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Abstract—We present a new power spectrum recovery method
in the context of power spectrum blind sampling. As sampling
device we propose a multicoset sampler, which provides sub-
Nyquist rate samples. A weighted least squares (WLS) criterion
is adopted with the aim to define a power spectrum recovery
algorithm that minimizes the mean square error (MSE) of the
correlation estimate of the input signal. It is analytically shown
that the optimal weighting matrix is equal to the inverse of the
covariance matrix of the correlation estimate of the sub-Nyquist
rate samples. The derived weight can also be shown to be optimal
in MSE sense for power spectrum estimation. We also provide
an optimization framework for the design of multicoset sampling
patterns that minimize the MSE of the compressive WLS power
spectrum estimator. The resulting integer nonlinear programming
problem is solved by using exhaustive search.

I. INTRODUCTION

Power spectrum blind sampling (PSBS), or equivalently,
compressive power spectrum estimation techniques [1,2], de-
fine a sub-Nyquist rate sampling strategy and an efficient
reconstruction method for the power spectrum of a wide sense
stationary signal. These techniques are of particular interest
in spectrum sensing for cognitive radio [3]–[7], since they
combine the efficiency of compressed sensing when acquir-
ing the sub-Nyquist rate samples needed to reconstruct the
power spectrum, with the simplicity of some power spectrum
estimators based on least squares (LS) solutions.

Although different sampling strategies are possible, previ-
ous works [1,2,8] concentrate on multicoset sampling [9,10]
using minimal sparse rulers as sampling patterns, which pro-
vide a very low compression rate. Coprime sampling [11]–[13]
has been also proposed as an interesting structure to obtain
the sub-Nyquist rate samples, which can be combined with
traditional power spectrum estimators which do not make use
of any sparsity assumption on the input signal. Compressive
sampling can be used without the sparsity assumption because
the objective is not to obtain perfect signal reconstrution, but
rather to perform power spectrum recovery.

This paper introduces a new criterion for the design of
the sampling pattern, so that the mean square error (MSE)
of the power spectrum estimate is minimized, while keeping
minimal compression rate. In addittion, this work proposes a
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different power spectrum estimator from the sub-Nyquist rate
samples, which makes use of the weighted least squares (WLS)
criterion. Finally, we provide an optimization framework for
the design of the minimum MSE (MMSE) multicoset sampling
pattern. The resulting integer nonlinear programming problem
is solved using exhaustive search. Numerical examples show
that the proposed compressive power spectrum estimation
strategy provides a lower MSE in the power spectrum recon-
struction than the one obtained with the minimal-sparse-ruler-
based pattern and the LS criterion.

II. PROBLEM STATEMENT

Consider a complex-valued wide-sense stationary signal
x(t) with bandwith B. Our aim is to sample this signal at
a rate lower than the Nyquist frequency 1/T , such that the
power spectrum of x(t) can be accurately estimated.

For the acquisition stage, we consider a multicoset sam-
pling strategy [9] implemented with M interleaved analog-
to-digital converters working at a rate 1/NT , being 1/T the
Nyquist sampling rate and N the block length. This sampling
device can be modeled as in [1,2]: a high rate integrate and
dump process followed by a bank of M branches, consisting
each one of a filtering operation followed by a downsampling
operation, as illustrated in Figure 1. Taking into account
that multicoset sampling consists of selecting M Nyquist-rate
samples in each block of length N , the coefficients of the filter
ci[n], i = 1, . . . ,M , can be written as

ci[n] =

{
1, n = −ni,
0, n 6= −ni,

(1)

where there is no repetition in ni, i.e.

ni 6= nj , ∀i 6= j. (2)

The output of the i-th branch of this PSBS scheme is given
by

yi[k] = zi[kN ], (3)

where zi[·] is given by

zi[n] = ci[n] ∗ x[n] =

0∑
m=1−N

ci[m]x[n−m]. (4)

In compressive power spectrum estimation, the objective is
to estimate the power spectrum of x(t) from the sub-Nyquist
samples {yi[k]}i,k, that is, to estimate the power spectrum



Fig. 1. Digital model of the sampling device.

spectrum of x[n], which is equivalent to obtain the autocorre-
lation function of x[n] given by rx[n] = E{x[m]x∗[m − n]}.
In [2], Ariananda and Leus propose a method to recover
the autocorrelation function rx[n] given the cross correlations
ryi,yj

[k], for i, j = 0, . . . ,M − 1, given by

ryi,yj
[k] = E{yi[l]y∗j [l − k]}. (5)

They show that

ryi,yj
[k] =

1∑
l=0

rTci,cj [l]rx[k − l], (6)

where

rci,cj [k] =
[
rci,cj [kN ] rci,cj [kN − 1]

· · · rci,cj [(k − 1)N + 1]
]T
,

(7a)

rx[k] = [rx[kN ] rx[kN + 1]

· · · rx[(k + 1)N − 1]]
T
. (7b)

By cascading all these cross correlation functions they
compose vector ry[k] = [. . . , ryi,yj [k], . . .]T, which can be
written as:

ry[k] =

1∑
l=0

Rc[l]rx[k − l], (8)

where

Rc[k] = [rc0,c0 [k] · · · rc0,cM−1
[k]

rc1,c1 [k] · · · rcM−1,cM−1
[k]]

T
, (9)

From this equation, and after some algebraic manipulations,
they arrive to the following matrix equation:

ry = Rcrx, (10)

where ry ∈ C 1
2M(2L+1)(M+1)×1 and rx ∈ CN(2L+1)×1 are

given by

ry =
[
rTy [0] · · · rTy [L] rTy [−L] · · · rTy [−1]

]T
, (11a)

rx =
[
rTx [0] · · · rTx [L] rTx [−L] · · · rTx [−1]

]T
, (11b)

with L being a design parameter related to the support of rx[k]
and Rc ∈ C 1

2M(2L+1)(M+1)×N(2L+1) is given by

Rc =


Rc[0] O · · · O Rc[1]
Rc[1] Rc[0] O · · · O

O Rc[1] Rc[0] O
...

...
. . . . . . . . . O

O · · · O Rc[1] Rc[0]

 , (12)

with O being a dimension-corresponding zero matrix.

The power spectrum of x[n] can be writtten as sx =
F2L+1rx, being Fn ∈ Cn×n the DFT matrix of size n. From
(10), a time domain (TD) estimator for the power spectrum is
proposed as [2]

ŝx = F(2L+1)N

(
RH

cRc

)−1
RH

c r̂y, (13)

where (·)−1 is the inverse, (·)H is the conjugate transpose, and
r̂y ∈ CM2(2L+1)×1 is an estimate of ry. An unbiased estimator
of ry can be obtained using that

r̂yi,yj
[k] =

1

K − |k|

K−1+min(0,k)∑
l=max(0,k)

yi[l]y
∗
j [l − k], (14)

where K is the number of measurements.

From (13), it is clear that the selected sampling pattern
has to lead to a full column rank matrix Rc. In [2], a subop-
timal solution for the sampling patterns is proposed based on
minimal sparse rulers (SR). In this paper we propose a WLS
criterion for the design of the power spectrum estimator, and
a MMSE criterion for the design of the sampling pattern, so
that the full column rank constraint can be verified and at the
same time the power spectrum is recovered with minimum
mean square error.

III. POWER SPECTRUM RECOVERY BASED ON WLS

In a least squares sense, the estimate of rx in (10) can be
written as

r̂x = arg min
rx

‖r̂y −Rcrx‖2E

=
(
RH

cRc

)−1
RH

c r̂y,
(15)

where ‖·‖E is the Euclidean norm. We consider here an
alternative approach based on WLS from

r̂x = arg min
rx

‖r̂y −Rcrx‖2W

= arg min
rx

(r̂y −Rcrx)
H
W (r̂y −Rcrx) ,

(16)

where W ∈ CM2(2L+1)×M2(2L+1) is a positive-definite
weighting matrix that does not depend on rx. Let the cost
function in (16) be

fWLS(rx) = (r̂y −Rcrx)
H
W (r̂y −Rcrx) . (17)

Since fWLS(rx) is a convex function of rx, the critical point
∂

∂rx
fWLS(rx) = 0 leads to the minimum according to

r̂x =
(
RH

cWRc

)−1
RH

cWr̂y, (18)



which results in the new compressive power spectrum estima-
tor that we propose:

ŝx = F(2L+1)N

(
RH

cWRc

)−1
RH

cWr̂y. (19)

Note that if W in (18) and (19) is the identity matrix, the
estimates in (18) and (19) become (15) and (13) respectively.
Next subsections are devoted to the computation of the optimal
weighting matrix in a MMSE sense.

A. Error Covariance of Weighted Least Squares

The covariance of r̂x in (18) is given by

Cr̂x = Ex
{

(r̂x − rx) (r̂x − rx)
H
}

=
(
RH

cWRc

)−1
RH

cWCr̂yW
HRc

(
RH

cW
HRc

)−1
,

(20)

where Cr̂y ∈ CM2(2L+1)×M2(2L+1) is given by

Cr̂y = Ey
{

(r̂y − ry) (r̂y − ry)
H
}
. (21)

If the weighting matrix W is Hermitian, we have

Cr̂x =
(
RH

cWRc

)−1
RH

cWCr̂yWRc

(
RH

cWRc

)−1
. (22)

An optimal method to determine W can be derived from the
minimization of the MSE in the estimate of the autocorrelation,
that is, Ex

{
‖r̂x − rx‖2E

}
. This can be written as

ŴMMSE = arg min
W

tr (Cr̂x)

= arg min
W

tr
((
RH

cWRc

)−1
RH

cW

Cr̂yWRc

(
RH

cWRc

)−1
)
.

(23)

In fact, the minimal MSE (MMSE) weight in (23) is also
optimal in MSE sense for the power spectrum recovery in
(19) by considering that

ŴMMSE = arg min
W
Ex
{
‖r̂x − rx‖2E

}
= arg min

W
Ex
{
‖ŝx − sx‖2E

}
,

(24)

where the second equality holds from the properties of
F(2L+1)N in (13) and (19), i.e. F T

(2L+1)N = F(2L+1)N and
F−1
(2L+1)N = 1

(2L+1)NF
∗
(2L+1)N .

B. Minimum Mean Square Error Weight

After some algebraic manipulation, one can show that

∂

∂W ∗ Ex
{
‖r̂x − rx‖2E

}
= 2Cr̂yWRc

(
RH

cWRc

)−2
RH

c

− 2Rc

(
RH

cWRc

)−1
RH

cWCr̂yWRc

(
RH

cWRc

)−2
RH

c .
(25)

Proof of this derivation can be found in [14].

If we choose W = C−1
r̂y

, we have

∂

∂W ∗ Ex
{
‖r̂x − rx‖2E

}∣∣∣∣
W=C−1

r̂y

= O. (26)

Therefore, the MMSE weighting matrix in (23) becomes

ŴMMSE = C−1
r̂y
. (27)

Let the second-order statistics of x[n] be

Ex {x[n]x∗[m]} = σ2
xδ[n−m], ∀m,n, (28a)

Ex {x[n]x[m]} = 0, ∀m,n, (28b)

where σ2
x is the variance of x[n]. Under the signal assumption

in (28), one can show that [14]

Cr̂y = σ4
x (Λ(β)⊗ IM2) , (29)

where Λ(·) is a diagonal matrix whose diagonal is β ∈
R(2L+1)×1, given by

β =
[
1
K

1
K−1 · · · 1

K−L
1

K−L · · · 1
K−1

]T
, (30)

⊗ is the Kronecker product, and Im is the identity of size m.

Although this signal assumption leads to a power spectrum
which is flat, and obviously does not need to be estimated,
it provides a way to obtain an analytical expression of the
optimal weighting matrix for the worst case scenario, when
the power spectrum has to be estimated under a low SNR.
In addition, this assumption paves the way for the design
of an alternative multicoset sampling pattern based on the
minimization of the mean square error in the power spectrum
estimate, as proposed in the next section of this paper.

IV. MINIMUM MEAN SQUARE ERROR PATTERN DESIGN

Let n ∈ NM×1 be the vector of indices given by

n = [n0 n1 · · · nM−1]
T
. (31)

These indices correspond to the positions of the Nyquist
rate samples to be obtained when acquiring the signal, that
is, the indices of ci[n] which contain a nonzero element.
Our goal is to find vector n that leads to a minimum MSE
estimation of the power spectrum of the acquired signal. To this
aim, we consider the WLS power spectrum estimator in (19),
which obviously depends on the cross correlations between
vectors ci[n] to be designed, and define the cost function
to be minimized as Ex

{
‖ŝx − sx‖2E

}
. After some algebraic

manipulations one can show that

Ex
{
‖ŝx − sx‖2E

}
=

1

K(2L+ 1)− L(L+ 1)
σ4
x(2L+ 1)N

N∑
nr=1

1

αnr
(n)

,

(32)

where αnr (n) ∈ Z1×1 is given by

αnr (n) =

M−1∑
m1=0

M−1∑
m2=0

δ[−nr + 1− (nm2 − nm1)]

+ δ[N − nr + 1− (nm2
− nm1

)].

(33)

In order to recover the power spectrum in (19) the existence

condition of the inverse
(
RH

c ŴMMSERc

)−1

must be verified.



Let I(X) be a set of the invertibility of a matrix X , defined
as

I(X) =
{
Y |Y = X−1, |X| 6= 0

}
, (34)

where | · | is the determinant of matrix ·.

Proposition 1 (Invertibility Condition): When K is larger
than L, there exists a loosely sufficient condition that enables
perfect power spectrum reconstruction, such as

αnr
(n) ≥ 1, ∀nr ∈ {2, 3, . . . , N}

⇐⇒ I
(
RH

c ŴMMSERc

)
6= ∅.

(35)

Proof: The derivation of (35) is given in Appendix A.

From (32) and (35), the optimization problem for the
MMSE pattern can be written as

n̂WMMSE = arg min
n

N∑
nr=1

1

αnr (n)

s.t.

αnr (n) ≥ 1, ∀nr ∈ {2, 3, . . . , N},
n0 = 0,

nM−1 = b1
2
Nc,

nm ∈ {nm−1 + 1, . . . , Nmax −M +m+ 1},
∀m ∈ {1, 2, . . . ,M − 2}.

(36)

This optimization problem can be solved by exhaustive
search. We call WLS-MMSE pattern a vector of indices which
is a solution of this optimization problem. Next section show
some examples of different WLS-MMSE patterns for different
values of (M,N). There are few patterns after the search that
correspond to SR patterns, that is, for some values of (M,N)
the above optimization problem leads to a SR pattern.

V. NUMERICAL EXAMPLES

This section presents some numerical results that show
the theoretical performance of the designed sampling patterns
and the proposed WLS-TD approach for power spectrum
reconstruction. Thus, we compare here the theoretical MSE
in terms of

ε(n) =
1

σ4
x

Ex
{
‖ŝx(n)− sx‖2E

}
, (37)

which has been computed for the following approaches:

1) A minimal sparse ruler as sampling pattern, denoted
as nSR, and the TD power spectrum estimator based
on LS in (13) defined in [2].

2) An MMSE sampling pattern, denoted as n̂MMSE, ob-
tained in [14] and the TD power spectrum estimator
in (13).

3) An MMSE sampling pattern, denoted as n̂WMMSE,
and the WLS-TD power spectrum estimator proposed
in this paper.

Thus, Tables I, II and III show examples of the sampling
patterns designed minimizing the cost function in (36), for

Sampling Patterns for N = 39

nSR [0 1 10 11 13 15 17 19]T

n̂LS
MMSE [0 1 2 5 10 13 17 19]T

n̂WLS
MMSE [0 1 3 7 9 14 18 19]T .

TABLE I. DESIGNED SAMPLING PATTERNS FOR N = 39, M = 8.

Sampling Patterns for N = 78

nSR [0 1 12 15 26 29 31 33 35 37 39]T

n̂LS
MMSE [0 1 2 10 15 16 28 32 35 37 39]T

n̂WLS
MMSE [0 1 3 5 7 17 20 30 31 38 39]T

TABLE II. DESIGNED SAMPLING PATTERNS FOR N = 78, M = 11.

different parameters, in addition to the sparse rulers of the
same length and the MMSE patterns designed in [14].

Figure 2 show the MSE obtained by the different ap-
proaches as a function of the compression ratio. It can be
clearly observed that the strategy proposed in this paper
outperforms the approaches presented in previous works.

Finally, Tables IV show the WLS-MMSE sampling patterns
obtained by exhaustive search for different values of (M,N).

VI. CONCLUSIONS

We have presented a new power spectrum recovery or
power spectral estimation method that is based on WLS and
multicoset sampling patterns that minimize the MSE in the
reconstruction. The weighting matrix is shown in a closed form
and can reduce the MSE of the power spectrum recovery. We
also have presented the sampling pattern that is derived from
the optimal weight. Exhaustive search is used to obtain the
new sampling pattern designs. Numerical results shows that
the WLS provides a significant improvement of the MSE over
the former approach using minimal sparse ruler criterion and
the MMSE criterion with conventional least squares.

APPENDIX A
PROOF OF PROPOSITION 1

Taking into account (??), the inverse of RH
c ŴMMSERc

can be written as(
RH

c ŴMMSERc

)−1

= σ4
x

(
RH

c

(
Λ−1(β)⊗ IM2

)
Rc

)−1
.

(38)

Based on (38), the inverse of RH
c ŴMMSERc exists, if and

only if each diagonal block-matrix in (??) is invertible, i.e.

I
(
RH

c ŴMMSERc

)
6= ∅

⇐⇒
2L⋂
l=1

I
(

1

βl
Λ (ᾱ(n)) +

1

βl+1
Λ (α̃(n))

)
∩ I

(
1

β2L+1
Λ (ᾱ(n)) +

1

β1
Λ (α̃(n))

)
6= ∅.

(39)

Usually, K is larger than L. Thus, βl is positive for all l ∈
{1, 2, . . . , 2L+ 1}. Since ᾱn and α̃n in (??) are non-negative
for all n ∈ {1, 2, . . . , N}, we can derive

I (Λ (ᾱ(n)) + Λ (α̃(n))) 6= ∅

⇐⇒ I
(

1

βl1
Λ (ᾱ(n)) +

1

βl2
Λ (α̃(n))

)
6= ∅,

(40)



Sampling Patterns for N = 128

nSR [0 1 3 6 13 20 27 34 41 48 55

59 63 64]T

n̂LS
MMSE [0 1 2 6 8 20 29 38 47 50 53

60 63 64]T

n̂WLS
MMSE [0 1 3 9 13 22 30 39 46 50 57

61 62 64]T

TABLE III. DESIGNED SAMPLING PATTERNS FOR N = 128,AND
M = 14,

Fig. 2. Comparison of the MSE of the power spectrum estimate for different
sampling patterns and estimators.

for l2 = l1 + 1, l1 ∈ {1, 2, . . . , 2L}, and (l1, l2) = (2L+ 1, 1).
Let α(n) ∈ RN×1 be a vector, which is given by

α(n) = [α1(n) α2(n) · · · αN (n)]
T
. (41)

By noting that α(n) = ᾱ(n) + α̃(n), we have

I (Λ (α(n))) 6= ∅ ⇐⇒ I
(
RH

c ŴMMSERc

)
6= ∅. (42)

(M,N) WLS-MMSE sampling patterns

(5, 18) [0 1 2 6 9]T

[0 1 4 7 9]T

[0 2 5 8 9]T

[0 3 7 8 9]T

(8, 39) [0 1 2 5 10 13 17 19]T

[0 1 2 7 11 14 17 19]T

[0 1 3 7 9 14 18 19]T

[0 1 5 10 12 16 18 19]T

[0 2 5 8 12 17 18 19]T

[0 2 6 9 14 17 18 19]T

(11, 78) [0 1 2 5 12 13 20 30 34 36 39]T

[0 1 2 6 7 16 24 27 35 37 39]T

[0 1 2 6 15 19 28 31 36 38 39]T

[0 1 2 6 17 18 26 29 32 36 39]T

[0 1 2 8 9 21 25 31 34 36 39]T

[0 1 2 9 13 14 18 29 33 36 39]T

(11,84) [0 1 2 3 19 24 28 32 36 39 42]T

[0 3 6 10 14 18 23 39 40 41 42]T

TABLE IV. DESIGNED WLS MMSE PATTERNS FOR DIFFERENT
VALUES OF (M,N).

The diagonal matrix Λ (α(n)) is invertible if and only if
αnr (n) for all nr ∈ {2, 3, . . . , N} is non-zero, or more strictly
greater than or equal to one. Note that α1(n) is not included
into the condition in (35), because α1(n) = M for any n.
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