, but it presents an obvious

drawback: the potential complexity of the minimization problem arising from the huge number of constraints
imposed by large n and No.

3.2. Algorithm II: Set membership estimator

Set-membership estimators (SME)13 are commonly found in the Automatic Control literature. SME algorithms
differ from classical estimation algorithms in two basic aspects: 1) the only assumption about the noise present
in the observations is that it is additive and bounded, and 2) they construct a series of solution sets that enclose
the region of R

n where the parameter to be estimated lies in.

SME algorithms can be straightforwardly applied to our problem by slightly modifying the description of
the feasible region for each observation: in this case, we need to parameterize Di as the intersection of a finite
number of parallel hyperplanes. Assuming that the Voronoi cell of the considered lattice is composed of nf

pairwise parallel facets (see Fig. 3-(a)),‖ the feasible solution set for the i-th observation can be specified by a

matrix Φn×nf /2, and a vector γnf /2×1 such that Di =
⋂nf /2

j=1 Fi,j , where

Fi,j = {z ∈ R
n : |ṽT

i φj − zT φj | ≤ γj}, (23)

being φj the j-th column of Φ, and γj the j-th element of γ, computed as φT
j z0,k. Hence, the series of solution

sets {Sk} is given by

Sk =

k
⋂

i=1

Di =

k
⋂

i=1

nf /2
⋂

j=1

Fi,j , k = 1, . . . , No. (24)

¶Obviously, the offset −ỹ
1
− dm1

must be removed from the final estimate.
‖Should this not be true, the problem can still be described in a similar manner.
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Figure 3. (a) Voronoi region of the hexagonal lattice delimited by three pairs of parallel hyperplanes. (b) Intersection
between an ellipsoid and a pair of hyperplanes.

The common approximation (although other approaches can be found in the literature) in SME algorithms

for simplifying the computation of (24) is to choose an ellipsoid E(θ̂k, P̂k) such that Sk ⊆ E(θ̂k, P̂k). Thus,

computation of the (k + 1)-th solution set amounts to obtaining an ellipsoid E(θ̂k+1, P̂k+1) ⊇ E(θ̂k, P̂k)∩Dk. A
further simplification consists of computing such ellipsoid iteratively:

1. First, make E(c0,B0) = E(θ̂k, P̂k)

2. Compute E(ci+1,Bi+1) ⊇ E(ci,Bi) ∩ Fk,i+1, i = 0, . . . , nf/2 − 1

3. Finally, make E(θ̂k+1, P̂k+1) = E(cnf /2,Bnf /2)

This way, in each step we are intersecting one ellipsoid with one set Fk,i, as it is depicted in Figure 3-(b).
Clearly, we are interested in finding the ellipsoid with minimum volume that contains such intersection. The
SME algorithm that addresses such minimization problem is the so-called Optimal Volume Ellipsoid (OVE)
algorithm.14 The minimization problem has analytic solution and it reads as

c∗i+1 = ci +
τiBiφi

(

φT
i Biφi

)1/2
, B∗

i+1 = δi

(

Bi − σi
Biφiφ

T
i Bi

φT
i Biφi

)

,

where τi, σi, δi are variables that depend on the observation ṽk, the current ellipsoid E(ci,Bi) and Fk,i+1 (details
about their calculation can be found in14), and finally φi is the i-th column of matrix Φ.

One interesting feature of the approach just described, and common to all SME algorithms, is that further
refinements on the solution set are possible by recirculating the observed data, i.e., by feeding to the system the
same set of observations repeatedly. This is possible since the resulting bounding ellipsoid in the i-th iteration
depends both on the (i − 1)-th bounding ellipsoid and the i-th observation. This feature, as will be checked in
Section 3.5, allows to achieve performance similar to that of the above inner polytope algorithm.

3.3. Estimation in the CMA scenario

The CMA scenario implies minor changes to the estimation algorithms devised above for the KMA case. Actually,
estimation in the CMA case could be performed as

1. Assume that the sequence of observation is watermarked with message m ∈ M,

2. Perform estimation as in the KMA case,

3. Once ŜNo
has been obtained, compute the approximate feasible region ŜCMA

No
as in Eq. (11).

4. If the resulting feasible regions (ŜNo
+ dm) overlap, then the dither is contained in their intersection with

higher probability (provided that T is uniformly distributed over V(Λ)); otherwise, the centroid is equally
likely in any of the feasible regions.



3.4. Estimation in the WOA scenario

The WOA scenario introduces an additional source of uncertainty that invalidates the straightforward application
of the algorithms proposed in sections 3.1 and 3.2, which make explicit use of knowledge of the embedded
messages. A possible solution would be to consider all the possible sequences of embedded messages, so as
to transform the WOA problem into |M|No parallel KMA problems. Obviously, this brute-force approach is
not practical due to the huge number of possible message sequences, which makes the problem unmanageable.
Fortunately, the a priori search space can be reduced considerably if we consider the posterior probability of
the message sequences, or in other words: given a sequence of observations, certain message sequences have null
or negligible probability of occurrence. Assuming equiprobable and mutually independent messages, it can be
readily shown that ML selection of the message is tantamount to

(m̂1, . . . , m̂No
) = arg max

m1,...,mNo

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

), (25)

It can be shown that f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

) can be factorized as

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

) =

No
∏

k=1

∫

f(ỹk|mk, t) · f(t|ỹ1, . . . , ỹk−1,m1, . . . ,mk−1)dt, (26)

where the conditional pdf of the secret dither is given by (5), and the term corresponding to k = 1 is simply
f(ỹ1|m1) = f(ỹ1). Computation of the integral terms in (26) is straightforward since the conditional pdf of the
secret dither is uniform; hence, such terms are proportional to the volume of the intersection between Dk and
Sk−1. Formally, each factor of (26) can be computed as

fk = vol (Dk ∩ Sk−1) · ((1 − α)nvol(V(Λ)) · vol(Sk−1))
−1

. (27)

The message selection rule just defined is optimal, but the use of SME estimators will introduce some loss of
optimality due to the ellipsoidal approximation. With the ML approach, SME estimation in the WOA scenario
can be thought of as a tree search where each node at level k is the hypothesized message for the k-th observation,
and whose probability is given by the k-th factor of (26). The probability of each path in the tree is given by
the product of the corresponding factors. Once the final node level is reached, the probability of each path is
obtained, so we can either pick the path with the highest probability, or simply discard those paths with low
probabilities (discarding can be made also in partial paths, to simplify the tree search). Bear in mind that
the number of feasible paths with non-null probability, or equivalently, the number of branches that must be
considered in the tree search, increases for decreasing values of α, making more difficult the estimation. Finally,
an interesting byproduct of the proposed approach is that it allows to obtain an estimate of the transmitted
message.

3.5. Experimental results

This section provides a comparison of the practical performance of the different estimators proposed in Section 3.
The results are given only for the KMA scenario; nevertheless, since our approach decomposes both CMA and
WOA cases in several KMA instances, it is clear that the performance of the estimators in these scenarios will
be determined by that of the KMA case. The minimization problem (22) was solved using the optimization
packages YALMIP15 and SeDuMi16 for Matlab.

Figures 4-(a) and 4-(b) show the performance of the different estimators when embedding lattices are the
hexagonal and E8, respectively. For the description of its Voronoi regions, the reader can refer to.17 The
value represented in the plots is the empirical residual entropy obtained by averaging the outputs of algorithms
I and II, assuming that the conditional dither is uniformly distributed in the estimated feasible region. This
value permits to quantify directly the loss in optimality incurred by the proposed estimators, by comparing to
the theoretical value of the residual entropy. It can be observed that, although the inner polytope algorithm
provides the best performance, the loss of optimality of the SME (OVE) algorithm can be compensated for by
increasing the number of recirculations. This feature makes SME algorithms appealing for their application to
high-dimensional lattices, because of their low complexity.



0 10 20 30 40 50
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

observation index (No)

re
si

du
al

 e
nt

ro
py

 (
na

ts
)

OVE
OVE (10 recirculations)
Inner polytope
Theoretical (Monte Carlo)

(a)

0 10 20 30 40 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

re
si

du
al

 e
nt

ro
py

 (
na

ts
)

observation index (No)

OVE
OVE (20 recirculations)
Inner polytope
Theoretical (Monte Carlo)

0 10 20 30 40 50
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

re
si

du
al

 e
nt

ro
py

 (
na

ts
)

OVE
OVE (60 recirculations)
Inner polytope
Theoretical (Monte Carlo)

(b)

Figure 4. Performance comparison for the proposed estimators, with hexagonal lattice (a) and E8 (b). (KMA, α = 0.5).

4. CONCLUSIONS AND FINAL REMARKS

The comparison given in Section 2.5 shows that the security weaknesses of DC-DM are not inherent to Costa’s
schemes, but due to the structure imposed to the codebook. In fact, the information leakages about the secret
dither may by important, depending on the considered scenario (KMA, CMA, WOA). However, perfect secrecy
can be still (theoretically) achieved in the WOA scenario, although this is not strictly true in practice, since the
pdf’s of the watermarked signals are not exactly uniform; therefore, a small information leakage still may be
exploited.

As it was seen in Section 2.4, the security level of DC-DM is dependent of the specific embedding lattice
considered; in fact, security can be improved by increasing the dimensionality and choosing the appropriate
lattice, but it comes at the price of higher computational complexity in embedding and decoding. Furthermore,
the gain for small n is rather limited.

On the other hand, the performance of the proposed estimation algorithms show that attacks are feasible
with manageable complexity. In particular, the SME estimator poses several advantages:

• Affordable complexity: the algorithm is iterative, and each iteration involves elementary operations. in
each iteration n(n + 1)/2 + n (number of free parameters of the symmetric matrix + center) parameters
must be estimated, where n is the dimensionality of the (lattice) problem.

• The asymptotic convergence of SME algorithms to the true parameters has been proved.

• Increasing the number of recirculations allows to compensate for the loss of optimality. Nevertheless, note
that they are optimal in case of scalar embedding lattices.

Finally, we would like to say that, despite the results presented here, perspectives for DC-DM are not so
hopeless: the security level of DC-DM can still be increased by maintaining the structured codebook, which is
desirable from a practical point of view. The solution is to increase the degree of uncertainty about the codebook,
introducing for instance rotations to the embedding lattice and/or permutations to the host prior embedding.
Obviously, the price that must be paid for these approaches, apart from complexity, is the increase in the entropy
of the key.
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