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ABSTRACT

We revisit the well-known watermarking detection problem, also known as one-bit watermarking, in the presence
of an oracle attack. In the absence of an adversary, the design of the detector generally relies on probabilistic
formulations (e.g., Neyman-Pearson’s lemma) or on ad-hoc solutions. When there is an adversary trying to
minimize the probability of correct detection, game-theoretic approaches are possible. However, they usually
assume that the attacker cannot learn the secret parameters used in detection. This is no longer the case when
the adversary launches an oracle-based attack, which turns out to be extremely effective. In this paper, we
discuss how the detector can learn whether it is being subject to such an attack, and take proper measures.
We present two approaches based on different attacker models. The first model is very general and makes
minimum assumptions on attacker’s beaver. The second model is more specific since it assumes that the oracle
attack follows a weel-defined path. In all cases, a few observations are sufficient to the watermark detector to
understand whether an oracle attack is on going.

1. INTRODUCTION

Watermarking detection, also known as zero-rate watermarking or sometimes one-bit watermarking, is one of the
most prominent problems in multimedia security, and has received a lot of attention during the past decade.
One-bit watermarking differs from its multi-bit counterpart (also referred to as data hiding) in that the only
information to be extracted from a possibly watermarked object is whether it carries a given watermark or not.

In the absence of an adversary, the standard theory relies on a probabilistic characterization fx(x) of a typical
feature vector x to formulate the following hypothesis test: given a candidate feature vector y, hypothesis Hw,0

corresponds to y being drawn from distribution fx(·), while hypothesis Hw,1 corresponds to y being generated
from a vector x following distribution fx(·) and later embedding a watermark w. Knowing the distributions
of y under both hypotheses, it is possible to formulate the most powerful statistical test that maximizes the
probability PD of correct detection for a given probability PF of false alarm, by means of the celebrated Neyman-
Pearson lemma. The resulting detector can be subsequently refined by including a noisy channel accounting for
possible distortions or manipulations that y may suffer, as long as a probabilistic description of such channel
is available. In those cases where statistical characterizations are lacking, ad-hoc detectors have been proposed
which are optimal only in very specific instances, as is the case of the linear correlation detector for additive
spread spectrum watermarking, which is only optimal for independent and identically distributed Gaussian hosts
and noise.

Moulin and Ivanovic1 addressed the problem of a smart adversary who tries to minimize the probability of
correct detection by modifying y while satisfying a certain distortion constraint. By taking the presence of an
adversary into account, the embedder-detector can try to maximize PD by carefully designing the embedding
and detection functions. This setup naturally leads to a two-player game-theoretic formulation for which Nash
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equilibria can be explicitly found in certain cases. Unfortunately, game-theoretic approaches typically lead to
conservative designs, as the pair embedder-detector must account for the worst case of an adversary trying to
minimize the performance. In practice, this implies that the achievable PD for a fixed PF is significantly reduced
even if the adversary is absent (but accounted for).

Furthermore, most existing game-theoretic formulations of the watermarking detection problem optimistically
assume that the adversary does not know the secret parameters of the team embedder-detector (e.g., in spread-
spectrum watermarking, the watermark itself). In so doing, they disregard the fact that by repeatedly invoking
the detector the attacker may learn enough about its shape, so as to put forth very powerful attacks.

More formally, consider the set Y ⊂ RL of possible feature (column) vectors; then, a typical detector will
split Y into two sets: Rw,0 and Rw,1, so that if x ∈ Rw,i, i = 0, 1, then hypothesis Hw,i is accepted for x. Given
a certain object y ∈ Y with some assigned value, the adversary will aim at modifying y the least possible so
that the object retains its value while fooling the detector. Given y ∈ Rw,1 and a certain real-valued distortion
measure d(·, ·), the adversary aims at finding some y′ ∈ Rw,0 such that d(y,y′) is minimal∗. If the distortion
function is convex and has a minimum at y′ = y, and we assume that Rw,1 is an open set, then a solution y∗

must lie on the boundary δRw. If the decision function is known to the adversary, then the solution can be either
obtained in closed-form or numerically. When the detection function φw is not fully known, the adversary may
try to solve the problem by querying the detector to learn as much as possible about φw or, better yet, δRw, to
later generate y∗. Of course, the feasibility of this solution depends on the number of queries that can be made,
as in some cases the system to be attacked will stop accepting them after a number of trials. Attacks based on
the information gathered by querying the detector are known as oracle attacks.

The simplest oracle attack, the original sensitivity attack2 is suitable when δRw is a hyperplane. It starts
with a vector y ∈ Rw,1 and modifies it to z ∈ Rw,1 near the boundary δRw. Then, it works by changing
one component of z at a time and observing the output of the decision function to learn the normal vector
that represents the hyperplane. For more complicated decision boundaries, Linnartz and Van Dijk3 propose an
iterative approach which moves along the hyperplane tangent to the decision boundary at z. Another iterative
approach is proposed by Mansour and Tewfik4 where an algorithm akin to the well-known Least Mean Squares
(LMS) is applied; this algorithm was shown to be suitable to attack non-linear boundaries. Choubassi and
Moulin5 propose to obtain the normal vector similarly to the sensitivity attack; from this it is immediate to
obtain the approximate gradient vector at z. Knowledge of this vector suffices to obtain a good local estimate
of the decision function φw, as long as the adversary knows its form (in this case, the unknown parameters
are the watermark samples). Comesaña et al.6,7 present a powerful variant of the sensitivity attack which
implements Newton’s descent algorithm to iteratively find y∗. The algorithm is completely blind, in the sense
that no knowledge of the decision function is assumed; the first and second order local derivatives information
required by the iterative algorithm is estimated by querying the detector. The algorithm, termed Blind Newton
Sensitivity Attack (BNSA) has been proven very effective in removing the watermark and creating forgeries for
a number of existing schemes; moreover, it has been used in the winning strategy in the popular BOWS contest
organized by the watermarking community to measure the effectiveness of query-based attacks.8

In view of the previous attacks, it seems reasonable to complicate the function φw. Several works have
proposed solutions along this line: Mansour and Tewfik4 suggest to fractalize the decision boundary in an
attempt to hamper the use of learning algorithms; Linnartz and Van Dijk3 propose to randomize the boundary
so that for points z close to the boundary, φw(z) is 0 with a certain probability; both countermeasures can be
easily overcome by an adversary respectively using the ‘envelope’ of the fractal boundary or averaging out the
boundary randomness. The decision function can be even implemented in zero-knowledge9 so that the adversary
cannot learn anything but the binary output by querying the detector. Strikingly, this minimum disclosure of
information (at most one bit per query) is enough for BNSA to work, especially as most existing proposals, with
the exception of the one proposed by Troncoso and Pérez-González,10 use simple decision boundaries.

The main drawback of adopting intricate decision boundaries is that they are difficult to parameterize and,
consequently, to put to work in practice. Quite interestingly, and to the best of our knowledge, a path that

∗Similarly, the attacker may be interested in solving the converse problem, in which y ∈ Rw,0 and y′ ∈ Rw,1. The
mathematical formulation is identical.



has not been trodden is the use of smart detectors. A smart detector is defined as a detector that is able to
learn from and react to repeated query attacks. Notice that detectors producing a random output close to the
boundary are not smart according to the previous definition, because they are not able to determine whether
they are being subject to an attack. On the other hand, when the smart detector decides that an oracle attack is
being launched, it can take further measures, such as precluding further access to the detector, or conservatively
switching to a more convoluted detection function.

This paper addresses the problem of designing a smart detector that understands whether an oracle attack
is on going or not. We will focus only on the detection part, leaving the investigation of the countermeasures
to be adopted in case of attacks for future research. As we will discuss in Section 2, the design of a smart
detector requires that some assumptions are made regarding the strategy adopted by the attacker to launch the
oracle attack. Specifically, we will study two different alternatives. In a first case, we will try to minimize the
knowledge the detector has on the attacking strategy and will only assume that such a strategy results in an
unusually large number of queries close to the detection boundary. This is a reasonable assumption since, to the
best of our knowledge, all oracle attacks proposed so far work by looking for queries close to δRw. The second
alternative comes from noticing that several attacks (and remarkably those proposed by Choubassi and Moulin5

and Comesaña et al.8) assume the availability of some vector t in Rw,1 such that given y ∈ Rw,0, there is some
λ ∈ (0, 1) for which λt + (1− λ)y ∈ δRw. This value is found through a binary line search, implying that a few
queries are made where the submitted features lie on the same straight line. Both kind of detectors are able to
detect whether an oracle attack is going on with only a few observations.

The rest of the paper is organized as follows. In Sect. 2, we give an exact formulation of the problem and
highlight the importance of defining a model to describe the attacker’s behavior. In Sect. 3, we describe our first
oracle attack detector, for which only a few assumptions are made on attacker’s behavior. A more sophisticated
detector is described in Sect. 4, where we assume that the oracle attack incorporates a line search scheme to
find queries lying on δRw. The paper ends in Sect. 5 with some conclusions and highlights for future research.

2. PROBLEM FORMULATION

We are interested in constructing a smart detector that is able to decide whether an adversary is launching an
oracle-attack to the system. Notice that we actually seek a metadetector that works at a higher level than the
watermark detector. To distinguish between both, we will use the subindices w and q to denote the latter and the
former, respectively. The metadetector will be based on N consecutive observed queries (L-dimensional column
vectors) y1, · · · ,yN , which, for convenience, we will stack in a single column vector yN ∈ YN ⊂ RLN ; this
vector is built by locating at its first N components the first component of each yi, i = 1, . . . , N , then the second
component of each query, and so on. The metadetector will output φq(y

N ) = 0 if yN is deemed a legitimate
sequence of queries, and 1 otherwise. Function φq will partition the feature space YN into two sets Rq,0 and
Rq,1, containing those yN for which φq(y

N ) = 0 and φq(y
N ) = 1, respectively. In general, for a legitimate

sequence, individual queries will correspond to both watermarked and non-watermark contents, but they will
exhibit no signs of being generated by an adversary. For instance, it is reasonable to assume that individual
legitimate queries will be mutually independent.

In practice, two parameters need be taken into account, and fixed depending on the actions that follow a
possible adversarial detection. For instance, if the user is blocked from accessing the watermark detector once
he/she has been labeled as an adversary, then it is important to set a very low false alarm probability (i.e.,
the probability that a legitimate user is misclassified), while achieving the largest possible probability of correct
detection (i.e., the probability that an adversary is correctly detected). On the other hand, if the purpose of the
test is to further monitor the behavior of a potential adversary, then a large probability of correct detection is
desired, while trying to make the false alarm probability as small as possible. In the sequel, we will focus on the
first case, but the methodology can be straightforwardly adapted to the second one. Formally, we want to fix

PF,q =

∫

Rq,1
fYN |Hq,0(yN |Hq,0)dyN , (1)

where hypothesis Hq,0 refers to a legitimate sequence of queries. It is important to stress that fixing PF,q > 0 alone
gives enough degrees of freedom in the partition of YN into Rq,0 and Rq,1 so that there are an infinite number of



detection functions φq that meet the constraint. One possible and popular choice is to minimize the volume ofRq,0
by including those yN such that fYN |Hq,0(yN |Hq,0) is larger. But we must notice that this choice is completely

arbitrary in the sense that it does not take into account the adversary’s behavior. It is only when we consider
this behavior in the form of the alternative hypothesis Hq,1 that we can attempt to maximize the probability
of detection for a fixed false alarm probability (this is done, once again, through Neyman-Pearson’s test). To
illustrate with an example borrowed from a different field, consider tests of randomness for binary number
generators. These tests often reject generators that output sequences with very long runs of ones (or zeros), and
it is common belief that this is done on the basis that the probability that a truly random generator outputs
such sequence is very small. In fact, for any unbiased, independent-samples generator, every possible sequence of
length n has the same probability (i.e., 2−n) of occurrence! One may ask then what is the basis for rejecting those
sequences with long runs. The answer is that there is often an underlying alternative hypothesis that assumes a
generator which outputs dependent samples, but if the generator were known to produce independent samples,
then it might be unfairly rejected if those sequences show up. We conclude that (probabilistically) modeling
the adversary’s actions and including them in the alternative hypothesis Hq,1 is crucial in designing a smart
detector that performs as expected, at the price of possibly overlooking some potentially harmful actions. Put it
another way, a smart detector requires knowledge of fYN |Hq,1(yN |Hq,1), which in turn implies prior assumptions

(and statistical modeling) on the adversary’s actions. Under this perspective, minimizing the volume of Rq,0 can
be seen to be equivalent to assuming an adversary that generates sequences of queries yN that are uniformly
distributed over YN .

On the other hand, it is often the case that a full statistical characterization of the adversary’s behavior is
not possible or that the resulting Neyman-Pearson detector is not practical. Both problems can be somewhat
circumvented by constraining the shape of the detection region, imposing that the detector bases its analysis
on some particular property. This is usually achieved by a dimensionality reduction, as it is done for instance
in11,12 , where the detector (therein called a detector with limited resources) is forced to make its decision by
relying on first order statistics only. To succeed, the sought properties must be such that it should be possible
to effectively discriminate between the legitimate actions and those of the adversary. In this sense, the mere
selection of the properties implicitly amounts to making assumptions on the adversary’s behavior, to the extent
that the remaining degrees of freedom after the dimensionality reduction together with PF,q may be enough to
completely determine the metadetector. Generally, the price to be paid for the simplicity of this property-based
metadector is its suboptimality.

In this paper we will consider the two approaches outlined in this section. The first one, which is discussed
in Section 3, assumes that as a consequence of an oracle attack the number of queries falling very close to the
detection boundary is very high. Thus, this metadetector bases the decision on a single property: the distance
to δRw, which for additive spread spectrum can be evaluated after reducing the problem to one dimension
by projecting the query onto the watermark subspace. The second approach, discussed in Section 4, models
adversarial queries that are located on a straight line, as it occurs when a line search is being used to locate
points on δRw. The model used in this case is richer, as no dimensionality reduction is applied, but also
impractical unless further simplifications are made. Fortunately, the formalization of the metadetector easily
leads to suggestions on how those simplifications should be made.

3. DETECTION BASED ON THE CLOSENESS TO THE BOUNDARY

A unifying characteristic of all oracle attacks proposed so far in the field of watermarking (but not only; a
similar observation, for instance, holds for the attack to spam filters proposed by Lowd and Meek13) is that
they rely on the discovery of queries that are very close to the detection boundary. In this section we show
how a simple yet powerful oracle attack detector can be built by relying only on this assumption. We will do
so for a particularly simple watermarking system; however, a similar approach can be used for systems with
more complicated detection regions. Specifically, we will assume that an additive spread spectrum watermarking
method is used, for which xw = x + γw, where xw is the watermarked signal, γ defines the watermark strength,
and the watermark sequence w takes values in {−1,+1}L. A simple detector for additive spread spectrum
watermarking relies on the correlation between the to-be-checked sequence y and the watermark sequence w:

ρ = 〈y,w〉. (2)



From basic watermarking theory14 , we know that ρ can be modeled as a Gaussian random variable† with mean
µρ|0 = 0 under Hw,0 and µρ|1 = γL under Hw,1. As to the variance of ρ, in the noiseless case we have σ2

ρ = Lσ2
X ,

under both hypothesis.

In the above system, δRw is a hyperplane, as in the system considered by the original sensitivity attack2,6, 7 .
More specifically, the decision function φw(·) splits the space in regionRw,0 = {y : 〈y,w〉 ≤ T} andRw,1 = Rw,0,
where T is the decision threshold determined by the maximum false alarm P ∗F,w, that is by the equation

P ∗F,w =

∫ ∞

T

fρ(ρ|Hw,0)dρ. (3)

The oracle attack detector relies on the definition of a narrow strip across the hyperplane 〈y,w〉 = T , namely :

A = {y : T −∆ < 〈y,w〉 < T + ∆}, (4)

where ∆ determines the width of the stripe. The assumption behind the oracle attack detector is that a dishonest
user will query the detector with an unusually large number of vectors falling within A. Given a vector with N
observations (queries), we define a test in which the metadetector makes a decision based on the number of yi’s
∈ A. More precisely, the test is defined by the following decision function:

φq(y
N ) =

{
0 if K < α ·N
1 if K ≥ α ·N, (5)

where K = #{i : yi ∈ A} = ny(A) and α is a given percentage of occurrences. For a fixed number of queries
(that is, for a fixed N), we must set ∆ and α in such a way to satisfy the constraint on the false positive
error probability. Then, by assuming a given attack strategy, we will be able to compute the missed detection
probability, thus determining both the significance level and the power of the test.

3.1 False alarm probability

In order to compute PF,q we must define a proper model for normal queries. In order to make the analysis
mathematically tractable, we will adopt a Gaussian model. More complicated models can be treated by means
of numerical analysis.

Definition 3.1 (Model of legitimate queries). We consider that legitimate users can send two kinds of
queries, corresponding to watermarked and non-watermarked signals. We model the former by N (w, σ2

Xi
IL×L),

where the watermark w is known at the detector. On the other hand, the non-watermarked signals are assumed
to follow a N (0, σ2

Xi
IL×L). In both cases the variance may be different for each query, so we write σ2

Xi
∈ R+

with i = 1, . . . , N . Query signals are mutually independent.

We will also find it useful to define the indicator s whose components are

si ,

{
1, if yi is watermarked
0, otherwise

,

where i = 1, . . . N , and the corresponding random variable Si.

Our goal is to compute PF,q = P (ny(A) ≥ α · N |Hq,0). To start with, we need to evaluate the probability
that an observation Yi made by a legitimate user falls inside A. We will do so by assuming that all queries have
the same variance. Therefore, index i can be neglected in our computations. Specifically, we can write:

P (Y ∈ A|Hq,0) = P (Y ∈ A|Hq,0, S = 0)pS(0) + P (Y ∈ A|Hq,0, S = 1)pS(1), (6)

†The Gaussianity of ρ derives either from a Gaussianity assumption on x or from the application of the central limit
theorem.
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∆
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X

Figure 1. Typical behavior of the probability distributions of the queries under Hw,0 and Hw,1. Once the correlation with
the watermark is computed, the queries are modeled by Gaussian random variables and the strip across the hyperplane
boils down to a segment.

where pS(0) and pS(1) are the a priori probabilities of having a watermarked or non-watermarked signal under
the null hypothesis (legitimate queries). The above probabilities can be redefined as a function of the correlation
ρ, since Y ∈ A when |ρ− T | ≤ ∆. Consequently, we have:

P (Y ∈ A|Hq,0, S = 0) = P (|ρ− T | ≤ ∆|Hq,0, S = 0) =
1√

2πσ2
ρ

∫ T+∆

T−∆

e
−ρ2

2σ2ρ dρ,

= Q

(
T −∆

σρ

)
−Q

(
T + ∆

σρ

)
‡, (7)

and similarly,

P (Y ∈ A|Hq,0, S = 1) =P (|ρ− T | ≤ ∆|Hq,0, S = 1) =
1√

2πσ2
ρ

∫ T+∆

T−∆

e
−(ρ−γL)2

2σ2ρ dρ,

=Q

(
γL− (T + ∆)

σρ

)
−Q

(
γL− (T −∆)

σρ

)
. (8)

In the following we will indicate with p∆ the probability that a query Y falls inside A.

In a typical watermarking system µρ|1 � σρ and T . 5σρ (for P ∗F,w = 10−6 we have T = 4.8σρ), while ∆ will
be a fraction of σρ. For this reason P (|ρ− T | ≤ ∆|Hq,0, S = 1) < P (|ρ− T | ≤ ∆|Hq,0, S = 0) and then, for the
sake of simplicity, we can take p∆ = P (|ρ− T | ≤ ∆|Hq,0, S = 0) (this results in a light overestimation of PF,q).
The situation is depicted in Figure 1. The probability of having K out of N queries in A can now be obtained
by resorting to the formula of repeated Bernoulli trials:

P (ny(A) = K|Hq,0) =

(
N

K

)
pK∆(1− p∆)N−K , (9)

and then (we assume for simplicity that αN is an integer number):

PF,q =

N∑

K=αN

(
N

K

)
pK∆(1− p∆)N−K . (10)

For large N , using Stirling’s approximation for the binomial coefficient, we could derive upper and lower bounds
for PF,q. However, as we will see later, small values of N are be sufficient to build an effective test, so we can
actually compute the value of (10).

‡Q(·) is the Q-function (tail probability of the standard normal distribution): Q(x) = 1√
2π

∫∞
x
e−

u2

2 du.



Figure 2. Graphical illustration of the binary line search procedure. The width of the strip ∆ is exaggerated for graphical
purposes.

Given the target false alarm probability of the metatest P ∗F,q, we must choose ∆ and α such that

PF,q =

N∑

K=αN

(
N

K

)
pK∆(1− p∆)N−K ≤ P ∗F,q. (11)

Clearly, there are many combinations of parameters ∆ and α which lead to the same value of PF,q. The
optimum choice can be made by considering the missed detection probability PM,q, for which we need to specify
the behavior of the attacker (i.e., the query model under hypothesis Hq,1).

3.2 Missed detection probability (under a line search attack)

In order to calculate PM,q we need to characterize the queries under Hq,1. Specifically, hereafter we assume that
the attacker performs a binary line search for estimating a point of the hyperplane. Roughly speaking line search
works as follows: given two queries corresponding to a non-watermarked and a watermarked signal, the attacker
apply a bisection algorithm on the line identified by the two queries until he finds a point that is arbitrarily close
to the boundary. Let z1 ∈ Rw,0 be the first of such queries and z2 ∈ Rw,1 the second one. The number of queries
required to fall inside A and then remaining always in A, is at most dlog2(|ρ2 − ρ1|/∆)e, where ρi = 〈zi,w〉.
Figure 2 illustrates the situation.

Then, under Hq,1, after N observations (N ≥ log2(|ρ2 − ρ1|/∆)), we have K ≥ N − log2(|ρ2 − ρ1|/∆). The
oracle attack detection test yields a correct decision (i.e., in favor of Hq,1) whenever:

log2

|ρ2 − ρ1|
∆

≤ (1− α)N. (12)

According to equation (12), the test succeeds if the distance between the initial queries along w is not too
large. In order to understand the probability of this event, we need to determine the statistics of the difference
ρ2 − ρ1. To do so we notice that, to launch his attack, the attacker needs to know two sequences z1 and z2, the
former belonging to Rw,0, the second to Rw,1. With regard to z1, the attacker can query the detector with a few
non-watermarked sequences until he finds one which belongs to Rw,0 (the search will be extremely fast, since the
probability that a non-watermarked sequence belongs to Rw,0 is very high). As to z2, this is the watermarked
sequence that the attacker would like to attack and which belongs to Rw,1 with high probability. The statistics
of ρ1, then, is obtained by conditioning to Hw,0 and to the event that a non-watermarked sequence belongs to
Rw,0, that is fρ1(ρ1) = N (0, σ2

ρ) conditioned to ρ1 ≤ T . By construction, the probability that ρ1 is smaller than
T under Hw,0 is very close to 1, hence we can neglect the conditioning event and assume that ρ1 ∼ N (0, σ2

ρ). In
the same way, we can say that ρ2 ∼ N (γL, σ2

ρ). By the independence of z1 and z2, ρ2 − ρ1 is still a Gaussian
random variable, with mean value equal to µρ|1 and variance equal to 2σ2

ρ.



Given the characteristics of the watermarking system (in terms of γ and L), and given the parameters α and
∆ ensuring that PF,q ≤ P ∗F,q, the above equation permits to derive PM,q as follows:

PM,q = 1− Pr
{

(ρ2 − ρ1) ∈ [−∆ · 2(1−α)N ,+∆ · 2(1−α)N ]
}

(13)

= 1− 1√
2πσ2

ρ

∫ ∆·2(1−α)N

−∆·2(1−α)N

e
−(ρ−γL)2

4σ2ρ dρ.

Since µρ|1 � σρ, from equation (13) we can write

PM,q = 1− 1√
2πσ2

ρ

∫ ∆·2(1−α)N

−∞
e
−(ρ−γL)2

4σ2ρ dρ = Q


∆ · 2(1−α)N − γL√

2σ2
ρ


 . (14)

Equation (14) enables to optimize the values of α and ∆. As expected, doubling the width of the strip has
the same effect on PM,q as decreasing α of 1/N . Be aware, however, that while for the computation of the
false positive error probability we did not make any additional assumption on the behavior of the attacker, the
optimization with respect to PM,q, is valid only under the line search model.

Example 1 : Let us take DWR = 20dB (γ2 = 10−2σ2
X), L = 2·104 and T = 4.5σρ leading to PF,w = 3.34·10−6,

σ2
ρ = Lσ2

X = 2 ·104σ2
X and µρ|1 = γL = 2 ·103σX , which are rather typical values for an additive spread spectrum

watermarking system. Then, consider the following setting: N = 8, α = 1/4, and ∆ = 0.33σρ; we obtain:

p∆ =Q

(
T −∆

σρ

)
−Q

(
T + ∆

σρ

)

=Q

(
4.5σρ − 0.33σρ

σρ

)
−Q

(
4.5σρ + 0.33σρ

σρ

)
= Q(4.17)−Q(4.83) ∼= 1.46 · 10−5, (15)

finally, yielding, PF,q = 6 · 10−9. At the same time, from equation (14) we have PM,q = 2.4 · 10−7.

The result of the above computation for different values of N is reported in Table 1. More in general, we
may look for the pair (∆/σρ, α) that for a given value of N and approximately the same PF,q, results in the
minimum PM,q. An example of such an approach is given in Table 2 for N = 8. In this case the minimum of the
missed detection probability is achieved when ∆ = 1.19σρ and αN = 3.

Table 1. Behavior of PF,q and PM,q (line search case) for various values of N (∆/σρ = 0.33, α = 0.25).

N
5 6 7 8 9 10

PF,q 2 · 10−9 3.2 · 10−9 4.4 · 10−9 6 · 10−9 2.5 · 10−13 3.7 · 10−13

PM,q 1− 10−16 1− 10−10 0.9925 2.4 · 10−7 2.4 · 10−7 5 · 10−89

Table 2. Values of PM,q for all the possible choices of the pair (∆/σρ, α) for which PF,q is 6 · 10−9 (N = 8).

(∆/σρ, α)
(2.4 · 10−5, 1/8) (0.33, 2/8) (1.19, 3/8) (1.76, 4/8) (2.18, 5/8) (2.54, 6/8) (2.7, 7/8) (3.18, 8/8)

PM,q 1− 10−23 2.4 · 10−7 2.6 · 10−65 6.7 · 10−24 0.0075 0.9967 1− 10−10 1− 10−14

3.3 A simplified test

A simple variant of the test considered in the previous section is obtained by letting the detector decide in favor
of Hq,1 if even one single query falls inside A. Accordingly, given the observation vector yN

′
the decision function

φq is defined as:

φq(y
N ′) =

{
1 if ∃i : yi ∈ A
0 otherwise

, (16)



which is equivalent to the previous test with α = 1/N ′. Obviously, the width of region A in this case, let us
denote it by ∆′ must be much smaller than in the previous section. In addition ∆′ should be linked to the
minimum accuracy required by the attacker in his attempt to find a point on the boundary of the detection
region. That is, we implicitly assume that the maximum error that the attacker admits for the estimation of the
boundary is lower than ∆′ (otherwise it would be very difficult for the smart detector to reveal the presence of
the attack). The error probabilities of the two types can still be computed by relying on the analysis carried out
in the previous section, by letting α = 1/N ′.

Table 3. Probabilities of error of the simplified test with ∆′ = 0.01σρ.

N ′

5 6 7 8 9 10 11 12

PF,q 1.6 · 10−6 2 · 10−6 2.2 · 10−6 2.5 · 10−6 2.8 · 10−6 3.2 · 10−6 3.5 · 10−6 3.8 · 10−6

PM,q 1− 10−23 1− 10−22 1− 10−21 1− 10−19 1− 10−16 1− 10−10 0.961 2.3 · 10−6

3.3.1 Performance of the simplified test

If we assume that the general and the simplified tests rely on the same number of queries (N ′ = N) and that they
must satisfy the same constraint on the false positive probability, it is easy to show that the missed detection
error probability that we obtain with the simplified test is much higher than that obtain with the general test.
Indeed, in the simplified case, fixing N ′ and a maximum value for PF,q already defines ∆′. On the contrary,
with the general test, we can exploit the additional degree of freedom provided by α to achieve the target P ∗F,q
and minimize PM,q. Let us consider the following example: assume that N ′ = N = 8 and that PF,q ' 10−6

(which is a rather large value). The constraint on PF,q forces us to use a very small ∆′, that is ∆′ ≤ 0.01σρ
(PF,q = 1− (1− p0.01σρ)

8 ∼= 2.5 · 10−6). As a consequence, we get PM,q = 1− 10−19.

Significantly better results can be obtained with the general test. In this case, in fact, even by using the
non-optimized values used in Example 1 (∆ = 0.33σρ and α = 0.25), for which PF,q ∼= 6 · 10−9, the missed
detection error probability would be PM,q = 2.4 · 10−7.

Of course, this does not mean that the simplified test can not be applied; however, larger values of N ′ must
be used. In Table 3 we report the missed detection error probability of the simplified test for various values of
N ′ (and the same setting used in the previous example). As it can be seen, we need N ′ = 12 in order to obtain
a small PM,q.

4. LINE SEARCH DETECTION

In this section, we used the knowledge that the attacker uses a line search, to develop a more powerful (even if
more complicated) oracle attack detection test. Of course this comes at the price of a loos of generality since the
test can be applied only when the attacker adopts a line search strategy for its attack. Note that in the previous
section we exploited the same knowledge to evaluate the missed detection probability. The test, however, would
remain valid even for other attacking strategies, assuming that, at a certain point, they result in an unnaturally
high number of queries close to the boundary.

To design our new test, we need to exploit the knowledge of the attacker strategy to refine the model of
illegitimate queries.

Definition 4.1 (Model of illegitimate queries). Query signals corresponding to illegitimate users are
noisy convex combinations of a watermarked signal, which we denote by Z1 ∼ N (w, σ2

Z1
IL×L), and a non-

watermarked signal, denoted by Z2 ∼ N (0, σ2
Z2
IL×L). Specifically, the i-th query can be written as Yi =

ψiZ1 + (1 − ψi)Z2 + Ni, where 0 ≤ ψi ≤ 1, Ni ∼ N (0, σ2
N ), i = 1, . . . , N . Since Ni is typically used for

modelling quantization effects in a transformed domain, we will assume that: 1) Ni is independent of Z1 and
Z2; 2) the Ni’s are mutually independent, and identically distributed; and 3) σ2

N is known by the detector.
Furthermore, σ2

Zi
∈ R+, i = 1, 2, and Z1 and Z2 are mutually independent.

As in the previous section, the null hypothesis can be formalized as Hq,0 : YN ∼ N (µ0,Σ0), where each
component of the mean vector µ0 is set to 0 or to the corresponding component of w, depending if the query



corresponds to a watermarked signal or not, and the covariance matrix Σ0 is a diagonal matrix whose elements are
obtained by repeating L times the vector (σ2

X1
, · · · , σ2

XN
). Similarly, the alternative hypothesis is Hq,1 : YN ∼

N (µ1,Σ1), where the mean vector µ1 contains the mean vectors ψiw, i = 1, . . . , N , and the covariance matrix
Σ1 is a block diagonal matrix, with block-size N ×N , which is repeated L times. Therefore, the null hypothesis
distribution can be parameterized by s and σ2

Xi
, i = 1, . . . , N , and the alternative hypothesis distribution by

ψi ∈ [0, 1], i = 1, . . . , N , σ2
Z1

, and σ2
Z2

.

4.1 Detector

Due to the presence of the nuisance parameters mentioned before, both the null hypothesis and the alternative
hypothesis are composite hypotheses; therefore, Neyman-Pearson criterion can not be directly applied to the
considered detection problem. Instead, we will use the so called generalized likelihood ratio test (GLRT), defined
as

Λ(yN ) = 2 log

(
max
θ1

fYN |Hq,1(yN |θ1)

)
− 2 log

(
max
θ0

fYN |Hq,0(yN |θ0)

)
≷ τ,

where θ0 is the concatenation of s and σ2
Xi

, i = 1, . . . , N , and θ1 is the concatenation of ψi, i = 1, . . . , N , σ2
Z1

,
and σ2

Z2
.

Exploiting the nature of the pdfs involved in the current problem, one can write

Λ(yN ) = min
θ0∈{0,1}N×(R+)N

[
(yN − µ0)TΣ−1

0 (yN − µ0) + log(|Σ0|)
]

− min
θ1∈[0,1]N×(R+)2

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
. (17)

Therefore, the only remaining issue is to determine the value of the decision threshold τ in order to verify
that the probability of false alarm when the GLRT is used is smaller than or equal to a target value P ∗F,q, i.e.,

PF,q = P (Λ(YN ) ≥ τ |Hq,0) ≤ P ∗F,q.
In order to do so, we define

Λ1(yN ) , min
(σ2
X1
,...,σ2

XN
)∈(R+)N

[
(yN − ŜwN )TΣ−1

0 (yN − ŜwN ) + log(|Σ0|)
]

− min
θ′1∈[0,1]2N×(R+)2

[
(yN − µ1)TΣ−1

1 (yN − µ1) + log(|Σ1|)
]
, (18)

where in the first minimization wN denotes the counterpart of YN when Yi is replaced by w, vector ŝ is the
ML estimate of s, and Ŝ is a diagonal matrix with the elements of ŝ repeated L times. On the other hand, in
the second optimization in (18) the first N values in [0, 1] are used as ψi in the parameterization of µ1, while
the second N values are used as ψi in the parameterization of Σ1. This decoupling, which somewhat serves to
simplify the optimization problem, also produces an expanded domain that in turn may lead to a smaller value
of the objective function; for this reason, Λ1(yN ) ≥ Λ(yN ).

It is illustrative to interpret the term (yN − ŜwN )TΣ−1
0 (yN − ŜwN ) in (18) as a weighted Euclidean distance

between the observations and the mean vector that results after making the decision on whether each query
corresponds to a watermarked signal or not. Similarly, the term (yN − µ1)TΣ−1

1 (yN − µ1) can be seen as a
weighted Euclidean distance. By decomposing Σ1 = UTDU, where D is a diagonal matrix and U is unitary, one
can transform the observations and mean vectors so that a diagonal weight matrix is recovered. Interestingly,
under hypothesis Hq,1 when σ2

N � σ2
Z,1, σ

2
Z,2, and the true Σ1 is used, such diagonalization will lead to only

two significant values in each N consecutive elements in the main diagonal of D (recall that the diagonal of D
will be the repetition of L such blocks). This reflects the fact that the queries are roughly located on a straight
line. Therefore, for the proper values of ψi in Σ1, the second optimization in (18) can be seen as a sort of line
fitting. This suggests solving such problem in practice by replacing Σ1 by the sample covariance matrix, so that
the orthogonal decomposition corresponds to Principal Component Analysis (PCA), which provides the only
significant direction.



Under Hq,0, YN −µ1 corresponds to Xi− ψ̂iw when Yi is not watermarked, and to Xi+ (1− ψ̂i)w when Yi

is watermarked, where ψ̂i = (θ′1)i, 1 ≤ i ≤ N ; we will write these relationships as YN −µ1 = XN + (S− Ψ̂)wN ,

where XN is constructed by stacking the Xi, and S and Ψ̂ are diagonal matrices with the elements of s and ψ̂
repeated L times. Then, the value of Λ1(yN ) is

min(σ2
X1
,...,σ2

XN
)∈(R+)N

[
(xN + [S− Ŝ]wN )TΣ−1

0 (xN + [S− Ŝ]wN ) + log(|Σ0|)
]

−minθ′1∈[0,1]2N×(R+)2

[
(xN + (S− Ψ̂)wN )TΣ−1

1 (xN + (S− Ψ̂)wN ) + log(|Σ1|)
]
. (19)

Let Ψ̂∗ be the diagonal matrix obtained from the first N components of the value of θ′1 that minimizes the
second target function in Λ1. Also, for a given indicator matrix S′ 6= S, let ∆ be the diagonal matrix that has
ones in those positions where S′ and S differ, and zeros otherwise. Then, for this matrix S′ it can be seen that
the diagonal matrix (Ψ̂∗)′ obtained from the first N components of θ′1 that minimizes (19) is (I−∆)Ψ̂∗. In fact
it can be shown that (xN + (S − Ψ̂∗)wN )TΣ−1

1 (xN + (S − Ψ̂∗)wN ) = ((xN )′ + (S′ − (Ψ̂∗)′)wN )TΣ−1
1 ((xN )′ +

(S′ − (Ψ̂∗)′)wN ), where (xN )′ , (I− 2∆)xN . In other words, due to symmetry of the pdf of Xi with respect to
componentwise sign changes, the pdf of the second term of Λ1(YN ) is indeed independent of s.

In order to remove the dependence of the first optimization with respect to s, we exploit that |si − ŝi| ≤ 1,
1 ≤ i ≤ N , to define

Λ2(xN ) , min
(σ2
X1
,...,σ2

XN
)∈(R+)N

[
(|xN |+ |wN |)TΣ−1

0 (|xN |+ |wN |) + log(|Σ0|)
]

− min
θ′1∈[0,1]2N×(R+)2

[
(xN − µ1)TΣ−1

1 (xN − µ1) + log(|Σ1|)
]
,

where |x| denotes, with some abuse of notation, the componentwise absolute value, i.e., (|x|)i = |xi|. Note that
P (Λ2(xN ) ≥ τ) ≥ P (Λ1(xN + SwN ) ≥ τ) for any τ and s.

Finally, we will calculate τ in order to verify that P (Λ2(XN ) ≥ τ) = P ∗F,q, implying that

PF,q = P (Λ(YN ) ≥ τ |Hq,0) ≤ P (Λ1(YN ) ≥ τ |Hq,0) ≤ P (Λ2(XN ) ≥ τ) = P ∗F,q.

Now, the distribution of Λ2(XN ) does not depend on s. Consequently, we do not need to assume any a
priori probability of a legitimate query to correspond to a watermarked or non-watermarked content. Based on
Λ2(XN ), the threshold τ can be found by using Monte Carlo simulations.

In order to evaluate the performance of the approach presented in this section, we will consider σ2
Xi
∼

U(80, 120) and σ2
W = 1 (so DWR = 20 dB, similarly to the previous section), σ2

N = 10, L = 2 · 104, N = 3,
and under Hq,1 ψ = (0, 0.5, 1). By using Monte Carlo simulations we obtain E(Λ2|Hq,0) ≈ −1.156 · 105,
Var(Λ2|Hq,0) ≈ 1.775 · 108, E(Λ|Hq,1) ≈ 2.816 · 104, Var(Λ|Hq,1) ≈ 1.674 · 106. If we model both the distribution
of Λ2 under Hq,0, and that of Λ under Hq,1 to be Gaussian (which is reasonable, given the large value of L),
then the decision threshold for P ∗F,q = 10−20 is τ = 7807, yielding a probability of missed detection PM,q =

Q(15.74) ≈ 4.34 · 10−56. This result illustrates the good behavior of the proposed approach.

5. CONCLUSIONS

As a new way to contrast oracle attacks against one-bit watermarking, we have introduced the concept of smart
detector, i.e., a detector that first tries to understand whether an attack is on going and then reacts properly.
We have investigated the possibility of developing an effective metatest to see whether the queries submitted to
the detector provide enough evidence that an attack is in place. We did so for two different settings making
different assumptions on the amount of knowledge the detector has on the query pattern used by the attacker.
In both cases, the developed detectors permit to reveal the presence of an oracle attack by observing very few
queries, even if, expectedly, the more knowledge is available to the detector the more effective the test. It goes
without saying that several aspects need further attention. First of all, we should take into account the possibility



that the attacker adopts a query pattern explicitly thought to minimize its detectability by means of a smart
detector, which in turn could define its strategy by assuming that proper countermeasures are taken by the
attacker. To understand who will finally win this kind of tug of war, the smart detector problem can be casted
in a game-theoretic framework following the path suggested by Barni and Pérez-González15 . Secondly, the most
suitable strategy to be undertaken once an oracle attack is detected should be defined.

We conclude by observing that, even if we focused on oracle attacks launched against a watermarking system,
the analysis presented in this paper goes well beyond the watermarking problem: as discussed by Barni and Pérez-
González,15 binary decision can be considered as on of the core problems in adversarial signal processing, so the
advances presented here find their application in other fields, such as biometrics, network intrusion detection,
forensics, reputation systems, and many more.
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