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Abstract

Security of Quantization Index Modulation (QIM) watermigdk methods is usually sought through a pseudorandom
dither signal which randomizes the codebook. This dithayplthe role of the secret key, i.e. a parameter only shared
by the watermarking embedder and decoder, which prevemtsthorized embedding and/or decoding. However, if the
same dither signal is reused, the observation of severarmatked signals can provide sufficient information for an
attacker to estimate the dither signal. This paper focuseth® cases when the embedded messages are either known
or constant. In the first part of this paper, a theoreticalggcanalysis of QIM data hiding measures the information
leakage about the secret dither as the mutual informatibmesa the dither and the watermarked signals. In the second
part, we show how set-membership estimation techniquesessfully provide accurate estimates of the dither from
observed watermarked signals. The conclusion of this tldadtudy is that current QIM watermarking schemes have
a relative low security level against this scenario becausenall number of observed watermarked signals yield a
sufficiently accurate estimate of the secret dither. Théyaisapresented in this paper also serves as the basis fa mor

involved scenarios.

Index Terms

Watermarking security, Quantization Index Modulatiortit® data hiding, mutual information, equivocation, set-

membership estimation.

I. INTRODUCTION

Recently, the basis of cryptanalysis has been cast to dditaghtp establish the concept of watermarking security [1],
[2], [3]. It assumes that all details of the watermarkinghtgique are publicly known except the so-called secret key

parameter of the embedding and decoding processes, atgdaliKerckhoff’s principle [4]. Hence, security only
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relies on whether (or more realistically, for how long) trezi®t key will remain secret. This framework for security
assessment of watermarking schemes is twofold. We asswaha tiollection of content has been watermarked with the
same secret key, and the attacker has access to these wasignals. A first theoretical part measures the amount
of information about the secret key which leaks from the waseked content, using the mutual information and
conditional entropy as measures, following the informatilbeoretic approach for cryptosystems proposed by Shannon
in [5]: this approach is based on computing the entropy ofkiye conditioned on the encrypted messages observed
by the attacker; when the conditional entropy is null it me#mt the attacker has gathered enough observations so
as to disclose the secret key. Bear in mind that the originahB8bn’s work dealt with discrete random variables,
whereas our discussion deals with continuous random \lasathis is why we need to resort to differential entropies,
nevertheless the main concepts remain the same: whereastdisntropy is related to the number of possible values
of a random variable and their probabilities (and it is alsv@ynon-negative quantity), differential entropy accounts
for the log-volume of the typical set [6, Section 9.2] and ashsatill provides a useful measure of uncertainty,
regardless of whether it takes negative values; in padic@omplete disclosure of the secret key will be possible
when its conditional entropy becomesx. The information-theoretic analysis allows us to estatlister bounds on
the variance of the key estimation error as a function of tinalmer of available observations. The second part of the
paper is of practical nature and shows workable algorithmihvtake as input a collection of watermarked signals
and output an estimate of the secret key. This confirms thattthekais manageable within a bounded complexity.

This framework (theoretical and practical parts) has alydambn successfully applied to substitutive [2, Sect. IlI]
and additive spread spectrum watermarking schemes [2, IS§¢8]. Watermarking security under this viewpoint is
also briefly addressed in Section 10 of [7]. Other notable wddaling with the security of spread spectrum schemes
concentrate on the practical part [8], [9]. As for quanimatbased data hiding, preliminary studies of the theaaétic
part have shown the existence of information leakages [4Bile on the practical part, we are aware of two works:
first, the work by J. Eggerst al. [11], although their motivation was not the security anelysut the robustness
improvement of the Scalar Costa Scheme (SCS) against a Scalinddtition of White Gaussian Noise attack
(SAWGN), and the work by Bas and Hurri [12] which is more retate our approach, but focuses on the so-called
spread transform methods [13] without distortion comptosa

The reader must note that the scope of this article is restribecause we mainly focus on the Known Message
Attack (KMA) [2, Sect. II.B]: we assume that the attacker i¢edto gather a collection of signaly;}, i = 1,..., N,,
watermarked with the same key, while knowing for each itslaidmessage, denoted hy. The pairs{y;, m;} will
be referred to ambservations This paper is only a first step to a global security analysis uwdngjzation-based
watermarking; in fact, as we will discuss in Section VII, bdtie developed theory and algorithms for the KMA
scenario constitute the core of those corresponding to mamplex scenarios. In any case, the considered setup is
still very important as shown in the following motivations.

1) The copy protection application faces extreme securitgatis [14]. The secret key is not only unique but
the hidden messages are also known by any user. Consi@egital Rights Managemen{DRM) system using

watermarking. The secret key is embedded in a chipset indlimieevery compliant device. Content makers also
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share the secret key to watermark their products. Comptiaxices spot these as protected contents whose usage
is restricted according to the DRM license. Some DRM systeids the status (i.e., the usage restriction) such
as ‘Copy Never’, ‘Copy Once’, ‘Copy No More’ [14] in the comits. The number of status choices is extremely
small compared to the size of the content. This is a typicaigte of zero-rate watermarking, where the embedding
proceeds by blocks (of video or of sound). Thepy Protection Technical Working Grounas, for instance, required

the embedding of eight bits within ten seconds of video [Midreover, any user knows the embedded message as the
status of a piece of content is public (for instance, the d@npdevice may warn the user that the copy of a particular
content is forbidden due to its restrictive status). HemddA is a main threat in copy protection applications.

2) Video and audio watermarking in general might be also puisk by KMA. The reason is that one usually
does not watermark a video, but instead watermarks corigediocks of video. This division in blocks maintains a
low complexity of the embedding and decoding whereas itetsmmporal re-synchronization. In the case of zero-rate
watermarking (the message space is bounded and small), m@orapproach is to embed the message repeatedly
in consecutive blocks. The division into blocks is usuallyplrly known (although other strategies are possible), so
the attacker is able to gather a number of different blockiinlji the same message. This is not exactly a KMA but
a Constant Message Attack (CMA) because the value of theageswight not be known. However, we will show
that this only brings slight changes in both the theoretaoal the practical parts. This matter concerns applications
such as copyright enforcement, copy protection, and fingehpg (traitor tracing). Note that in this last scenario
the major source of concern has been collusion attacks gnearrangement of several traitors), but the CMA could
constitute a worse attack for audio or video fingerprintingshuse there the same message is repeatedly embedded
in a block by block basis. The success of the CMA depends onuhgbar of blocks in a movie or song.

3) Another motivation is that most QIM schemes are known taveak against amplitude scaling attacks. Eggers
et al. suggest in [11], [16, Sect. VI] to embed a reference messdge fifot sequence) prior to the message to be
embedded. Knowing this pilot sequence, the decoder is abéstimate the amplitude scaling and later to retrieve
the hidden message. Once again, this implies that all thermarked signals contain the same pilot sequence. If the
CMA is successful, the attacker may remove the pilot sequemd then apply a slight scaling to the amplitude of
the host signal. The decoder will not be able to retrieve tiiereace message nor the scaling factor. However, bear
in mind that in case the attacker does not know the exactitotaf the pilot signal, the CMA attack can be used
only as part of a more global attack.

4) Another important case is the application of QIM schenteauthentication. There exist many different ways
of designing a watermarking-based authentication schdareinstance, Eggergt al. proposed a highly original
scheme [17] taking benefit that a side-informed embeddersgivevatermark signal heavily dependent on the host
signal. Thus, it is useless to estimate the watermark sigreak@ned content, and then copy and paste it into another
content in order to forge a signature. This elegantly getsfithe copy and paste attack. In their scheme, Eggers
et al. suggest to apply SCS to image authentication by watermaitiimgks of the image with a reference message.
The verification process considers the image as authentic thieetlecoded message matches this reference message.

Once again, this implies that all signed images contain dimeesreference message and the CMA attack is applicable.
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We assume the watermark embedder works as follows. A firstestiepcts some coefficients (DCT, DWT, FFT...)
from the original piece of content. These coefficients are redién a length®, column vector, and the latter is
partitioned inl blocks of lengthn, denoted by;, i = 1,...,l — 1. The embedder hides a messaggc M in each
x;, yielding a watermarked vectgr;. Thus, the data hiding rate B = log, (| M])/n bits per coefficient. The specific
implementation of QIM considered in this paper is by meansasfted lattices [7], which encompasses most of the
proposed QIM formulations so far, and it will be referred &dattice data hiding According to the discussion above,
we assume that both the selection of the extracted coefficéard the partitioning in length-blocks is public; hence,
the security of the scheme relies only in the randomizatibthe lattice via a dithering process, where the dither
signal plays the role of secret k&yctually, the secret dither signal, which we denotetbynay be any deterministic
function of a certain cryptographic ke, i.e.,t = ¢g(0), whereg(-) is a pseudo-random generator. Although, under
the assumptions of Kerckhoff’s principle, such functiowld be publicly known, disclosure of the secret dither does
not necessarily imply disclosure of the cryptographic Keysinceg(-) should have been properly designed so as to
be (ideally) non-invertible. The attacker restricted tognal processing approach, as the one we are presenting here,
can, at most, aspire to disclose the sequence of dither sarppbvided by the available observations. Inference of
the secret key based on the estimata belongs to the domain of cryptanalysis, and as such fallobtite scope of
the present paper. Nevertheless, the mere disclosure giidire secret dither in a lattice data hiding scheme allows
many harmful attacks, as we shall discuss in Section V-A.

The theoretical security of lattice data hiding schemestudistl in sections Il and Ill. Sections IV and V present
practical estimators and experimental results, respaygtiobtained in the lattice data hiding scenario. In Sectitn
the theoretical security of quantization-based data Gidirethods is linked to the corresponding to Costa’s set-up
[18], and in Section VII the extension of the framework pragmbén this paper to more general scenarios is discussed.
Finally, in Section VIII the main conclusions are summarized aome remarks are given. Unless otherwise stated,
our results will be restricted to a distortion compensajamametern > 0.5 which represents the most important
case for lattice data hiding for the following reasons:

« In high Watermark to Noise Ratio (WNR) applicatichsvhich is the scenario of main interest for lattice data

hiding, the optimal value ofv is considerably larger tham5 (see [16], for instance).

« In low WNR applications, the optimal values of are smaller thar0.5, leading to decoding errors even in
the absence of noise. Indeed, it has been shown that for loviR¥/N is better to apply lattice data hiding in
conjunction with spread transform [13], whose main benefib ilicrease the effective WNR. This in turn leads
to an increase of the optimal, in most practical instances to values0.5. A similar conclusion is arrived at
when lattice data hiding is combined with channel coding.(eepetition coding or Construction A [19]).

The main notational conventions followed throughout thet t@se the following: random variables and their

occurrences are denoted by capital and lowercase letésectively; boldface letters denote column vectors, edmer

The extension to more general scenarios using secret coefficientiions, for instance, will be addressed in Section VII.

2WNR & log,,(Dw/0%), where D,, and 0% are the the embedding distortion and noise power per dimension, reshectihroughout

this paper, the terms high and low WNR are loosely applied to WN&RdB and WNR< 0 dB, respectively.
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scalar variables are represented in non-boldface chasa@alligraphic letters are reserved for sets. All lodpris

are to the base, so all the mutual informations and differential entropgee expressed in natural units.

Il. THEORETICAL SECURITY OF LATTICEBASED DATA HIDING

Before proceeding with the theoretical analysis, we wilefly explain the basics of embedding in lattice data
hiding; for more details and other aspects such as decotfingnterested reader is referred to [7] and the references
therein. Consider am-dimensional latticeA and the setM = {0,...,Lj; — 1} of possible messages. For each
messagen € M let us define the associated cosetrotsis, £ A + d,,, whered,,, is the minimum-normcoset
representativecorresponding to message. The codebook/ is defined by the union of all cosetd, = Ufnﬁglum.

Given a certain host signal and a to-be-transmitted message= M, each watermarked signal is generated as

y = x+a(Qu,(x)—x), )

wherea is the distortion compensation parameter, &hd (-) is an Euclidean quantizer whose centroids are defined

by the coset/,,:
A : _
Qu,, (x) £ arg min [x — x| 2

where||- || denotes Euclidean norm. This data hiding scheme is commomlyrkmas Distortion Compensated - Dither
Modulation (DC-DM) [13]. For adding security to the schenseyeral authors [13],[16] proposed to introduce an
additional termt namedsecret dither vectgrwhich is known only by embedder and decoder, yielding a oanded

embedding function:

y =x+a(Qy, (%) =x) = @y, t(x) + (1 = a)(x = Qy, (%)), ©)

wherelt,, ¢ £ A +d,, +t is them-th randomized coset, and the second term of (3) is the $eecself-noiseterm.
Notice that the watermark, defined as£ y — x, is A-periodic both inx andt since it yields the same value for
hosts and dither vectors of the fo+-r, r € A andt +r, r € A, respectively. The complete data hiding scheme is
summarized in the block diagram of Fig. 1. The aim of the sedtkedis just to apply a secret shift to the embedding
lattice, and it does not change any of its fundamental pt@seconcerning information transmissibNowadays,
most of the lattice DC-DM schemes base their security ondtregtegy.

As it is usual in the analysis of quantization-based metHodslata hiding [13], [16], a low embedding distortion
regime is assumed, such that the variance of the host is nangérithan the volume of the Voronoi region &f The

Voronoi region of a lattice\ is denoted by (A) and is defined as [19]
V(A) £ {x € R": Qp(x) = 0}. (4)

In practice, this assumption (which we will refer to in thgsel as thdlat-host assumptigrimplies that the pdf of the
host and that of the self-noise are approximately uniforsidiea each quantization cell and o\v&(A) = (1—a)V(A),

respectively. The flat-host assumption permits us to simpkigy theoretical analysis, restricting our attention to the
SStrictly speaking, this is true only if thiat-host assumptiofto be defined later) holds, as noted in [20].
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Fig. 1. Block diagram of lattice-based DC-DM with pseudo-random ditigeffaramete® is the secret key.

modulo-reduced random variab¥ 2 Y mod A = Y —Q,(Y).* Hence, the pdf o conditioned on the embedded

message and the secret dither is

F(§lmt) = vol(Z(A)7Y, ye (d7'n +t+ Z(A)) mod A )
0 otherwise
In our model, as is customary in theoretical analysis of wadeking methods, the host samples are considered
independent and identically distributed (i.i.d.). Undeede premises, a theoretical security analysis will beldped
for the two scenarios (KMA, CMA) introduced in Section I. Obusly, the security level of the system depends
on the statistical distribution of the secret dither, ortéreto say, of its modula: reduced versionT. Due to the
A-periodicity inherent in the watermark generation (see By, (ve have thaf (y|T =t) = f(y|T =t+r) Vr € A;

hence

f6)= [ 1GIT=v st = [ FEIT =1 fE)dE ©)
R” V(A)
where f(t) = Y yc, f(t + 1) is the pdf of T. This means that the pdf of the watermarked signal dependasin |
instance of the pdf off, and hence the secrecy of the codebook only depends on tisticseof T.5 Therefore, the
support of T is bounded byV(A) hereinafter. We must note tha@t is usually assumed to be uniformly distributed
overV(A) in most lattice data hiding schemes [13],[16], but this ckavas not strictly motivated by security reasons,

so it makes sense to wonder about its optimal distributiomfthis latter point of view.

A. Known Message Attack

When a sequence of watermarked signéi;,..., Yy } and their associated message¥,..., My, } are
observed, the information leakage abdDtcan be calculated by means of the mutual information betwben

observations and the secret dither:

I(?l,...,YNO;T|M1,. . .,MNO) = h(T) - h(T‘Yl, . .,YNO,ML... 7]\4']\[ ), (7)

o

where we have made use of the mutual independence betlWesard the embedded messages, also assumed to be
mutually independent. Heré,(T) is the differential entropy [6] of the random variablg and the second term of
(7) is theresidual entropyor equivocationof the dither afterN, observations, following Shannon’s nomenclature

[5]. The equivocation measures the remaining ignorance tatheusecret dither, so the appropriate distribution for
41t is worth noting that this modulo operation is virtually information-lossles} Rect. 1V] in low embedding distortion regimes, as it is
our case. This implies that the analysis is accurate, in the sensé(fia) ~ I(Y;T).

SHowever, attacks at a cryptographic level would be indeed interestedawikg the exact value of.
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T should be chosen in order to maximize this value. To this &tdys consider the conditional pdf of the dither:
the statistical properties of the watermarked signals gse to the notion ofeasible regionof the dither, formally
defined as the support of its conditional pdf aftéy observations. The next property will be widely used througho
the text.

Property 1: Boundedness of the feasible regihe feasible region is bounded I8, £ ﬂf.vz"l D;, where

Dzé(yz_dWh_Z(A)) mOdA?Z:1>7NO7 (8)

Proof: Application of Bayes’ rule yields

~ ~ _f(ylw~'a}~’N,,7m17"'7mNo|t)'f(t)_f(yla"wyNJmlv"'amNmt)'f(t)
f(t|Y17"'>yNovmlv'--,mNn)_ = = - ~ ~ ; (9)
J(F1s-- YN, M1, ..., mp,) J(¥1s- YN, Im, ... my,)

wherey; € (d,, +t+ Z(A)) modA, i =1,...,N,. Notice that each random variab¥; is a function of the triple
(X;, M;,'T), and the host samplés; in our model are mutually independent. This means that therehtons{Y;}

are conditionally independent given the dither; hence, Blcén be rewritten as

F(&) - TI) f(Falmis t)

tly, .. YN, ML, ..., mMy,) = - = 10
Sy No» ™1 N.) f(Y17--~,YNO|m17---amNO) (10)
f(8) - T1% S((3: = d, — t) mod A|M; =0, T = 0) 1)

f(yl,...7yNo’m1,...7mNo) ’

where (11) follows from the flat-host assumption. By recallieg. (5), it is clear that each term in the numerator of
(11) is nonzero iff(y; — d,,, —t) mod A € Z(A), or equivalently, ifft € D;, with D; given by (8). Hence, it is
clear that the feasible region ofis contained irﬂfﬁl D;, independently of the distribution &F. [ |
Property 1 allows us to state the following lemma.
Lemma 1: Maximization of the residual entrogyhe residual entropy is maximized far ~ U(V(A)), yielding a

conditional pdf uniformly distributed 5y, that is

N N (vol (Sy,))~", teSn,
f(t’ylv"'7yNoam17"'7mNo): . (12)
0 otherwise

Proof:. By the definition of residual entropy, we have
h(T‘?l, e ,?NU, Ml, e 7MNO) = E[h(T|S’1, e 7S’N07m17 e ,mNU)], (13)

where the expectation is taken over the joint géf,...,yy, ,m1,...,my,). Since the feasible region of the dither

is bounded bySy., its entropy will be maximized when the dither is uniformlstibuted inSy, i.e,
h(T’Yh s 7YN07 M17 ceey MNo) - _E[log(T’ylv s 75’N07 mi,... 7mNo)} < E[lOg(VOI(SNO))] (14)

Since the denominator of (11) does not dependtothen the choicel’ ~ U(V(A)) suffices for achieving such
distribution, and hence equality in (14). [ |
The optimal distribution resulting from Lemma 1 also bringsliidnal desirable properties: it provides statistical

independence between the self-noise and the host sigriabf1 most importantly, it does not prevent from achieving
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capacity in the Gaussian channel in the asymptotic setzup () [22]. Hence, the choice of ~ U(V(A)) is good
from the robustness and security points of view, and thiklwilthe chosen distribution in the remaining of this paper

unless otherwise stated. Hence, by combining Property 1 amirizel, the residual entropy results in
MT|Y1,...,Yn, M,...,My,) = Ellog(vol(Sy,))], (15)
where the expectation is taken over the joint pdf of the olsd&ms. In case of one observatioN,(= 1) we have
h(T|Y 1, M) = log(vol(Z(A))) = log((1 — a)"vol(V(A))), (16)
and the information leakage is given by
I(Y1; T|M1) = h(T) = h(T|Y1, M1) = —nlog(l - ) (17)

for all a € [0, 1], independently of the specific lattice chosen for embeddirgs result clearly shows a trade-off
between security and achievable rate: theoretical arsljis®, [22] show that, in AWGN channels, the value @f
must approach for maximizing the achievable rate in the high-WNR regioowikver, bear in mind that fof ~ 1,
one observation suffices to get an accurate estimate of thHeo=in U4,,, and consequently of the secret dither,
due to the structure imposed to the codebook. This is refleateldel residual entropy of the dither (16), for which
limg_1 h(T|Y 1, M;) = —cc.

For N, > 1, one must consider two different cases: 1) foe= 1, the mutual information is maximum fa¥, = 1,
as we have just discussed, so more observations will notiggoadditional information aboul' (i.e., it becomes
deterministic forN, = 1); 2) for a < 1, the mutual information does not increase linearly due t dependence
between observations. Its general behavior is stated ifotf@ving Lemma.

Lemma 2:If « < 1, the mutual information about the secret dither is an irgirgp concave function of the number
of observationsV,.

Proof: To see that the mutual information is always increasingsiar the function
AIN)=I(Y1,....,Y¥YNy; T|My, ..., Myy1) — I(Yq, ..., YN; T|M, ..., My), (18)

which is nothing but the average information abeuhat is gained with thé N + 1)-th observation. Such function

is easily seen to be always non-negative:
AI(N) =h(T|Y1,.... YN, My, ..., My) — h(T|Y1,....,Y¥ Ny1, My, ..., Myi1) >0, (19)

where (19) follows from the fact that conditioning reducesrepy [6]. In this case strict inequality holds in (19),
due to (12) and (13) (i.e., the mean volume&y, is always reduced with each new observation, with the olsviou
exception of deterministi¢). Thus, the mutual information is always increasing.

In order to prove the concavity of the mutual information, meake use of the following claim [23]

Claim: Discrete concavityA discrete functionf(k), with k € Z, is (strictly) concave if and only ifA f(k) is

(decreasing) non-increasing, withf (k) = f(k+ 1) — f(k).
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Thus, the mutual information will be (strictly) concave i¥7(NV) is (decreasing) non-increasing. By the definition

of mutual information, we have
IYy,...,YN;T|My, ..., My) =h(Yy, ..., YN|Mi,...,My)—h(Y1,...,YN|Mi,..., My, T). (20)
Making use of the chain rule for entropies [6, Section 9.6]20)( we can write
AI(N +1) = AI(N) = h(Ynia|Y1, ..., YN, My, o, Myyo) — h(Yng1 Y1, o, YN, My, ..., Myi1) <0,
(21)

taking into account again that conditioning reduces entr@pis concludes the proof of the lemma. [ |

B. Constant Message Attack

The easiest way of addressing this scenario is to regard it @dlection of several KMA problems. When the
message embedded is unknown but unchanged for the wholersegof observations, the conditional pdf of the

dither afterN, observations can be expressed as

|M|-1
- - 1 - -
f(t|YI>7YNO>CM):W Z f(t|YI>"'7YN07m7"'>m)7 (22)

m=0

where CM stands foconstant messagand| M| denotes the size of the alphabet. This means that the feasditn
Sﬁj‘“ for the dither in the CMA case is simply the union of the fessitegions of| M| KMA problems. Formally,

|IM|—-1
SEMA = (Sw, +dm), (23)

m=0

with Sy, defined in Property 1. Using the Borel-Cantelli Lemma, and unlderassumptions stated in this paper, it
can be shown that vafy ) converges to zeralmost surelywhen N, — oo; thus, the different regions that constitute
SGMA will be disjoint for sufficiently largel,,; in such case, the residual entropy is again maximiz&iif U (V(A))

is chosen, but it is not necessarily the optimal distributior all N,. Due to (22), the residual entropy can be upper
bounded as

h(T|?la s 7?1\707 CM) < h(T|Y17 cee >?N07M17 ) MNO) + lOg(|M|), (24)

resulting in a lower bound to the information leakage. Edquati (24) is achieved when the regioss,, + d,, are
disjoint, which means that, a¥, increases, the bound will be asymptotically tight. Howevethe value of« is
above a certain threshold (which depends on the latticétipajtsuch regions are always disjoint, and the bound is

reached for allV,; this is the case, for instance, when> ar =1 — Wl\ for self-similar partitions [7], [22].

Ill. L ATTICE COMPARISON

This section tries to shed some light on two fundamental guestl1) givenn, what is thebestlattice (if any)
in terms of security; and 2) does an increasenoimprove the security level. The discussion will be focused on
the KMA problem, although it can be extended to the CMA scienby taking into account the remarks made in

Section 1I-B. Before proceeding with the analysis, we neethtimduce the following definition:
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.........

(@) (b)
Fig. 2. lllustration of a non-connected feasible region for two obsemstising smalk. In (a), the solid lines are the Voronoi regions /of

and the feasible regions for the centroids defined by each observatidheashaded ones. The figure depicted in (b) is the moduieduction

of the intersection between the shaded regions in (a), showing thrdéngsooduloA convex regions (illustrated with different shadings).

Definition 1: A setS is said to be modula: convex if there exists such thatS — Qa4 (S) is convex.
The notion of moduloA convexity is key to our analysis, due to the next property.
Property 2: For a > 0.5, the feasible regiosy, is always a modula: convex set.
Proof: Let us define
V:2(Y;—D,, —T) mod A (25)

andD, £ V, — Z(A), i = 1,...,N,. By recalling the generation of the watermarked signal {B)s clear that
Vi~ U(Z(A). If a> 0.5, thenV,; +r € V(A), Vr € Z(A). Hence,D; C V(A), and obviously), D) C V(A).
SinceD;, i = 1,...,N,, are convex sets, their intersection is also a convex sé&inganto account thatD; =
(T + D) mod A, the property follows. [

The use ofa < 0.5 may lead to non-convex feasible regions, as illustrated gn Zi(b), where the feasible region
for the dither is composed of three different modulosets. However, as can be seen in the proof of Property 2,
under the assumption ef > 0.5 it is possible to find a shifted version of the problem such thatfeasible region is
always moduloA convex, according to Definition 1. This property permits us topdout the modulo operation from
the expressions of the feasible regions. Bear in mind thegttiropy is invariant to translations, so this simplificatio
does not change the results. In order to provide a fair coisgabetween different lattices, they are scaled so as to

present the same embedding distortion, which due to the dit-dssumption is given by
(6

2 a® [y llall*da
T v _ V(A) _ 2
Dy =-Bldidl = = pmy — @

P(A), (26)

whereq = QA (x) — x is the quantization error, an8(A) is the second order moment per dimensionVof\). For
computing the residual entropy, the expectation in (15) tnestaken overf(yy,...,yy, ,m1,...,my,), but the
conditional pdf ofT, given by (12), does not depend on the specific sequence ohgesembedded, as long as the
latter is known; this implies that, for the expectationg thessage sequence can be assumed to be deterministic. Since
it is not always possible to obtain closed-form expressifamsthe information leakage (even for low-dimensional

lattices), we must resort in general to Monte Carlo intéagraand bounding techniques.
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A. Exact computation for the cubic lattice

For the scaled cubic lattifeAZ" = (z1,...,2,), z; € AZ it is possible to obtain a closed-form expression for
the residual entropy. From Eq. (15), the residual entropyvsrgby the expectation of the log-volume of the feasible
region for the dither. Since the latter for the cubic lattisealways a hyperrectangle, using Property 2 we can write

Eflog(vol(Sy,))] = > Eflog(Wy)] = n - Eflog(W)], (27)
k=1

where,. is the random variable that measures the length of the feasiterval in thek-th dimension, and the last
equality follows because the quantization step is the samalf dimensions. The random variablg is given by
N,
W = vol(( (Vi - 1)), (28)
=1
with V; a random variable uniformly distributed i [—(1 — a)A/2, (1 — a)A/2). Hence, the problem is reduced
to a scalar subproblem consisting in computitijog(1/)], i.e., the residual entropy in one dimension. This result is

used in Appendix I, under the assumptioncof> 0.5, to show that the residual entropy per dimension is given by

1 ~ - 1—
Eh(T|Y1, YN, My, My) =log((1—a)A) — Hy, + 1 =log(v/12D,) — Hy, 4+ 1 + log (TO‘> , (29)

whereHy, = ZN°1 % is the NV,-th harmonic numbetD,, is the embedding distortion according to (26), and we have

1=

taken into account that for the cubic lattiégA) = A2/12.

B. Monte Carlo integration

When the analytical evaluation of (15) becomes intractal®@eresort to Monte Carlo integration. The fact that the
feasible region is reduced with each new observation mak&esssary an additional task of computing a tight region
of integration so as to preserve the accuracy of the Montéo@aethod (as will be seen in step 3 of the algorithm
outlined below). In order to give a comparison between chffé standard lattices, we consider the root lattices and
their duals (the best known lattice quantizers foxK 8), namely A» (hexagonal lattice)Ds, Dy = D}, Ds, Er,

Eg = E3. For their definition and properties, see [19], [24]. All tedattices are scaled so as to present the same
embedding distortion per dimension as the cubic lattié&" with A = 1, that is,1/12.

The procedure followed for the Monte Carlo simulations ifyi outlined here.

1) We assume without loss of generality that 0. Hence, a sequence 6f, observed vectors uniformly distributed
in (1 —a)AV(A), with A such thatP(A) = 1/12, is generated.

2) V(A) is outer bounded by a hypercube whose edge length is twiceavering radius [19] of\. This gives an
outer bound tdD; (Eq. (8)), which is used to compute an outer approxima&ign of the feasible region.

3) The feasible region resulting from the previous step (Wiéca hyperrectangle) is shrunk along each dimension
so as to tightly bound the true feasible regiSg. . This is accomplished by means of a bisection algorithm which

looks for the tightest limits of the outer bounding hypetaagle in each dimension. The need for this step is justified

®We consider the same quantization step in each dimension, although ths casube straightforwardly extended to a general case.
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by the fact that, for largeV,, the ratio vo[Sy; )/vol(Sy,) becomes too large, affecting the accuracy of Monte Carlo
integration.

4) A large number of points uniformly distributed in the hymetangle of the previous step is generated. For each
of these points, it is checked whether it belongﬂﬁj1 D;; if so, the considered point belongs &, . Finally, the
log-volume of Sy, is computed by Monte Carlo integration, and the residualopytis obtained by averaging the
log-volume over a large number of realizations. In stepsrg) 4), fast quantizing algorithms [25] are used.

The results of Monte Carlo integration indicate that theidatt\ that maximizes the residual entropy for each

is that with the best mean-squared quantization properTigis can be formally expressed as

Ay = argminpes, G(A) (30)
subject toP(A) = constant

whereL,, is the set of root lattices of dimensionality< 8, andG(A) =S W% is the normalized second order
moment of A. Notice thatA’ maximizes vo[V(A)) for givenn and P(A), and consequently\’ has the highest a
priori entropy inL,, due to the uniformity ofT. For illustration purposes, Fig. 3 gives a comparison betwée
residual entropy per dimension using the cubic lattice dad tising some of the root lattices. Although we do not
claim that the above result holds for the whole set of lastisdth arbitraryn, at least it suggests that the security
level of a lattice data hiding scheme can be improved by asirggn and choosing the latticA with the lowest
G(A). This leads us to conjecture that a hypothetical spherisiigped Voronoi region will provide an upper bound
to the residual entropy, since the sphere is the regioiR’obfwith the smallest normalized second order moment.
This is indeed so for the set of lattices considered in our ex@ants: as an example, the result obtained with the
8-dimensional sphere (also obtained through Monte Caslglatted in Fig. 3. Unfortunately, the space can not be
tessellated with spherical regions (except foe= 1), so it is not possible to construsphericallattice quantizers;
nevertheless, as it was shown in [26],ragcreases there exist lattices whose normalized secored ardment tend

to that of a spheré.The security of lattice DC-DM using this type of lattices isidied in the next section.

C. Bounds and asymptotics on the equivocation for “good” tats

Throughout this section, we will make use of two assumptid)sy > 0.5; 2) we are using\;, the optimal (in
a mean-squared error sense) lattice quantizer-iimensions. As discussed in the proof of Property 2, Assiampt
1 makes the modulo operation transparent for the computatiadghe entropy, since this is invariant to translations.

Making use of the chain rule for mutual informations [6] wencarite
I(?l, ... ,YNO; T|M1, e MNO) = I(Yl; T|M1) + I(Yg, L. ,?NO; T‘?l,Ml, e MNO)

= I(YhT’Ml) + I(Yg, - 7YNO;TI‘M2, .. .,MNO), (31)

"Moreover, this is a necessary condition for the lattices in order to achievehéinnel capacity in the lattice DC-DM scheme [22].
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* * *

cubic hexagonal Dy

)
)
o
es!
ey
©

\ - = = asymptotic limit

S e .. conjectured upper
251 R SS bound for n=8 1

residual entropy (nats)

0 50 100 150 200
observation index (No)

Fig. 3. Residual entropies per dimension for different lattices. All plotgttie root lattices (but for the cubic one, which is theoretical) were
obtained through Monte Carlo integration. The asymptotic limit corresptmésg|. (35). The embedding distortion in all case®is = o?/12,
with « = 0.5.

whereT' ~ U((1 — a)V(A})) is the dither conditioned on the first observation (as it fefiodfrom Property 1 and
Lemma 1). Thus, each new observation conditionedygnand M, can be written &
Y, =Z;+T +d,,,, i=2,...,N,, (32)

whereZ; £ (1 — a)(X; — Qa- (X;)) is the self-noise term, with the same statistical distidnuasT’, and hence

with second moment per dimensioh— «)2P(A%). From Eg. (31), it can be seen that the following equality holds
MTY1,...,YN, My, ..., My,) = h(T'|Y2,...,Yn,, Ma,..., My,), for N, > 2, (33)

so we can use the second term of (31) for obtaining a lower ddaumthe equivocation per dimension, as shown in

Appendix I

L s S No P(AL)Y (No—1) oy L
- > - —= . —a).
ST Y2, YN, My, My,) 2 5 log (G(A;;)) 5 log (2meP(Ay))— log(No)+Hlog(1-a). (34)

This lower bound is loose for smaitl, but the next result shows that it is asymptotically tight fo— oc.
Theorem 1:In the limit whenn — oo, using the optimum lattice quantizdr’, the equivocation per dimension in

lattice DC-DM is given by
N - 1 1 1—a
lim —h(T'|Yo,....,YnN,,Ma,...,Mpn,)) = 3 log(2meD,,) — 3 log(N,) +log | —— |, for N, > 2, (35)
o

n—oo n

where D,, is the embedding distortion per dimension (26).

8As discussed before, the residual entropy in the KMA scenario daedepend on the specific message sequence as long as this is known,
so we consided,,, =0V i=1,..., N,, without loss of generality for the remaining of this section and in the cooretipg appendices.
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Proof: See Appendix Ill. [ |
Notice that whenn — oo, (34) coincides with (35), becaugg(A}) — 1/2me. The first term in (35) accounts for
the relation between the embedding distortion and the aipgidropy of the secret dither. The second term tells us
how the equivocation decreases with, and the third term shows the dependence with the distodionpensation
parameteky, which basically introduces a constant shift in the equatimn curve (recall that fore = 1, the residual
entropy is—oo for N, > 1). The asymptotic value of the equivocation is plotted in Feg@rfor reference, showing
the gap with the root lattices studied before. The above #mds the formal statement of a more intuitive result:
the Voronoi region ofA’ tends to a sphere, and in turn the uniform distribution/if\’ ) tends asymptotically to
a Gaussian distribution (in the normalized entropy seng6); [hence, roughly speaking, each modalaeduced
observation (Eq. (32)) becomes closer to a Gaussian distibwith varianceD,,/o?, whose mean is given by the
secret dither (also with the same statistical distribytidris interpretation brings more insight in the comparisén
the theoretical security between lattice DC-DM and addispread spectrum methods. For the latter, the embedding
function is given byY = X + (—1)"U, whereX and U are the host and the spreading vector, respectively, with
the latter playing the role of the secret key. Notice that beemblance between this embedding function and (32)
implies similar security properties for both methods. Gdesng thatX ~ N (0, 0% - I,) andU ~ N (0,07 - I,,), it
was shown in [3] that

1 1 1 D
—h(U[Y1,.... YN, My, ..., My,) = - log (2meDy) — = log ( 1+ No—- | , (36)
n ° ° 2 2 ox

where nowD,, = o7. It can be readily seen that the decrease in the equivoctgioadditive spread spectrum is
determined by the rati(«)?]/ag(, which is usually very small due to imperceptibility cormsiits. Instead, for lattice
DC-DM after the moduloA reduction, the power of both the watermark and the hostference are the same, i.e.,
(1—a)2P(A}); this explains the ternd log(N,) in (35) and the rapid decrease of the equivocation, comparéuht
of (36).

Fig. 4 shows a comparison between lattice DC-DM and addifiveasd spectrum for different values of embedding

distortion, parameterized by the Document to WatermarkoReefined as DWRE 101og;(c% /D).

D. Bounds on the estimation error

Let us define the estimation error as2 t — t, wheret is the dither estimate. If the covariance matrix of the

estimation error is given bR g, then it is immediate to upper bound its entropy by
h(B) < 1 log ((2r¢)" [R)). (37)
Furthermore, note that
ME) =h(T —T) > k(T -T|Y1,..., YN, M,...,My,)=h(T|Y1,....,YN,M,...,My,), (38)

sinceT is a function of the observations. Thus,

h(T‘Yl,. . .,YNO,Ml,... 7MN0) <

log ((2me)"[Ris]) < 5 lo (%J“RE)) , (39)

N —
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Fig. 4. Comparison, in terms of equivocation per dimension, betweeneld@DM and additive spread spectrum= 0.7 for DC-DM.

where the second inequality follows from the fact tIhHIEﬁ < @ [6, Th. 16.8.4]. Let us define the variance

per dimension of the estimation error @ = tr(nﬁ Then, from (39) we have the following lower bound op:

O-ZE 2 ie%h(T|Y17"'7YNo7M17"'7MN0)7 (40)

2me
which is nothing but the entropy power @f given N, observations [6]. It can be observed that, for achieving an
error-free estimate, the equivocation must necessarjyogch—oo. Substituting Eq. (35) into (40), we arrive at the
following bound forn — oo and the optimal lattice quantizer:

(1—a)’P(A})
No

The above bound is attained using the simple averaging dstinfut taking into account that the observations must

op > : (41)

be properly shifted in order to avoid problems with the moddilreduction; thus, if we define

then the optimal dither estimator far’,n — oo, is given by

N,
to, = (Sfl —dy, + NLO ;\71) mod A. (43)
The achievability of (41) follows from the fact that, fdr;, the self-noise and the secret dither follow asymptotycall
a Gaussian distribution as— oc. Thus, this result about the estimation error can be compartte estimation error
for the cubic lattice; since we are interested in computiregliehavior for largéV,,, we make use of the approximation
A

Hy, =~ log(N,) + v, which is asymptotically tight for largeév,, with Hy, = Zf\iﬁ% the harmonic number and

the Euler-Mascheroni constant, definedha& limy, ... Hy, — log(N,). In this case we have, using (29)

1 o)A 1 oA _ 1 (1 - a)?2A?
2 5 2(log((1=a)A)=Hn,+1) oy = ,2(log((1—a)A)~log(N,)+1-7) _ . _ 44
7B = 5re” e’ 2me2r—1 N2 (44)
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Thus, the variance per dimension approximately decreadistie inverse of the squared number of observations.
This bound can even be compared to the exact error variandeeddgtimal dither estimator, in order to check the
tightness of the bound. For the cubic lattice, dither edimnamay be carried out independently for each component
without loss of optimality. It is a well known result that tloptimal dither estimator in a mean-squared error sense
is given by the mean value of the dither conditioned on Aheobservations: in our case, tligh component of the
dither is uniformly distributed in an intervét,, 2-]; hence, the optimal estimatefis= (x1 4 x2)/2, and the variance

per dimension of the estimation error is

o3 = E[(T —1)*] =var(T) = % - E[W?, (45)

wherew = |zo — 1| is the width of the feasible interval, and the expectatiortaleen over the joint pdf of the
observations. Actually, this expectation may be computgddeplacinglog(w) by w? in Eq. (64) of Appendix I,
resulting in

1 (1-a)A?

2 243N, + N2’
which for large N, is dominated by the terni?2, differing from the right hand side of (44) only in a constant

of = (46)

multiplying factor. Note that due to the approximation Bfy, used in (44), the latter is a lower bound only for
N, > 2; nevertheless, making use of the exact expressiorHigy, the right hand side of (44) can be shown to be

always lower than (46).

IV. PRACTICAL ALGORITHMS FOR SECRET DITHER ESTIMATION

The theoretical analysis carried out in the previous sestitiesides quantifying the information leakage about
the secret dither, gives important hints about how to perfaiither estimation. Indeed, the information-theoretic
formulation given in Section Il is closely related to the theof set-membership estimatigS8ME), akaset-theoretic
estimation[27], [28], which is widely known in the field of Automatic Cawt and in certain Signal Processing areas,
such as image recovehyin the set-membership formulation of a problem with solutspace=, the i-th observation
is associated to a subs&t € = that contains all estimates which are consistent with thaeovation; formally,7;
can be expressed as

Fi={ze€Z:¢(z)=1},i=1,...,N,, (47)

where;(z) is a certain indicator function that depends on the proble@mmdlation, andV, is the number of available
observations. The subsg&tof estimates which are consistent with all the availablenmiation is the so-callefasible
solution setand is given byF = ﬂfvgl F;; finally, a set-membership estimate consists in choosingpaiyt = € F.

In the dither estimation problem, the solution space ofrageisR™. We will deal for now only with the KMA
scenario, deferring until Section 1V-C the (minor) modificas needed to cope with the CMA case. Thus, the indicator

function is given by

1, D;
Vi(z) = “c (48)

0, otherwise

%Interestingly, the set-membership framework has been previousliedpp watermark embedding in speech signals [29].
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so F; = D; and F = Sy,, whereD; and Sy, were defined in Property 1. Moreover, T ~ U(V(A)), which
is the worst case for the attacker, the set-membership a&stinbecomes the maximum likelihood dither estimator.
Although intuitively simple, such estimator may not be piead, since exact computation of the solution sets may
be computationally prohibitive, because of the increasingmber of vertices irSy, for N, > 1. Nevertheless, the
attacker may not be interested in obtaining the exagt, but instead be satisfied with an accurate approximation of
the feasible solution set. Algorithms that are suitableprforming such approximation are discussed in this sectio
Albeit other algorithms with better performance could beisked, our main purpose is to show that the theoretical
information leakage may be exploited in practice with maade complexity.

According to Property 2, the assumptian> 0.5 allows us to consider the feasible region as a modulmenvex
set. Furthermore, if we shift all observations by, +d,,,, then the modulo operation is transparent, so the feasible

regions for each observation (Eg. (8)) can be now simplifiédl to
Di=vi+(1—-—a)VA),i=1,...,N,, (49)

with v; defined in (42), rendering the problem convex, since the @siolution sets (which are in fact polytopes)
result from the intersection of convex sets. Some guidelatgsut how to modify the algorithms in order to work
with a < 0.5 will be given in Section VIII.

The Voronoi region of any lattice can be described in a varadtyvays; for our purposes the most appropriate
description is by means of the bounding hyperplanes cooretipg to its facets. In the following we assume that, for
a Voronoi cellV(A) with n; facets, we know: 1) a vectap, which is outward-pointing normal to the-th facet; 2)

a pointzg ; on thek-th facet. Taking into account each of the modified obseraatig, we have

Di:{ZGR”:qb;‘C(z—sz) §¢£\7@-, E=1,....,npi=1,...,No}. (50)

A. Inner polytope algorithm

The set of modified observatiods;} together with Eqg. (50) define an ensemble of linear inequslitiéhich in

turn describe a polytope in-dimensional space. Hence, the feasible solution set caxpessed as
Sy, ={ze€R" :¢p[z2< PpLVi+ Plzop k=1,....,np5i=1,...,N,}. (51)

We are interested in computing an approximation of the leagiegion. For such an approximation to be valid, it
must outer boundy, (as tightly as possible), since we do not want to discard amgtpn Sy, a priori, and it is
also desirable that the approximate region is easy to descfhen, a reasonable choice is to search for the ellipsoid
of minimum volume that containSy, (formally known as thé.dwner-Johrellipsoid of Sy [30]). Unfortunately, the
problem of finding the ellipsoid of interest is ill-posed (eetl, it has been shown to be an NP-complete problem)
[31], but on the other hand, the problem of finding the maximwiuwe ellipsoid contained in the polytope defined

by a set of linear inequalities is well-posed. Moreover, & scale such ellipsoid by a factor afaround its center

Y0bviously, the offset-y, — d,,,, must be removed from the final estimate.
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(n is the dimensionality of the lattice), then the resultintipsbid is guaranteed to bounsly, [30]. An ellipsoid

£(6,P) in Euclidean space is defined by its cenfleand a symmetric positive definite matiX such that
EO,P)={zcR": |[(z—0)"P ' (z—0)| <1} = {P1/2r+0 el < 1}. (52)

The computation of® and P for the maximum volume ellipsoid contained &, can be written as a convex

minimization problem with second order cone constrain:[3

(6,P) = argmi}gl log det(P~1/2)

)

subject to [|PY2¢,|| < ¢Lv; + ¢l ze; — ¢L 0, (53)
Vk=1,...,np5i=1,...,N,.
This problem can be recast asemidefinite probler82] where a linear function is minimized subject to Linearthita
Inequality (LMI) constraints; this kind of optimization gstems can be efficiently solved by means of interior-point
methods [31]. As will be checked in Section V, this approactdd tight approximations tSy,, but it presents an
obvious drawback: the potential complexity of the minintiaa problem arising from the huge number of constraints
imposed by large, and N,,. The scheme presented in the next section reduces the catpfigxneans of an iterative

approach.

B. Optimal volume ellipsoid (OVE) [33]

This is a classical SME algorithm that was originally deviseddstimation in noisy AR models:
n
Uk = Y 0jyk—j +uk = 07y + ug,
j=1
where ¢, = (yp_1,...,ys_n)’ are then past observations®) = (6;,...,6,)" is the vector of parameters to be
estimated, and;, is the noise term, whose absolute value is assumed to be &édunydy,. For thek-th observation,

the feasible solution sef;, is given by all points inR™ that areconsistentwith the observation, i.e.
Fr={2 €R": [y — 2" ¢y < W} (54)
Equation (54) defines a region &"* delimited by two parallel hyperplanes:
Hiy1={z€R":2" ¢ = yp — i}, Hio={z€R":2" ¢y = yp + %},

which encloses the true parameter vedforThe series of solution sets is then constructed iteratieslyS, =
ﬂle Fi, k=1,..., N,.Inorder to avoid the costly computation of the exg§t }, the solution sets are approximately
described by means of bounding ellipsoids.

This algorithm can be straightforwardly applied to our pesblby slightly modifying the description of the feasible
region given in (50): in our case, we need to parametefizeas the intersection of a finite humber of parallel

hyperplanes. Assuming that the Voronoi cell of the considdattice is composed of; pairwise parallel facets (see
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updated ellipsoid

D
initial ellipsoid

(a) (b)

Fig. 5. (a) Voronoi region of the hexagonal lattice delimited by three pHirsarallel hyperplanes. (b) Intersection between an ellipsoid and

a pair of hyperplanes.
Fig. 5-(a))!! the feasible solution set for thieth observation can be specified by a matd ., 2, and a vector
Y, j2x1 such thatD; = ﬂ;z/f F;.j, Where

Fij={zeR": |‘71T¢j - ZT¢j| <} (55)

being¢; the j-th column of®, and~; = ¢]Tz07k is the j-th element ofy. Hence, the series of solution sets is given

by

Kk k ng/2
Se=(\Di=([) Fijs k=1,..., No. (56)
i=1 i=1 j=1

The computation of thék + 1)-th solution set amounts to obtaining an ellipséit9y..1, Prt1) 2 £(Ox, Pi) N Dy.
Such ellipsoid is iteratively computed in the following mann

1) First, makeg(co, Bo) = £(0x, Py)

2) Compute€(cit1,Bit1) 2 €(ci, Bi) N Fiiv1, i =0,...,np/2 -1

3) Finally, makeg (8y41,Pri1) = E(c,, /2, By, 2)
This way, in Step 2 we are intersecting iteratively one elligseith one setF; ;, as is depicted in Figure 5-(b).

Clearly, we are interested in finding the ellipsoid with minim volume that contains such intersection, i.e.

(ciy1.Bi1) = argmin  vol(€(c, B))
C,B (57)
subject to &£(c;, B;) N Fiit1 € E(c, B).

which is precisely the minimization problem addressed & @VE algorithm [33], whose analytic solution reads as

;1BZ¢Z 1/27 ;(_‘_1 = 51 <Bz — 0y Bl?ﬁz Bz) 9 (58)
(¢! Big;) ¢i Bio;

wherer;, 0;, 0; are variables that depend on the observatignthe current ellipsoid€(c;, B;) and F, ;1 (details

* —_ .
Cit1 = Ci

about their calculation can be found in [33]), and finafly is thei-th column of matrix®.

Hshould this not be true, the problem can still be recast in a similar mannadding some additional hyperplanes.
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The algorithm just described is obviously optimal in one digien, since the ellipsoids are simply real intervals.
Another interesting feature of this approach, and commomamy other iterative SME algorithms, is that further
refinements on the solution set are possible by recirculdtiagbserved data, i.e., by feeding to the system the same
set of observations repeatedly (as if they were in a cirduldiier, for instance). This is possible because the regultin
bounding ellipsoid in the-th iteration depends on both th{é — 1)-th bounding ellipsoid and théth observation.
This important feature provides performance similar to tfahe abovanner polytopealgorithm, as will be checked

in Section V.

C. Dither estimation in the CMA scenario

The CMA scenario implies minor changes to the estimationrédtgos proposed above for the KMA case. Actually,

estimation in the CMA case can be performed as follows:

1) Assume that the sequence of observations is watermarkbdhwessagan € M,

2) Perform estimation as in the KMA case,

3) OnceSNo has been obtained, compute the approximate feasible raﬁ%“ as in Eq. (23).

4) Provided thafl' ~ U(V(A)), two possible cases may arise after performing Step 3:

« The resulting feasible regionsS‘;(go + d,;,) overlap; then, according to Eq. (22), the probability of firglithe
dither in their intersection is higher than in the remainiegions.

« The regions do not overlap; then, the dither is equally likelany of the feasible regions.

V. EXPERIMENTAL RESULTS

This section provides a comparison of the practical perfoador the different estimators proposed in Section 1V,
considering only the KMA scenario. The optimization probseimvolving LMI's were solved using the optimization
packages YALMIP [34] and SeDuMi [35] for Matlab, and the set bervationsy, was generated according to the
distribution given in (5). As for the theoretical part, wellwionsider here some of the so-calleabt lattices and
their duals, introduced in Section Ill. The Voronoi regionstibése lattices are described in [24], from which we
derived all the parameters needed for implementing ouclatid/e provide two different measures of performance of
the proposed estimators:

1) the first one is based on the volume of the estimated feasblens. The volume of thi-th ellipsoid reads as
Vol(E(0y, Py)) = (det P) Y2 -V, (1), (59)

where V(1) stands for the volume of the-dimensional sphere of unit radius. Whah~ U(V(A)), all points in
the interior of the estimated feasible regié‘wo have the same probability of being the true dither vettgrso it
is immediate to compute the residual entropy of the dithetog(a/ol(S‘No)). The average value of thismpirical
residual entropy is computed over a large number of rea@izst The performance of each method is quantified by

the gap between this measure and the theoretical result abSeu.
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Fig. 6. Performance comparison (in terms of residual entropy) ®htxagonal lattice (a) and Gosset lattice (b), for KMA and oo = 0.5.

2) the second measure of performance is the squared estineatior per dimension, i.et ||t — t||?, wheret has
been taken as the center of the resulting ellipsoid. Note #zalong as this center is close to the center of masses of
Sn,, the resulting estimator will be close to the minimum meguased error estimator (i.e., the conditional mean
estimator). Again, the plots represent this squared eneraged over a large number of observations.

In the experiments, the embedding distortion was fixedDtp = o?/12, with o = 0.5. Figure 6 shows the
performance (in residual entropy terms) of the differeninestors when the embedding lattices are the hexagonal and
Es [19]. Although the inner polytope algorithm provides thesbperformance, it can be observed that the property
of recirculation allows to compensate for the loss of optityeof the OVE algorithm. The performance gain is
remarkable for the first recirculations, but marginal abow@dain number, as can be seen in Fig. 6-(b). Also notice
that the number of recirculations must be increased with order to match the performance of the inner polytope
algorithm. Finally, the plots in Figure 7 show the empiricalanesquared error per dimension obtained with each
method. The lower bound given by Eq. (40) is plotted for conguarj showing the good performance of both methods.
Interestingly, the OVE algorithm seems to perform bettantthe inner polytope in terms of mean squared error. The
performance of the averaging estimator is also plotted ééerence; such estimator is optimal fer— oo and A},

as discussed in Section IlI-D, but for smallit is clearly far from being so.

A. Possible attacks based on dither estimates

Once the attacker has estimated the dither signal (usingnttbods proposed here, for instance), he can exploit
this knowledge in order to devise powerful attacks againstdata hiding scheme which would not be possible for
a blind attacker. The following are some examples:

1) Complete watermark removal: under the KMA assumptiorss, (knowledge of the message embedded) the em-
bedding process of lattice DC-DM is fully invertible wheretHither is known, as long as the distortion compensation

parameter used is smaller than 1 [16, Sect. VII]. This implrest the attacker is able to recover the original host
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Fig. 7. Mean squared error per dimension of the dither estimate, foretkegbnal lattice (a) and Gosset lattiEg (b), for KMA and oo = 0.5.

signal, provided that < 1 and the watermarked signal does not suffer any non-invertibnsformation a posteriori,
such as clipping or rounding. In the CMA case, there is not iguenpossible original host, but the uncertainty is
reduced to a finite set of vectors (as many|.&4).

2) Unauthorized embedding of messages: in copy protectienasios the attacker may remove the watermark
inserted in a certain protected content and embed lateferatit message: for instance, he may change the status of
a video from "Copy Never” to "Copy Once”.

3) Generation of forgeries: in the authentication scesgrimposed by Eggert al.[17], that are mainly threatened
by the CMA attack, as it was discussed in the introductioa,attacker can watermark contents that will be taken as
authentic. Notice that for generating a forgery there is aedhto know the exact correspondence between messages
and coset representatives.

4) And finally, unauthorized decoding of messages embeddeuthier pieces of content watermarked with the
same key. Take into account that reliable decoding is plessitly if the dither estimate was obtained in the KMA
scenario; in the CMA case, the ambiguity on the embeddedagessill allow, at most, to check whether different
watermarked contents convey the same message or not.

Obviously, the goodness of the host reconstruction in the dittsck will depend on the accuracy of the dither
estimate at hand. For the other attacks, this accuracy ¥éttatheir probability of success, in the sense that poor

estimates may lead to the wrong decoding/detection region.

B. Complexity issues

One can find in the literature of set-membership estimatigagehes that offer better performance than the ellip-
soidal approximations, by computing the exact solutios E28],[36]. Nevertheless, they may be very computatignall
demanding in large-scale problems. Instead, the algositbamsidered in this paper have proved to be efficient in

giving approximate solutions for several hundreds of olzg@ns. For the optimization problem in (53), it has been

August 29, 2006 DRAFT



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 23

shown that the number of iterations needed to solve the @molfby means of interior-point methods) does not grow
faster than a polynomial of the problem size [32]Most of the computational cost of each iteration lies in the
least-squares problem (of the same size as the originalggndtihat must be solved, whose number of iterations is
again polynomial with the problem size. However, in praeticis possible to exploit the problem structure (sparsity,
for instance) so as to reduce complexity: in our case, fomgte, there is a potentially large number of redundant
constraints that can be removed for alleviating the contjmutal burden. For high-dimensional lattices it is also
possible to simplify the problem description (albeit réisig in looser estimates) by approximating the considered
Voronoi region by another simpler polytope that bounds\).

For the OVE algorithm, the number of arithmetic operatistalar sums and products) carried out in each iteration
is O(n?). Also, in the OVE algorithm we perform exactly,- % -n, iterations, whereV,, is the number of observations,
ny is the number of facets of the Voronoi cell (equivalentlg trumber of linear inequalities specifying the problem),
andn, is the number of recirculations of the data. The tesmwill largely depend on the considered lattice, in
general, anch,. will be determined by the required accuracy, giving a degrfeigeedom to the attacker. Finally, it is
interesting to note that OVE-like algorithms automaticalt rid of redundant constraints, using only those pairs of

hyperplanes that produce an update on the solution set.

VI. COMPARISON: LATTICE DC-DM vs. COSTA

For the lattice DC-DM scheme we have analyzed in Section B, éhtropy of the codebook is rather limited
due to the codeboook structure and the chosen form of ramzddionm, negatively affecting security. Lattice DC-DM
schemes are deeply connected with the theoretical cotistnudeveloped by Costa [18]. However, the codebioik
the latter is totally different, since it is random by definiti The main purpose of the brief comparison given in the
following is to quantify how much can be gained in terms ofusédg by using a codebook with these characteristics.
The theoretical security analysis for Costa’s scheme witlb®included in this paper due to the lack of space, but
it can be found in [10].

In Costa’s scheme, for the KMA case aid, = 1, it can be shown that (recall that(i/|Y,M) = h(U) —
I(Y;U|M))

MUY, M)  hU) 1 P+ 02

wherec? and P stand for host and watermark power, respectively, a(d) denotes the differential entropy of the
codebook, given by:(U) = Z|U|log [2me(P + a*c%)]. Eq. (60) depends on the ratio= 0% /P which quantifies

the embedding distortion, where@gg depends both oa and¢ = P/o%;, whereo?; is the channel noise. Interestingly,
if we make A — oo (which corresponds to a low embedding distortion regimied, information leakage for Costa
tends to—nlog(1—«), exactly as for DC-DM (see Eq. (17)). Actually, the inforneettieakage in lattice DC-DM also

depends or\, and in fact it is possible to compute this dependency nwaklyj by means of numerical integration.

2The size of an optimization problem is commonly understood as the dimeatisjoof a vector whose components are the coefficients of

the analytical expressions for the constraints and the objective variables
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Fig. 8. Comparison of the security provided by Costa’s scheme and |&@eBM, in terms of mutual information (a), and residual entropy

(b) per dimension. DWRE 101log,,(A), and WNRZ log,,(£).

In Fig. 8-(a), the information leakage for Costa and scalar@N (i.e., SCS) is shown. It is remarkable the striking
similarity in the behavior of both schemes. Furthermore,aib de seen that the asymptotic analysis is in good
agreement with the numerical results for the range of embgddistortions of practical interest.

Nevertheless, when the comparison between Costa ancel&@=DM is made in terms of residual entropy, the
similarities disappear (see Figure 8-(b)): whereas foicetDC-DM the entropy of the codebook is bounded by
log(vol(V(A))), the residual entropy in Costa’s scheme is unbounded whenoo. The last fact is a consequence
of the codebook construction in Costa, where all codewordsrautually independent and its number increases with
. This constitutes the main advantage, in terms of secuffitherandom codebook scheme over the lattice scheme
that relies solely on dithering. For lattice DC-DM, the nuelof codewords follow a similar dependence withbut
every codeword just depends adn the corresponding coset representative, and the sethet.di

On the other hand, for the CMA case, and assuming that themwatker is transmitting information at the maximum
reliable rate allowed by the channel, we have (My= 1)

n n n

This result is clearly related to that given in (24) for DC-DMNEere, we can see that the uncertainty about the codebook

increases exactly in the same quantity as the reliablertrizsgon rate.

VIl. APPLICATION TO OTHER SCENARIOS

In this section we discuss the application of the proposeguicgthes to other related but more involved scenarios.
This also shows the importance of the KMA scenario and of thienasors developed for such case.

1) o < 0.5: Our analysis was restricted to the case> 0.5. In the theoretical part, all the given information
leakages constitute upper bounds for< 0.5. For this case, the theoretical analysis gets more in&jcsihce the

feasible regiorSy, may be composed of multiple moduloconvex sets (recall Figure 2). Difficulty of the estimation
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is also greatly increased, since it would be necessary tly @gperal KMA/CMA estimators in parallel, one for each
possible convex set. WithV, large enough, all convex feasible regions are likely to sfaréxcept one (in the KMA
case), but the increase in the number of convex sets durenfirft observations may be fairly large, especially when
a — 0. In such case, other set-membership approaches suitechtoomvex solution sets may perform better [28].

2) Spread Transform Dither Modulation (STDM) [13]: DC-DM schesimay be applied in conjunction with spread
transform in low-rate data hiding applications. In thatdiof schemes, lattice quantization takes place in a secret
projected domain, parameterized by certain projectiorrimjaand secret dithering can still be used in the projected
domain for improving the security of the scheme. Ignoraniche projection matrix invalidates direct application of
the estimation algorithms proposed here; however, recenksyM2], [12] have shown that independent component
analysis (ICA) may be used for estimating the projectionriwaf hus, if ICA is successful, dither estimators may
be applied in a second step.

3) Total ignorance of the embedded messages: consider aafjsnenario where the only information at hand for
the attacker is the set of watermarked signals; this is thealed Watermark Only Attack (WOA), following the
nomenclature introduced in [2]. A theoretical analysisiEimto that of the KMA may be used to show that in this
framework it is possible to achieve (at least theoretigghgrfect secrecy in some cases [10], [37], for instance when
a = 0.5 is used in a binary transmission scheme. In the practicalisid still possible to carry out dither estimation as
long as the perfect secrecy condition is not fulfilled; howetdA estimators cannot be directly applied: one needs
to hypothesize first a message sequence and then apply the KhkitAator. However, the problem can be tackled
without the need of a brute-force approach if the posteriobability of the message sequences is considered. The

maximum likelihood estimate of the message sequence is

(m1,...,my,) =arg max f(yy,...,yn,|m1,...,mnp,), (62)

mi,....,mMnN,

and the posterior probability can be factored as

N,
f(ylv" . 75,NU my,. "amNo) = H /f(yk|mk7t) . f(t|}~’1, "7yk—1amla'° . 7mk—1)dt7 (63)
k=1

where the conditional pdf of the secret dither is given by)(¥hen the pdf of the secret dither is uniform, computation
of each term in (63) is straightforward, since it is propmmtl to the volume oD, NS, ;. Based on this factorization,
dither estimation in the WOA scenario may be thought of asea search where a KMA estimator is applied to
each branch, and each of these branches corresponds to thésiped message sequence whose probability can be
computed through (63). During the tree search, those besnwiith low probability may be discarded for simplifying
the estimation. Moreover, if the value of is above a certain threshold (which depends|s| and the specific
lattice partition) the complexity of the tree search can berdhtically reduced because all branches with non-null
probability can be written in terms of a unique branch. As r@ieresting byproduct of this approach, an estimate of
the embedded message sequence can be also obtained. Blegstthotice that these are only the main guidelines of
the procedure that should be applied to the WOA scenario; r@ mgorous and complete analysis will be published

elsewhere.
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4) Permutations: the security of a lattice DC-DM scheme mayniggoved by applying secret permutations to
the host vectors. This introduces an additional degree oérnmiaty that invalidates the direct application of the
estimators proposed in this paper. However, if the same ytation is used in multiple watermarked blocks, it is
still possible to exploit the information leakage, as showithe next example: assume that the host is partitioned in
I n-length vectorsx;, i = 1,...,1, and these vectors are arranged in & [ matrix X. Given a secret permutation
matrix P, the columns of the new matriX’ = PX are watermarked using the standard lattice DC-DM scheme,
yielding a watermarked matriX”’. Later on, the inverse permutation is applied¥§ obtainingY, and its rows are
the observations that are made available to the attackgreridkng on the symmetry properties of the embedding
lattice, two possible cases arise:

1) The lattice is symmetric to permutations of its componeiitsis happens, for instance, to the cubic and
checkerboardakaquincuny lattices in 2 dimensions [7], [19]. If this is the case, ttiBa attacker can run the
dither estimation algorithm disregarding the actual peation, obtaining an estimate of the permuted dither.
It is easy to see that this permuted estimate allows the s#aeka as those discussed in Section V-A, as long
as the permutation and the secret dither are the same intduked contents.

2) The lattice is not symmetric to permutations. The main cgusace is that the feasible regions for the dither
are different under each permutation, and this can be drdidb detect inconsistent arrangements in the
components of the observations, i.e., those arrangembatsptoduce an empty feasible region cannot be
correct. Some experiments performed with the OVE algorithih the hexagonal lattice have shown that, using
10 recirculations, an average of 32 observations are needsuccessfully detect inconsistent arrangements of
the components. Using the inner polytope algorithm it i® glessible to check inconsistencies: one just needs
to run thefeasibility testto check whether all constraints in the optimization prablean be simultaneously

satisfied or not. If not, the considered arrangement is irstary.

VIIl. CONCLUSIONS

The main conclusion of this work is that lattice DC-DM scherf@sdata hiding relying only on secret dithering
are vulnerable to security attacks both in the KMA and CMAnst®s, of practical interest as discussed in the
Introduction. For the scenarios considered in this pagewas shown in Section Il that the security level (in
terms of residual entropy) can be enlarged by increasingdimensionality and choosing the appropriate lattice
guantizer, although the gain for smallis rather limited; also, asymptotic values are given for eé@ivocation and
the variance of the estimation error, explaining the funeiat@l gap between the security of DC-DM schemes and
spread spectrum methods. Section V shows the strong linkeleetihe information-theoretic and set-membership
estimation frameworks, applying the latter for the first titneattacks in the data hiding scenario. Additionally, the
results in that section confirm that (suboptimal) attacksetugty can be made with manageable complexity, yielding
accurate dither estimates. This highlights the need for kapagement solutions, such as those proposed in [38]
through temporal redundancy control, in order to reducentimaber of observations conveying information about the

same dither sample.
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The comparison given in Section VI shows that the security wes&es of lattice DC-DM are not inherent to
guantization-based schemes, but they are due to the facththaandomness of the codeboook relies only on secret
dithering. A possible improvement using permutations wasflly considered in Section VII, but dither estimation
attacks still seem to be possible, at least with low-dinamei lattices. A new strategy, recently proposed in [39],
is the application of secret rotations to the embeddindgckatfThis approach, in conjunction with permutations, still
keeps the structure of the codebook (which is desirable fonmplementation point of view) while increasing its
a priori entropy. Obviously, the counterpart is the inceesaseded in the length of the key, but it still constitutes a

promising strategy that deserves rigorous analysis in uhad.
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APPENDIX |

RESIDUAL ENTROPIES IN ONE DIMENSION

Here we compute the mean value of (28). It can be seenithat 2 + min{Vi,..., Vy,} — max{Vi,..., Vy, }.

Hence, W = 2u + X, where X is the random variable defined as

X 2 min{Vi,...,Vy,} —max{Vi,...,Vx,},
wherez € (—2pu,0], so the pdf of is fy(w) = fx(w — 2u). This allows us to rewrite the problem as
2p
Ellog(W)] = [ log(uw) - i (w)du (64)
0

First, let us see how the pdf of can be computed. For having = z, it should bemin{...} = ¢ andmax{...} =
t — z; this is so whery; = ¢, 9; =t —z, andt < v, <t —ux, for k ={1,...,N,} \ {4, }, but taking into account

that there are infinite values ofthat yield X = z. Hence, the pdf ofX reads as

pta

fx(x) = No(N, — 1)/ for (8) - fi. (t — ) - (Prob{t < V; <t — a})N"2dt, (65)
K

where the factorV,(N, — 1) comes from the number of different orderings of the minimuna @&he maximum
in vector (01, ...,0y,); Since all observations are i.i.d., we can simply multighe tintegral by this factor. When

Vi ~ U(—pu, 1), computation of (65) in this case is straightforward anddge
(—)No

(1= a)A)Ne
for u = (1 — «)A/2. By inserting (66) into (64) and applying integration by tsarecursively, the residual entropy

fx(@) = No(No — 1) - (1= a)A + 2], (66)

results finally in

Ellog(W)] =log (1 —a)A — Hy, + 1, (67)

where Hy, = ZZNQ% is the N,-th harmonic number.
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APPENDIX I

L OWER BOUND ON THE EQUIVOCATION

By the definition of mutual information, we have

N,
(Yo, ... .YN;T|My, ..., My,) = h(Ya,...,Yn,|My,...,My,) = > h(Yi|T', M,). (68)
=2
The first term of (68) can be bounded from above as [6]
h(Yo,.. ., YN, | My, .., My) =h(Zo+ T, Zn, +T) <> WZin+T],.... Zin, + T}), (69)

i=1
where Z; ; is thei-th component oZ;, and7; denotes the-th component ofl’. Since the host signalX; and the

secret dithefT are mutually independent, it follows tha ; and 7] are independent. Hence, we can write

R £ COV(Zi72 + Ti/7 ce Zi,NU + T;) = Rzi + RT{’ (70)

whereRz, £ CovW(Z; 2, ..., Z;n,), andRqy £ Cov(T7,...,T). Furthermore, it follows from Assumption 2 that the

self-noise is white [26] with variance per dimensiéh— «)2P(A}). Hence, by considering tha; ; are mutually

independent for alj, we have
Rz =(1—-a)’P(A;) In,1,  Ry=@1-aPP@y)- | & 0 0 @ |, (71)

fori=1,...,n. This allows us to bound Eq. (69) as [6, Th. 9.6.5]:
h(Yo,...,YN.|Mo,...,My) < glog (2re)™ ! |R|) = glog ((2re(1 — a)2P(AL)N"1N,) . (72)
The equivocation or residual entropy is
MT Y2, ..., YN, Ma,...,My,) = h(T) = I(Yo,...,Yn,; T'|Ma,..., My,), (73)

hence, using (68) and (72), Eq. (73) can be lower bounded as

N,
W' Yo, ..., YN, M, ..., My,) > h(T') + Y h(Yi|T', M;) — glog ((2me(1 — @)?P(AL)N"1 - N,) . (74)
=2

Taking into account thak(Y;|T’, M;) = h(T') = h(T) + nlog(1 — ), and rearranging terms, we finally arrive at
the following lower bound to the equivocation per dimension

1 - _ h(T 1
Eh(T,‘YQ’ s YN, My, ..., My,)) > NO% ~3 log ((27T€P(A:)>N"_l . NO) +log(1 — @), (75)

and after substituting h(T) = 1 log(vol(V(A}))) = 3 log (ggﬁ)) we obtain Eq. (34).

= )
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APPENDIXIII

PROOF OFTHEOREM 1

In order to arrive at Eq. (35), we start from the expression
1 . h(T) 1 < .
Eh(T ‘Yg, - 7YNO, MQ, RN MNO) = NOT + N, log(l — a) — Eh(Yg, - ,YNo’Mg, - 7MNO)7 (76)

which can be straightforwardly obtained by following thasening in Appendix Il. First, we note that for the sequence

of optimum lattice quantizerd’ we have [26]

lim ) _ %log(QweP(A;)). (77)

n—oo  n

On the other hand, we want to prove that the following retatiolds:

1, - ~ 1
lim _h(Yla---7YNO—1|M1a---7MNo—1) = lim —h(Zl—i—T’,...,ZNO_l—f—T’)
n—oo N n—oo n
1 N _
= Llog(@me(1-a)?- PAI)MTIN). (78)

with Z;, T’ independent and uniformly distributed (i — «))V(A¥), beingV(A%) the Voronoi cell ofA* with second
moment per dimensio® (A’ ). Notice that we have rearranged the observation indices frado N, — 1, for the sake
of clarity. We will prove this result by making use of two leram

Lemma 3:Let Z, T’ be two independent random variables uniformly distributedl — «)V(A%). We have that

lim Mz +T) = %log (2me(1 — a)®P(AL) - 2). (79)

n—0o00 n

Proof: The entropy power inequality [6] states that

o 2h(Z+T) > erh(Z) | o2h(T) (80)
Furthermore, we know that [26]
. hzZ) . WT) 1 2 (A%
nlLH;O = nh—>Igo — =3 log (2me(1 — a)*P(A})) (81)
SO we can write
lim e2MZ) 4 o2h(T) _ o Jog(2me(1-a)?P(A})) — ome(l —a)?P(AY) -2 = e%h(U), (82)

n—oo

with U ~ N(0,2(1 — «)?P(A}) - 1,,). Thus, from Eq. (80) we have that

lim Lhz 41y > MY %log(QTre(l —a)2P(AY) - 2), (83)
n—oo N n
and we know from Egq. (72) that
h(Z+T) 1 .
for all n. Hence, by combining (83) and (84) the lemma follows. [ |

Lemma 4:For Z;, T uniformly distributed in(1 — «)V(A}), the following result holds

1 1 1
i ~h(Z + T |Zpoy + T, 20+ T') = S log <2ﬂ'e(1 — a)2P(AY) - ﬂ) , for m > 1. (85)
m

n—oo N
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Proof: We will prove the result by induction. Since it was proven for= 1 in Lemma 3, we will show now
that it is true form = 4, assuming that it holds fom < i — 1. Making use of the entropy power inequality and the

convexity oflog(e® + ¢) in x [40], we can write
2 2 2 ’ ’ !’
SWZi+T|Ziy +T,..., Z1 +T) > log (e?h(zi) + exh(TZias T 204 T >) . (86)
n

By using the chain rule for entropies, it can be shown thatftflewing equivocation can be written as
i—1
WT|Zioy+ T, 2+ T) = i-h(Z)— Y hZj+T|Zj1+T,...,Z+T), (87)
j=1
and making use of the inductive hypothesis we have that

. i—1 .
1 1 1
lim —h(T|Zi-1+T,...,Z:+T) = %log (2me(1 — @)*P(AL)) — 5 Zlog (2776(1 —a)?P(A)) - i)
7j=1
1 1—a)?P(A;
= —log (2776 . w) . (88)
2 1
Thus, if we take limits in (86) we arrive at the following bound
. 1 / / / 1 2 * Z+ 1
lim —h(Z; + T2 +T,...,2; +T) > ilog 2re(l —a)*P(A}) - —— | - (89)
n—oo n 2
Note that from the bounding given in (72) and the inductivgpdihesis it follows that
: 1 / / / 1 2 * 7’ + 1
lim Eh(Z¢—|—T|Z¢71+T,...,Z1—|—T) < §log 2me(l — a)*P(A}) - ) (90)
Hence, by combining (89) and (90), the lemma follows. [ |
Now, using the chain rule for differential entropies we catitav
N,—1
]' / / ]' / / /
—(Z1+ T, N+ T) == > WZi+T|Zia+ T, 21+ T, (91)
n n =1

and taking the limit whem — oo, by virtue of Lemma 4, we arrive at the result given in (78). Bindby combining
(76), (77) and (78) we can conclude that

1 ~ ~ 1 1
lim —h(T'|Y2,..., YN, Ms,...,My,)) = 3 log(2meP(A})) — 3 log(N,) + log(1 — ),

n—oo N

which is the desired result. If we identify noR(A*) = D,,/a?, then Theorem 1 follows.
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