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Abstract

Security of Quantization Index Modulation (QIM) watermarking methods is usually sought through a pseudorandom

dither signal which randomizes the codebook. This dither plays the role of the secret key, i.e. a parameter only shared

by the watermarking embedder and decoder, which prevents unauthorized embedding and/or decoding. However, if the

same dither signal is reused, the observation of several watermarked signals can provide sufficient information for an

attacker to estimate the dither signal. This paper focuses on the cases when the embedded messages are either known

or constant. In the first part of this paper, a theoretical security analysis of QIM data hiding measures the information

leakage about the secret dither as the mutual information between the dither and the watermarked signals. In the second

part, we show how set-membership estimation techniques successfully provide accurate estimates of the dither from

observed watermarked signals. The conclusion of this twofold study is that current QIM watermarking schemes have

a relative low security level against this scenario becausea small number of observed watermarked signals yield a

sufficiently accurate estimate of the secret dither. The analysis presented in this paper also serves as the basis for more

involved scenarios.

Index Terms

Watermarking security, Quantization Index Modulation, lattice data hiding, mutual information, equivocation, set-

membership estimation.

I. I NTRODUCTION

Recently, the basis of cryptanalysis has been cast to data hiding to establish the concept of watermarking security [1],

[2], [3]. It assumes that all details of the watermarking technique are publicly known except the so-called secret key

parameter of the embedding and decoding processes, according to Kerckhoff’s principle [4]. Hence, security only
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relies on whether (or more realistically, for how long) the secret key will remain secret. This framework for security

assessment of watermarking schemes is twofold. We assume that a collection of content has been watermarked with the

same secret key, and the attacker has access to these watermarked signals. A first theoretical part measures the amount

of information about the secret key which leaks from the watermarked content, using the mutual information and

conditional entropy as measures, following the information-theoretic approach for cryptosystems proposed by Shannon

in [5]: this approach is based on computing the entropy of thekey conditioned on the encrypted messages observed

by the attacker; when the conditional entropy is null it means that the attacker has gathered enough observations so

as to disclose the secret key. Bear in mind that the original Shannon’s work dealt with discrete random variables,

whereas our discussion deals with continuous random variables; this is why we need to resort to differential entropies,

nevertheless the main concepts remain the same: whereas discrete entropy is related to the number of possible values

of a random variable and their probabilities (and it is always a non-negative quantity), differential entropy accounts

for the log-volume of the typical set [6, Section 9.2] and as such still provides a useful measure of uncertainty,

regardless of whether it takes negative values; in particular, complete disclosure of the secret key will be possible

when its conditional entropy becomes−∞. The information-theoretic analysis allows us to establishlower bounds on

the variance of the key estimation error as a function of the number of available observations. The second part of the

paper is of practical nature and shows workable algorithms which take as input a collection of watermarked signals

and output an estimate of the secret key. This confirms that the attack is manageable within a bounded complexity.

This framework (theoretical and practical parts) has already been successfully applied to substitutive [2, Sect. III]

and additive spread spectrum watermarking schemes [2, Sect.IV],[3]. Watermarking security under this viewpoint is

also briefly addressed in Section 10 of [7]. Other notable worksdealing with the security of spread spectrum schemes

concentrate on the practical part [8], [9]. As for quantization based data hiding, preliminary studies of the theoretical

part have shown the existence of information leakages [10],while on the practical part, we are aware of two works:

first, the work by J. Eggerset al. [11], although their motivation was not the security analysis but the robustness

improvement of the Scalar Costa Scheme (SCS) against a Scaling andAddition of White Gaussian Noise attack

(SAWGN), and the work by Bas and Hurri [12] which is more related to our approach, but focuses on the so-called

spread transform methods [13] without distortion compensation.

The reader must note that the scope of this article is restricted because we mainly focus on the Known Message

Attack (KMA) [2, Sect. II.B]: we assume that the attacker is able to gather a collection of signals{yi}, i = 1, . . . , No,

watermarked with the same key, while knowing for each its hidden message, denoted bymi. The pairs{yi,mi} will

be referred to asobservations. This paper is only a first step to a global security analysis of quantization-based

watermarking; in fact, as we will discuss in Section VII, boththe developed theory and algorithms for the KMA

scenario constitute the core of those corresponding to morecomplex scenarios. In any case, the considered setup is

still very important as shown in the following motivations.

1) The copy protection application faces extreme security threats [14]. The secret key is not only unique but

the hidden messages are also known by any user. Consider aDigital Rights Management(DRM) system using

watermarking. The secret key is embedded in a chipset included in every compliant device. Content makers also
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share the secret key to watermark their products. Compliantdevices spot these as protected contents whose usage

is restricted according to the DRM license. Some DRM systems hide the status (i.e., the usage restriction) such

as ‘Copy Never’, ‘Copy Once’, ‘Copy No More’ [14] in the contents. The number of status choices is extremely

small compared to the size of the content. This is a typical example of zero-rate watermarking, where the embedding

proceeds by blocks (of video or of sound). TheCopy Protection Technical Working Grouphas, for instance, required

the embedding of eight bits within ten seconds of video [15].Moreover, any user knows the embedded message as the

status of a piece of content is public (for instance, the compliant device may warn the user that the copy of a particular

content is forbidden due to its restrictive status). Hence,KMA is a main threat in copy protection applications.

2) Video and audio watermarking in general might be also put at risk by KMA. The reason is that one usually

does not watermark a video, but instead watermarks consecutive blocks of video. This division in blocks maintains a

low complexity of the embedding and decoding whereas it eases temporal re-synchronization. In the case of zero-rate

watermarking (the message space is bounded and small), a common approach is to embed the message repeatedly

in consecutive blocks. The division into blocks is usually publicly known (although other strategies are possible), so

the attacker is able to gather a number of different blocks hiding the same message. This is not exactly a KMA but

a Constant Message Attack (CMA) because the value of the message might not be known. However, we will show

that this only brings slight changes in both the theoreticaland the practical parts. This matter concerns applications

such as copyright enforcement, copy protection, and fingerprinting (traitor tracing). Note that in this last scenario

the major source of concern has been collusion attacks (i.e., an arrangement of several traitors), but the CMA could

constitute a worse attack for audio or video fingerprinting because there the same message is repeatedly embedded

in a block by block basis. The success of the CMA depends on the number of blocks in a movie or song.

3) Another motivation is that most QIM schemes are known to beweak against amplitude scaling attacks. Eggers

et al. suggest in [11], [16, Sect. VI] to embed a reference message (aka pilot sequence) prior to the message to be

embedded. Knowing this pilot sequence, the decoder is able to estimate the amplitude scaling and later to retrieve

the hidden message. Once again, this implies that all the watermarked signals contain the same pilot sequence. If the

CMA is successful, the attacker may remove the pilot sequence and then apply a slight scaling to the amplitude of

the host signal. The decoder will not be able to retrieve the reference message nor the scaling factor. However, bear

in mind that in case the attacker does not know the exact location of the pilot signal, the CMA attack can be used

only as part of a more global attack.

4) Another important case is the application of QIM schemes to authentication. There exist many different ways

of designing a watermarking-based authentication scheme;for instance, Eggerset al. proposed a highly original

scheme [17] taking benefit that a side-informed embedder gives a watermark signal heavily dependent on the host

signal. Thus, it is useless to estimate the watermark signal of a signed content, and then copy and paste it into another

content in order to forge a signature. This elegantly gets ridof the copy and paste attack. In their scheme, Eggers

et al. suggest to apply SCS to image authentication by watermarkingblocks of the image with a reference message.

The verification process considers the image as authentic whenthe decoded message matches this reference message.

Once again, this implies that all signed images contain the same reference message and the CMA attack is applicable.
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We assume the watermark embedder works as follows. A first stepextracts some coefficients (DCT, DWT, FFT. . . )

from the original piece of content. These coefficients are ordered in a length-Nv column vector, and the latter is

partitioned inl blocks of lengthn, denoted byxi, i = 1, . . . , l− 1. The embedder hides a messagemi ∈ M in each

xi, yielding a watermarked vectoryi. Thus, the data hiding rate isR = log2(|M|)/n bits per coefficient. The specific

implementation of QIM considered in this paper is by means ofnested lattices [7], which encompasses most of the

proposed QIM formulations so far, and it will be referred to as lattice data hiding. According to the discussion above,

we assume that both the selection of the extracted coefficients and the partitioning in length-n blocks is public; hence,

the security of the scheme relies only in the randomization of the lattice via a dithering process, where the dither

signal plays the role of secret key.1 Actually, the secret dither signal, which we denote byt, may be any deterministic

function of a certain cryptographic keyθ, i.e., t = g(θ), whereg(·) is a pseudo-random generator. Although, under

the assumptions of Kerckhoff’s principle, such function should be publicly known, disclosure of the secret dither does

not necessarily imply disclosure of the cryptographic keyθ, sinceg(·) should have been properly designed so as to

be (ideally) non-invertible. The attacker restricted to a signal processing approach, as the one we are presenting here,

can, at most, aspire to disclose the sequence of dither samples provided by the available observations. Inference of

the secret key based on the estimate oft belongs to the domain of cryptanalysis, and as such falls outof the scope of

the present paper. Nevertheless, the mere disclosure of theplain secret dither in a lattice data hiding scheme allows

many harmful attacks, as we shall discuss in Section V-A.

The theoretical security of lattice data hiding schemes is studied in sections II and III. Sections IV and V present

practical estimators and experimental results, respectively, obtained in the lattice data hiding scenario. In SectionVI,

the theoretical security of quantization-based data hiding methods is linked to the corresponding to Costa’s set-up

[18], and in Section VII the extension of the framework proposed in this paper to more general scenarios is discussed.

Finally, in Section VIII the main conclusions are summarized and some remarks are given. Unless otherwise stated,

our results will be restricted to a distortion compensationparameterα ≥ 0.5 which represents the most important

case for lattice data hiding for the following reasons:

• In high Watermark to Noise Ratio (WNR) applications,2 which is the scenario of main interest for lattice data

hiding, the optimal value ofα is considerably larger than0.5 (see [16], for instance).

• In low WNR applications, the optimal values ofα are smaller than0.5, leading to decoding errors even in

the absence of noise. Indeed, it has been shown that for low WNR’s it is better to apply lattice data hiding in

conjunction with spread transform [13], whose main benefit isto increase the effective WNR. This in turn leads

to an increase of the optimalα, in most practical instances to values≥ 0.5. A similar conclusion is arrived at

when lattice data hiding is combined with channel coding (e.g., repetition coding or Construction A [19]).

The main notational conventions followed throughout the text are the following: random variables and their

occurrences are denoted by capital and lowercase letters, respectively; boldface letters denote column vectors, whereas

1The extension to more general scenarios using secret coefficient permutations, for instance, will be addressed in Section VII.

2WNR , log
10

(Dw/σ2

N ), whereDw and σ2

N are the the embedding distortion and noise power per dimension, respectively. Throughout

this paper, the terms high and low WNR are loosely applied to WNR> 0 dB and WNR≤ 0 dB, respectively.
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scalar variables are represented in non-boldface characters. Calligraphic letters are reserved for sets. All logarithms

are to the basee, so all the mutual informations and differential entropiesare expressed in natural units.

II. T HEORETICAL SECURITY OF LATTICE-BASED DATA HIDING

Before proceeding with the theoretical analysis, we will briefly explain the basics of embedding in lattice data

hiding; for more details and other aspects such as decoding,the interested reader is referred to [7] and the references

therein. Consider ann-dimensional latticeΛ and the setM = {0, . . . , LM − 1} of possible messages. For each

messagem ∈ M let us define the associated coset ofΛ asUm , Λ + dm, wheredm is the minimum-normcoset

representativecorresponding to messagem. The codebookU is defined by the union of all cosets,U ,
⋃LM−1

m=0 Um.

Given a certain host signalx and a to-be-transmitted messagem ∈ M, each watermarked signal is generated as

y = x + α (QUm
(x) − x) , (1)

whereα is the distortion compensation parameter, andQUm
(·) is an Euclidean quantizer whose centroids are defined

by the cosetUm:

QUm
(x) , arg min

r∈Um

||x − r||, (2)

where|| · || denotes Euclidean norm. This data hiding scheme is commonly known as Distortion Compensated - Dither

Modulation (DC-DM) [13]. For adding security to the scheme,several authors [13],[16] proposed to introduce an

additional termt namedsecret dither vector, which is known only by embedder and decoder, yielding a randomized

embedding function:

y = x + α(QUm,t(x) − x) = QUm,t(x) + (1 − α)(x −QUm,t(x)), (3)

whereUm,t , Λ + dm + t is them-th randomized coset, and the second term of (3) is the so-called self-noiseterm.

Notice that the watermark, defined asw , y − x, is Λ-periodic both inx and t since it yields the same value for

hosts and dither vectors of the formx+ r, r ∈ Λ andt+ r, r ∈ Λ, respectively. The complete data hiding scheme is

summarized in the block diagram of Fig. 1. The aim of the secret dither is just to apply a secret shift to the embedding

lattice, and it does not change any of its fundamental properties concerning information transmission.3 Nowadays,

most of the lattice DC-DM schemes base their security on thisstrategy.

As it is usual in the analysis of quantization-based methodsfor data hiding [13], [16], a low embedding distortion

regime is assumed, such that the variance of the host is much larger than the volume of the Voronoi region ofΛ. The

Voronoi region of a latticeΛ is denoted byV(Λ) and is defined as [19]

V(Λ) , {x ∈ R
n : QΛ(x) = 0}. (4)

In practice, this assumption (which we will refer to in the sequel as theflat-host assumption) implies that the pdf of the

host and that of the self-noise are approximately uniform inside each quantization cell and overZ(Λ) , (1−α)V(Λ),

respectively. The flat-host assumption permits us to simplifythe theoretical analysis, restricting our attention to the

3Strictly speaking, this is true only if theflat-host assumption(to be defined later) holds, as noted in [20].
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Fig. 1. Block diagram of lattice-based DC-DM with pseudo-random dithering. ParameterΘ is the secret key.

modulo-reduced random variablẽY , Y mod Λ = Y−QΛ(Y).4 Hence, the pdf of̃Y conditioned on the embedded

message and the secret dither is

f(ỹ|m, t) =







vol(Z(Λ))−1, ỹ ∈ (dm + t + Z(Λ)) mod Λ

0 otherwise
(5)

In our model, as is customary in theoretical analysis of watermarking methods, the host samples are considered

independent and identically distributed (i.i.d.). Under these premises, a theoretical security analysis will be developed

for the two scenarios (KMA, CMA) introduced in Section I. Obviously, the security level of the system depends

on the statistical distribution of the secret dither, or better to say, of its modulo-Λ reduced version,̃T. Due to the

Λ-periodicity inherent in the watermark generation (see Eq. (3)), we have thatf(ỹ|T = t) = f(ỹ|T = t+r) ∀ r ∈ Λ;

hence

f(ỹ) =

∫

Rn

f(ỹ|T = t) · f(t)dt =

∫

V(Λ)
f(ỹ|T = t̃) · f(t̃)dt̃, (6)

wheref(t̃) =
∑

r∈Λ f(t + r) is the pdf ofT̃. This means that the pdf of the watermarked signal depends in last

instance of the pdf of̃T, and hence the secrecy of the codebook only depends on the statistics of T̃.5 Therefore, the

support ofT is bounded byV(Λ) hereinafter. We must note thatT is usually assumed to be uniformly distributed

overV(Λ) in most lattice data hiding schemes [13],[16], but this choice was not strictly motivated by security reasons,

so it makes sense to wonder about its optimal distribution from this latter point of view.

A. Known Message Attack

When a sequence of watermarked signals{Ỹ1, . . . , ỸNo
} and their associated messages{M1, . . . ,MNo

} are

observed, the information leakage aboutT can be calculated by means of the mutual information betweenthe

observations and the secret dither:

I(Ỹ1, . . . , ỸNo
;T|M1, . . . ,MNo

) = h(T) − h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

), (7)

where we have made use of the mutual independence betweenT and the embedded messages, also assumed to be

mutually independent. Here,h(T) is the differential entropy [6] of the random variableT, and the second term of

(7) is the residual entropyor equivocationof the dither afterNo observations, following Shannon’s nomenclature

[5]. The equivocation measures the remaining ignorance about the secret dither, so the appropriate distribution for

4It is worth noting that this modulo operation is virtually information-lossless [20, Sect. IV] in low embedding distortion regimes, as it is

our case. This implies that the analysis is accurate, in the sense thatI(Ỹ;T) ≈ I(Y;T).

5However, attacks at a cryptographic level would be indeed interested in knowing the exact value oft.

August 29, 2006 DRAFT



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

T should be chosen in order to maximize this value. To this end,let us consider the conditional pdf of the dither:

the statistical properties of the watermarked signals giverise to the notion offeasible regionof the dither, formally

defined as the support of its conditional pdf afterNo observations. The next property will be widely used throughout

the text.

Property 1: Boundedness of the feasible region. The feasible region is bounded bySNo
,
⋂No

i=1 Di, where

Di , (ỹi − dmi
−Z(Λ)) mod Λ, i = 1, . . . , No, (8)

Proof: Application of Bayes’ rule yields

f(t|ỹ1, . . . , ỹNo
,m1, . . . ,mNo

) =
f(ỹ1, . . . , ỹNo

,m1, . . . ,mNo
|t) · f(t)

f(ỹ1, . . . , ỹNo
,m1, . . . ,mNo

)
=
f(ỹ1, . . . , ỹNo

|m1, . . . ,mNo
, t) · f(t)

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

)
, (9)

whereỹi ∈ (dm + t +Z(Λ)) mod Λ, i = 1, . . . , No. Notice that each random variablẽYi is a function of the triple

(Xi,Mi,T), and the host samplesXi in our model are mutually independent. This means that the observations{Ỹi}
are conditionally independent given the dither; hence, Eq. (9) can be rewritten as

f(t|ỹ1, . . . , ỹNo
,m1, . . . ,mNo

) =
f(t) · ∏No

i=1 f(ỹi|mi, t)

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

)
(10)

=
f(t) · ∏No

i=1 f((ỹi − dmi
− t) mod Λ|Mi = 0,T = 0)

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

)
, (11)

where (11) follows from the flat-host assumption. By recalling Eq. (5), it is clear that each term in the numerator of

(11) is nonzero iff(ỹi − dmi
− t) mod Λ ∈ Z(Λ), or equivalently, ifft ∈ Di, with Di given by (8). Hence, it is

clear that the feasible region oft is contained in
⋂No

i=1 Di, independently of the distribution ofT.

Property 1 allows us to state the following lemma.

Lemma 1: Maximization of the residual entropy. The residual entropy is maximized forT ∼ U(V(Λ)), yielding a

conditional pdf uniformly distributed inSNo
, that is

f(t|ỹ1, . . . , ỹNo
,m1, . . . ,mNo

) =







(vol (SNo
))−1 , t ∈ SNo

0 otherwise.
(12)

Proof: By the definition of residual entropy, we have

h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

) = E[h(T|ỹ1, . . . , ỹNo
,m1, . . . ,mNo

)], (13)

where the expectation is taken over the joint pdff(ỹ1, . . . , ỹNo
,m1, . . . ,mNo

). Since the feasible region of the dither

is bounded bySNo
, its entropy will be maximized when the dither is uniformly distributed inSNo

, i.e,

h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

) = −E[log(T|ỹ1, . . . , ỹNo
,m1, . . . ,mNo

)] ≤ E[log(vol(SNo
))]. (14)

Since the denominator of (11) does not depend ont, then the choiceT ∼ U(V(Λ)) suffices for achieving such

distribution, and hence equality in (14).

The optimal distribution resulting from Lemma 1 also brings additional desirable properties: it provides statistical

independence between the self-noise and the host signal [21], and most importantly, it does not prevent from achieving
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capacity in the Gaussian channel in the asymptotic set-up (n→ ∞) [22]. Hence, the choice ofT ∼ U(V(Λ)) is good

from the robustness and security points of view, and this will be the chosen distribution in the remaining of this paper

unless otherwise stated. Hence, by combining Property 1 and Lemma 1, the residual entropy results in

h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

) = E[log(vol(SNo
))], (15)

where the expectation is taken over the joint pdf of the observations. In case of one observation (No = 1) we have

h(T|Ỹ1,M1) = log(vol(Z(Λ))) = log((1 − α)nvol(V(Λ))), (16)

and the information leakage is given by

I(Ỹ1;T|M1) = h(T) − h(T|Ỹ1,M1) = −n log(1 − α) (17)

for all α ∈ [0, 1], independently of the specific lattice chosen for embedding.This result clearly shows a trade-off

between security and achievable rate: theoretical analyses [16], [22] show that, in AWGN channels, the value ofα

must approach1 for maximizing the achievable rate in the high-WNR region; however, bear in mind that forα ≈ 1,

one observation suffices to get an accurate estimate of the centroids in Um, and consequently of the secret dither,

due to the structure imposed to the codebook. This is reflected in the residual entropy of the dither (16), for which

limα→1 h(T|Ỹ1,M1) = −∞.

ForNo > 1, one must consider two different cases: 1) forα = 1, the mutual information is maximum forNo = 1,

as we have just discussed, so more observations will not provide additional information aboutT (i.e., it becomes

deterministic forNo = 1); 2) for α < 1, the mutual information does not increase linearly due to the dependence

between observations. Its general behavior is stated in thefollowing Lemma.

Lemma 2: If α < 1, the mutual information about the secret dither is an increasing, concave function of the number

of observationsNo.

Proof: To see that the mutual information is always increasing, consider the function

∆I(N) = I(Ỹ1, . . . , ỸN+1;T|M1, . . . ,MN+1) − I(Ỹ1, . . . , ỸN ;T|M1, . . . ,MN ), (18)

which is nothing but the average information aboutt that is gained with the(N + 1)-th observation. Such function

is easily seen to be always non-negative:

∆I(N) = h(T|Ỹ1, . . . , ỸN ,M1, . . . ,MN ) − h(T|Ỹ1, . . . , ỸN+1,M1, . . . ,MN+1) ≥ 0, (19)

where (19) follows from the fact that conditioning reduces entropy [6]. In this case strict inequality holds in (19),

due to (12) and (13) (i.e., the mean volume ofSNo
is always reduced with each new observation, with the obvious

exception of deterministict). Thus, the mutual information is always increasing.

In order to prove the concavity of the mutual information, wemake use of the following claim [23]

Claim: Discrete concavity. A discrete functionf(k), with k ∈ Z, is (strictly) concave if and only if∆f(k) is

(decreasing) non-increasing, with∆f(k) = f(k + 1) − f(k).
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Thus, the mutual information will be (strictly) concave iff∆I(N) is (decreasing) non-increasing. By the definition

of mutual information, we have

I(Ỹ1, . . . , ỸN ;T|M1, . . . ,MN ) = h(Ỹ1, . . . , ỸN |M1, . . . ,MN ) − h(Ỹ1, . . . , ỸN |M1, . . . ,MN ,T). (20)

Making use of the chain rule for entropies [6, Section 9.6] in (20), we can write

∆I(N + 1) − ∆I(N) = h(ỸN+2|Ỹ1, . . . , ỸN+1,M1, . . . ,MN+2) − h(ỸN+1|Ỹ1, . . . , ỸN ,M1, . . . ,MN+1) ≤ 0,

(21)

taking into account again that conditioning reduces entropy. This concludes the proof of the lemma.

B. Constant Message Attack

The easiest way of addressing this scenario is to regard it as acollection of several KMA problems. When the

message embedded is unknown but unchanged for the whole sequence of observations, the conditional pdf of the

dither afterNo observations can be expressed as

f(t|ỹ1, . . . , ỹNo
,CM) =

1

|M|

|M|−1
∑

m=0

f(t|ỹ1, . . . , ỹNo
,m, . . . ,m), (22)

where CM stands forconstant message, and|M| denotes the size of the alphabet. This means that the feasibleregion

SCMA
No

for the dither in the CMA case is simply the union of the feasible regions of|M| KMA problems. Formally,

SCMA
No

=

|M|−1
⋃

m=0

(SNo
+ dm), (23)

with SNo
defined in Property 1. Using the Borel-Cantelli Lemma, and underthe assumptions stated in this paper, it

can be shown that vol(SNo
) converges to zeroalmost surelywhenNo → ∞; thus, the different regions that constitute

SCMA
No

will be disjoint for sufficiently largeNo; in such case, the residual entropy is again maximized ifT ∼ U(V(Λ))

is chosen, but it is not necessarily the optimal distribution for all No. Due to (22), the residual entropy can be upper

bounded as

h(T|Ỹ1, . . . , ỸNo
,CM) ≤ h(T|Ỹ1, . . . , ỸNo

,M1, . . . ,MNo
) + log(|M|), (24)

resulting in a lower bound to the information leakage. Equality in (24) is achieved when the regionsSNo
+ dm are

disjoint, which means that, asNo increases, the bound will be asymptotically tight. However, if the value ofα is

above a certain threshold (which depends on the lattice partition) such regions are always disjoint, and the bound is

reached for allNo; this is the case, for instance, whenα > αT = 1 − 1
|M| , for self-similar partitions [7], [22].

III. L ATTICE COMPARISON

This section tries to shed some light on two fundamental questions: 1) givenn, what is thebest lattice (if any)

in terms of security; and 2) does an increase ofn improve the security level. The discussion will be focused on

the KMA problem, although it can be extended to the CMA scenario by taking into account the remarks made in

Section II-B. Before proceeding with the analysis, we need tointroduce the following definition:
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(a) (b)

Fig. 2. Illustration of a non-connected feasible region for two observations using smallα. In (a), the solid lines are the Voronoi regions ofΛ,

and the feasible regions for the centroids defined by each observation are the shaded ones. The figure depicted in (b) is the modulo-Λ reduction

of the intersection between the shaded regions in (a), showing three resulting modulo-Λ convex regions (illustrated with different shadings).

Definition 1: A set S is said to be modulo-Λ convex if there existsr such thatS −QΛ+r(S) is convex.

The notion of modulo-Λ convexity is key to our analysis, due to the next property.

Property 2: For α ≥ 0.5, the feasible regionSNo
is always a modulo-Λ convex set.

Proof: Let us define

Ṽi , (Ỹi − Dmi
− T) mod Λ (25)

and D′
i , Ṽi − Z(Λ), i = 1, . . . , No. By recalling the generation of the watermarked signal (3),it is clear that

Ṽi ∼ U(Z(Λ)). If α ≥ 0.5, thenṼi + r ∈ V(Λ), ∀ r ∈ Z(Λ). Hence,D′
i ⊂ V(Λ), and obviously

⋂

i D′
i ⊂ V(Λ).

SinceD′
i, i = 1, . . . , No, are convex sets, their intersection is also a convex set. Taking into account thatDi =

(T + D′
i) mod Λ, the property follows.

The use ofα < 0.5 may lead to non-convex feasible regions, as illustrated in Fig. 2-(b), where the feasible region

for the dither is composed of three different modulo-Λ sets. However, as can be seen in the proof of Property 2,

under the assumption ofα ≥ 0.5 it is possible to find a shifted version of the problem such thatthe feasible region is

always modulo-Λ convex, according to Definition 1. This property permits us to drop out the modulo operation from

the expressions of the feasible regions. Bear in mind that the entropy is invariant to translations, so this simplification

does not change the results. In order to provide a fair comparison between different lattices, they are scaled so as to

present the same embedding distortion, which due to the flat-host assumption is given by

Dw =
α2

n
E{qTq} =

α2
∫

V(Λ) ||q||2dq
n · vol(V(Λ))

= α2P (Λ), (26)

whereq = QΛ(x) − x is the quantization error, andP (Λ) is the second order moment per dimension ofV(Λ). For

computing the residual entropy, the expectation in (15) must be taken overf(ỹ1, . . . , ỹNo
,m1, . . . ,mNo

), but the

conditional pdf ofT, given by (12), does not depend on the specific sequence of messages embedded, as long as the

latter is known; this implies that, for the expectations, the message sequence can be assumed to be deterministic. Since

it is not always possible to obtain closed-form expressionsfor the information leakage (even for low-dimensional

lattices), we must resort in general to Monte Carlo integration and bounding techniques.
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A. Exact computation for the cubic lattice

For the scaled cubic lattice6 ∆Z
n = (x1, . . . , xn), xi ∈ ∆Z it is possible to obtain a closed-form expression for

the residual entropy. From Eq. (15), the residual entropy is given by the expectation of the log-volume of the feasible

region for the dither. Since the latter for the cubic lattice is always a hyperrectangle, using Property 2 we can write

E[log(vol(SNo
))] =

n
∑

k=1

E[log(Wk)] = n · E[log(W )], (27)

whereWk is the random variable that measures the length of the feasible interval in thek-th dimension, and the last

equality follows because the quantization step is the same for all dimensions. The random variableW is given by

W = vol(
No
⋂

i=1

(Ṽi − I)), (28)

with Ṽi a random variable uniformly distributed inI , [−(1− α)∆/2, (1− α)∆/2). Hence, the problem is reduced

to a scalar subproblem consisting in computingE[log(W )], i.e., the residual entropy in one dimension. This result is

used in Appendix I, under the assumption ofα ≥ 0.5, to show that the residual entropy per dimension is given by

1

n
h(T|Ỹ1, . . . , ỸNo

,M1, . . . ,MNo
) = log((1 − α)∆) −HNo

+ 1 = log(
√

12Dw) −HNo
+ 1 + log

(

1 − α

α

)

, (29)

whereHNo
,
∑No

i=1
1
i is theNo-th harmonic number,Dw is the embedding distortion according to (26), and we have

taken into account that for the cubic latticeP (Λ) = ∆2/12.

B. Monte Carlo integration

When the analytical evaluation of (15) becomes intractablewe resort to Monte Carlo integration. The fact that the

feasible region is reduced with each new observation makes necessary an additional task of computing a tight region

of integration so as to preserve the accuracy of the Monte Carlo method (as will be seen in step 3 of the algorithm

outlined below). In order to give a comparison between different standard lattices, we consider the root lattices and

their duals (the best known lattice quantizers forn ≤ 8), namelyA2 (hexagonal lattice),D3, D4
∼= D∗

4, D5, E7,

E8
∼= E∗

8 . For their definition and properties, see [19], [24]. All these lattices are scaled so as to present the same

embedding distortion per dimension as the cubic lattice∆Z
n with ∆ = 1, that is,1/12.

The procedure followed for the Monte Carlo simulations is briefly outlined here.

1) We assume without loss of generality thatt = 0. Hence, a sequence ofNo observed vectors uniformly distributed

in (1 − α)∆V(Λ), with ∆ such thatP (Λ) = 1/12, is generated.

2) V(Λ) is outer bounded by a hypercube whose edge length is twice thecovering radius [19] ofΛ. This gives an

outer bound toDi (Eq. (8)), which is used to compute an outer approximationSu
No

of the feasible region.

3) The feasible region resulting from the previous step (which is a hyperrectangle) is shrunk along each dimension

so as to tightly bound the true feasible regionSNo
. This is accomplished by means of a bisection algorithm which

looks for the tightest limits of the outer bounding hyperrectangle in each dimension. The need for this step is justified

6We consider the same quantization step in each dimension, although the results can be straightforwardly extended to a general case.
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by the fact that, for largeNo, the ratio vol(Su
No

)/vol(SNo
) becomes too large, affecting the accuracy of Monte Carlo

integration.

4) A large number of points uniformly distributed in the hyperrectangle of the previous step is generated. For each

of these points, it is checked whether it belongs to
⋂No

i=1 Di; if so, the considered point belongs toSNo
. Finally, the

log-volume ofSNo
is computed by Monte Carlo integration, and the residual entropy is obtained by averaging the

log-volume over a large number of realizations. In steps 3) and 4), fast quantizing algorithms [25] are used.

The results of Monte Carlo integration indicate that the lattice Λ∗
n that maximizes the residual entropy for eachn

is that with the best mean-squared quantization properties. This can be formally expressed as

Λ∗
n = arg minΛ∈Ln

G(Λ)

subject toP (Λ) = constant
(30)

whereLn is the set of root lattices of dimensionalityn ≤ 8, andG(Λ) ,
P (Λ)

vol(V(Λ))2/n
is the normalized second order

moment ofΛ. Notice thatΛ∗
n maximizes vol(V(Λ)) for given n andP (Λ), and consequentlyΛ∗

n has the highest a

priori entropy inLn, due to the uniformity ofT. For illustration purposes, Fig. 3 gives a comparison between the

residual entropy per dimension using the cubic lattice and that using some of the root lattices. Although we do not

claim that the above result holds for the whole set of lattices with arbitraryn, at least it suggests that the security

level of a lattice data hiding scheme can be improved by increasingn and choosing the latticeΛ with the lowest

G(Λ). This leads us to conjecture that a hypothetical spherically-shaped Voronoi region will provide an upper bound

to the residual entropy, since the sphere is the region ofR
n with the smallest normalized second order moment.

This is indeed so for the set of lattices considered in our experiments: as an example, the result obtained with the

8-dimensional sphere (also obtained through Monte Carlo) is plotted in Fig. 3. Unfortunately, the space can not be

tessellated with spherical regions (except forn = 1), so it is not possible to constructspherical lattice quantizers;

nevertheless, as it was shown in [26], asn increases there exist lattices whose normalized second order moment tend

to that of a sphere.7 The security of lattice DC-DM using this type of lattices is studied in the next section.

C. Bounds and asymptotics on the equivocation for “good” lattices

Throughout this section, we will make use of two assumptions:1) α ≥ 0.5; 2) we are usingΛ∗
n, the optimal (in

a mean-squared error sense) lattice quantizer inn-dimensions. As discussed in the proof of Property 2, Assumption

1 makes the modulo operation transparent for the computation of the entropy, since this is invariant to translations.

Making use of the chain rule for mutual informations [6] we can write

I(Ỹ1, . . . , ỸNo
;T|M1, . . . ,MNo

) = I(Ỹ1;T|M1) + I(Ỹ2, . . . , ỸNo
;T|Ỹ1,M1, . . . ,MNo

)

= I(Ỹ1;T|M1) + I(Ỹ2, . . . , ỸNo
;T′|M2, . . . ,MNo

), (31)

7Moreover, this is a necessary condition for the lattices in order to achieve the channel capacity in the lattice DC-DM scheme [22].
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Fig. 3. Residual entropies per dimension for different lattices. All plots for the root lattices (but for the cubic one, which is theoretical) were

obtained through Monte Carlo integration. The asymptotic limit correspondsto Eq. (35). The embedding distortion in all cases isDw = α2/12,

with α = 0.5.

whereT′ ∼ U((1 − α)V(Λ∗
n)) is the dither conditioned on the first observation (as it follows from Property 1 and

Lemma 1). Thus, each new observation conditioned onỸ1 andM1 can be written as8

Ỹi = Zi + T′ + dmi
, i = 2, . . . , No, (32)

whereZi , (1 − α)(Xi − QΛ∗

n
(Xi)) is the self-noise term, with the same statistical distribution asT′, and hence

with second moment per dimension(1− α)2P (Λ∗
n). From Eq. (31), it can be seen that the following equality holds:

h(T|Ỹ1, . . . , ỸNo
,M1, . . . ,MNo

) = h(T′|Ỹ2, . . . , ỸNo
,M2, . . . ,MNo

), for No ≥ 2, (33)

so we can use the second term of (31) for obtaining a lower bound on the equivocation per dimension, as shown in

Appendix II:

1

n
h(T′|Ỹ2, . . . , ỸNo

,M2, . . . ,MNo
) ≥ No

2
log

(

P (Λ∗
n)

G(Λ∗
n)

)

−(No − 1)

2
log (2πeP (Λ∗

n))−1

2
log(No)+log(1−α). (34)

This lower bound is loose for smalln, but the next result shows that it is asymptotically tight for n→ ∞.

Theorem 1:In the limit whenn→ ∞, using the optimum lattice quantizerΛ∗
n, the equivocation per dimension in

lattice DC-DM is given by

lim
n→∞

1

n
h(T′|Ỹ2, . . . , ỸNo

,M2, . . . ,MNo
) =

1

2
log(2πeDw) − 1

2
log(No) + log

(

1 − α

α

)

, for No ≥ 2, (35)

whereDw is the embedding distortion per dimension (26).

8As discussed before, the residual entropy in the KMA scenario does not depend on the specific message sequence as long as this is known,

so we considerdmi = 0∀ i = 1, . . . , No, without loss of generality for the remaining of this section and in the corresponding appendices.
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Proof: See Appendix III.

Notice that whenn → ∞, (34) coincides with (35), becauseG(Λ∗
n) → 1/2πe. The first term in (35) accounts for

the relation between the embedding distortion and the a priori entropy of the secret dither. The second term tells us

how the equivocation decreases withNo, and the third term shows the dependence with the distortioncompensation

parameterα, which basically introduces a constant shift in the equivocation curve (recall that forα = 1, the residual

entropy is−∞ for No ≥ 1). The asymptotic value of the equivocation is plotted in Figure 3 for reference, showing

the gap with the root lattices studied before. The above theorem is the formal statement of a more intuitive result:

the Voronoi region ofΛ∗
n tends to a sphere, and in turn the uniform distribution inV(Λ∗

n) tends asymptotically to

a Gaussian distribution (in the normalized entropy sense) [26]; hence, roughly speaking, each modulo-Λ reduced

observation (Eq. (32)) becomes closer to a Gaussian distribution with varianceDw/α
2, whose mean is given by the

secret dither (also with the same statistical distribution). This interpretation brings more insight in the comparisonof

the theoretical security between lattice DC-DM and additive spread spectrum methods. For the latter, the embedding

function is given byY = X + (−1)mU, whereX andU are the host and the spreading vector, respectively, with

the latter playing the role of the secret key. Notice that theresemblance between this embedding function and (32)

implies similar security properties for both methods. Considering thatX ∼ N (0, σ2
X · In) andU ∼ N (0, σ2

U · In), it

was shown in [3] that

1

n
h(U|Y1, . . . ,YNo

,M1, . . . ,MNo
) =

1

2
log (2πeDw) − 1

2
log

(

1 +No
Dw

σ2
X

)

, (36)

where nowDw = σ2
U . It can be readily seen that the decrease in the equivocationfor additive spread spectrum is

determined by the ratioσ2
U/σ

2
X , which is usually very small due to imperceptibility constraints. Instead, for lattice

DC-DM after the modulo-Λ reduction, the power of both the watermark and the host interference are the same, i.e.,

(1−α)2P (Λ∗
n); this explains the term1

2 log(No) in (35) and the rapid decrease of the equivocation, comparedto that

of (36).

Fig. 4 shows a comparison between lattice DC-DM and additive spread spectrum for different values of embedding

distortion, parameterized by the Document to Watermark Ratio, defined as DWR, 10 log10(σ
2
X/Dw).

D. Bounds on the estimation error

Let us define the estimation error ase , t − t̂, where t̂ is the dither estimate. If the covariance matrix of the

estimation error is given byRE , then it is immediate to upper bound its entropy by

h(E) ≤ 1

2
log ((2πe)n|RE |) . (37)

Furthermore, note that

h(E) = h(T − T̂) ≥ h(T − T̂|Y1, . . . ,YNo
,M1, . . . ,MNo

) = h(T|Y1, . . . ,YNo
,M1, . . . ,MNo

), (38)

sinceT̂ is a function of the observations. Thus,

h(T|Y1, . . . ,YNo
,M1, . . . ,MNo

) ≤ 1

2
log ((2πe)n|RE |) ≤

n

2
log

(

2πe
tr(RE)

n

)

, (39)
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Fig. 4. Comparison, in terms of equivocation per dimension, between lattice DC-DM and additive spread spectrum.α = 0.7 for DC-DM.

where the second inequality follows from the fact that|RE |
1

n ≤ tr(RE)
n [6, Th. 16.8.4]. Let us define the variance

per dimension of the estimation error asσ2
E ,

tr(RE)
n . Then, from (39) we have the following lower bound onσ2

E :

σ2
E ≥ 1

2πe
e

2

n
h(T|Y1,...,YNo ,M1,...,MNo ), (40)

which is nothing but the entropy power ofT givenNo observations [6]. It can be observed that, for achieving an

error-free estimate, the equivocation must necessarily approach−∞. Substituting Eq. (35) into (40), we arrive at the

following bound forn→ ∞ and the optimal lattice quantizer:

σ2
E ≥ (1 − α)2P (Λ∗

n)

No
, (41)

The above bound is attained using the simple averaging estimator, but taking into account that the observations must

be properly shifted in order to avoid problems with the modulo-Λ reduction; thus, if we define

ṽi = (ỹi − dmi
− ỹ1 + dm1

) mod Λ, i = 1, . . . , No, (42)

then the optimal dither estimator forΛ∗
n, n→ ∞, is given by

t̂av =

(

ỹ1 − dm1
+

1

No

No
∑

i=1

ṽi

)

mod Λ. (43)

The achievability of (41) follows from the fact that, forΛ∗
n, the self-noise and the secret dither follow asymptotically

a Gaussian distribution asn→ ∞. Thus, this result about the estimation error can be comparedto the estimation error

for the cubic lattice; since we are interested in computing the behavior for largeNo, we make use of the approximation

HNo
≈ log(No) + γ, which is asymptotically tight for largeNo, with HNo

,
∑No

i=1
1
i the harmonic number andγ

the Euler-Mascheroni constant, defined asγ , limNo→∞HNo
− log(No). In this case we have, using (29)

σ2
E ≥ 1

2πe
e2(log((1−α)∆)−HNo+1) ≈ 1

2πe
e2(log((1−α)∆)−log(No)+1−γ) =

1

2πe2γ−1
· (1 − α)2∆2

N2
o

. (44)
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Thus, the variance per dimension approximately decreases with the inverse of the squared number of observations.

This bound can even be compared to the exact error variance of the optimal dither estimator, in order to check the

tightness of the bound. For the cubic lattice, dither estimation may be carried out independently for each component

without loss of optimality. It is a well known result that theoptimal dither estimator in a mean-squared error sense

is given by the mean value of the dither conditioned on theNo observations: in our case, thei-th component of the

dither is uniformly distributed in an interval[x1, x2]; hence, the optimal estimate ist̂ = (x1 +x2)/2, and the variance

per dimension of the estimation error is

σ2
E = E

[

(T − t̂)2
]

= var(T ) =
1

12
· E[W 2], (45)

wherew = |x2 − x1| is the width of the feasible interval, and the expectation istaken over the joint pdf of the

observations. Actually, this expectation may be computed by replacing log(w) by w2 in Eq. (64) of Appendix I,

resulting in

σ2
E =

1

2
· (1 − α)2∆2

2 + 3No +N2
o

, (46)

which for largeNo is dominated by the termN2
o , differing from the right hand side of (44) only in a constant

multiplying factor. Note that due to the approximation ofHNo
used in (44), the latter is a lower bound only for

No ≥ 2; nevertheless, making use of the exact expression forHNo
, the right hand side of (44) can be shown to be

always lower than (46).

IV. PRACTICAL ALGORITHMS FOR SECRET DITHER ESTIMATION

The theoretical analysis carried out in the previous sections, besides quantifying the information leakage about

the secret dither, gives important hints about how to perform dither estimation. Indeed, the information-theoretic

formulation given in Section II is closely related to the theory of set-membership estimation(SME), akaset-theoretic

estimation[27], [28], which is widely known in the field of Automatic Control and in certain Signal Processing areas,

such as image recovery.9 In the set-membership formulation of a problem with solution spaceΞ, the i-th observation

is associated to a subsetFi ∈ Ξ that contains all estimates which are consistent with that observation; formally,Fi

can be expressed as

Fi = {z ∈ Ξ : ψi(z) = 1}, i = 1, . . . , No, (47)

whereψi(z) is a certain indicator function that depends on the problem formulation, andNo is the number of available

observations. The subsetF of estimates which are consistent with all the available information is the so-calledfeasible

solution setand is given byF =
⋂No

i=1 Fi; finally, a set-membership estimate consists in choosing anypoint z ∈ F .

In the dither estimation problem, the solution space of interest isR
n. We will deal for now only with the KMA

scenario, deferring until Section IV-C the (minor) modifications needed to cope with the CMA case. Thus, the indicator

function is given by

ψi(z) =







1, z ∈ Di

0, otherwise
(48)

9Interestingly, the set-membership framework has been previously applied to watermark embedding in speech signals [29].
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so Fi = Di and F = SNo
, whereDi and SNo were defined in Property 1. Moreover, ifT ∼ U(V(Λ)), which

is the worst case for the attacker, the set-membership estimator becomes the maximum likelihood dither estimator.

Although intuitively simple, such estimator may not be practical, since exact computation of the solution sets may

be computationally prohibitive, because of the increasingnumber of vertices inSNo
for No > 1. Nevertheless, the

attacker may not be interested in obtaining the exactSNo
, but instead be satisfied with an accurate approximation of

the feasible solution set. Algorithms that are suitable forperforming such approximation are discussed in this section.

Albeit other algorithms with better performance could be devised, our main purpose is to show that the theoretical

information leakage may be exploited in practice with manageable complexity.

According to Property 2, the assumptionα ≥ 0.5 allows us to consider the feasible region as a modulo-Λ convex

set. Furthermore, if we shift all observations by−ỹ1 +dm1
, then the modulo operation is transparent, so the feasible

regions for each observation (Eq. (8)) can be now simplified to10

Di = ṽi + (1 − α)V(Λ), i = 1, . . . , No, (49)

with ṽi defined in (42), rendering the problem convex, since the feasible solution sets (which are in fact polytopes)

result from the intersection of convex sets. Some guidelinesabout how to modify the algorithms in order to work

with α < 0.5 will be given in Section VIII.

The Voronoi region of any lattice can be described in a varietyof ways; for our purposes the most appropriate

description is by means of the bounding hyperplanes corresponding to its facets. In the following we assume that, for

a Voronoi cellV(Λ) with nf facets, we know: 1) a vectorφk which is outward-pointing normal to thek-th facet; 2)

a pointz0,k on thek-th facet. Taking into account each of the modified observations ṽi, we have

Di = {z ∈ R
n : φT

k (z − z0,k) ≤ φT
k ṽi, k = 1, . . . , nf ; i = 1, . . . , No}. (50)

A. Inner polytope algorithm

The set of modified observations{ṽi} together with Eq. (50) define an ensemble of linear inequalities, which in

turn describe a polytope inn-dimensional space. Hence, the feasible solution set can beexpressed as

SNo
=
{

z ∈ R
n : φT

k z ≤ φT
k ṽi + φT

k z0,k, k = 1, . . . , nf ; i = 1, . . . , No

}

. (51)

We are interested in computing an approximation of the feasible region. For such an approximation to be valid, it

must outer boundSNo
(as tightly as possible), since we do not want to discard any point in SNo

a priori, and it is

also desirable that the approximate region is easy to describe. Then, a reasonable choice is to search for the ellipsoid

of minimum volume that containsSNo
(formally known as theLöwner-Johnellipsoid ofSNo

[30]). Unfortunately, the

problem of finding the ellipsoid of interest is ill-posed (indeed, it has been shown to be an NP-complete problem)

[31], but on the other hand, the problem of finding the maximum volume ellipsoid contained in the polytope defined

by a set of linear inequalities is well-posed. Moreover, if we scale such ellipsoid by a factor ofn around its center

10Obviously, the offset−ỹ
1
− dm1

must be removed from the final estimate.
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(n is the dimensionality of the lattice), then the resulting ellipsoid is guaranteed to boundSNo
[30]. An ellipsoid

E(θ,P) in Euclidean space is defined by its centerθ and a symmetric positive definite matrixP such that

E(θ,P) =
{

z ∈ R
n : |(z − θ)TP−1(z − θ)| ≤ 1

}

=
{

P1/2r + θ : ||r|| ≤ 1
}

. (52)

The computation of̂θ and P̂ for the maximum volume ellipsoid contained inSNo
can be written as a convex

minimization problem with second order cone constraints [30]:

(θ̂, P̂) = arg min
θ,P

log det(P−1/2)

subject to ||P1/2φk|| ≤ φT
k ṽi + φT

k z0,i − φT
k θ,

∀ k = 1, . . . , nf ; i = 1, . . . , No.

(53)

This problem can be recast as asemidefinite problem[32] where a linear function is minimized subject to Linear Matrix

Inequality (LMI) constraints; this kind of optimization problems can be efficiently solved by means of interior-point

methods [31]. As will be checked in Section V, this approach yields tight approximations toSNo
, but it presents an

obvious drawback: the potential complexity of the minimization problem arising from the huge number of constraints

imposed by largen andNo. The scheme presented in the next section reduces the complexity by means of an iterative

approach.

B. Optimal volume ellipsoid (OVE) [33]

This is a classical SME algorithm that was originally devised for estimation in noisy AR models:

yk =
n
∑

j=1

θjyk−j + uk = θT φk + uk,

where φk = (yk−1, . . . , yk−n)T are then past observations,θ = (θ1, . . . , θn)T is the vector of parameters to be

estimated, anduk is the noise term, whose absolute value is assumed to be bounded byγk. For thek-th observation,

the feasible solution setFk is given by all points inRn that areconsistentwith the observation, i.e.

Fk = {z ∈ R
n : |yk − zT φk| ≤ γk}. (54)

Equation (54) defines a region ofR
n delimited by two parallel hyperplanes:

Hk,1 = {z ∈ R
n : zT φk = yk − γk}, Hk,2 = {z ∈ R

n : zT φk = yk + γk},

which encloses the true parameter vectorθ. The series of solution sets is then constructed iterativelyas Sk =
⋂k

i=1 Fi, k = 1, . . . , No. In order to avoid the costly computation of the exact{Sk}, the solution sets are approximately

described by means of bounding ellipsoids.

This algorithm can be straightforwardly applied to our problem by slightly modifying the description of the feasible

region given in (50): in our case, we need to parameterizeDi as the intersection of a finite number of parallel

hyperplanes. Assuming that the Voronoi cell of the considered lattice is composed ofnf pairwise parallel facets (see
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V(Λ)

(a)

Fk,i

initial ellipsoid

updated ellipsoid

(b)

Fig. 5. (a) Voronoi region of the hexagonal lattice delimited by three pairsof parallel hyperplanes. (b) Intersection between an ellipsoid and

a pair of hyperplanes.

Fig. 5-(a)),11 the feasible solution set for thei-th observation can be specified by a matrixΦn×nf /2, and a vector

γnf /2×1 such thatDi =
⋂nf /2

j=1 Fi,j , where

Fi,j = {z ∈ R
n : |ṽT

i φj − zT φj | ≤ γj}, (55)

beingφj the j-th column ofΦ, andγj , φT
j z0,k is thej-th element ofγ. Hence, the series of solution sets is given

by

Sk =
k
⋂

i=1

Di =
k
⋂

i=1

nf /2
⋂

j=1

Fi,j , k = 1, . . . , No. (56)

The computation of the(k + 1)-th solution set amounts to obtaining an ellipsoidE(θ̂k+1, P̂k+1) ⊇ E(θ̂k, P̂k) ∩ Dk.

Such ellipsoid is iteratively computed in the following manner:

1) First, makeE(c0,B0) = E(θ̂k, P̂k)

2) ComputeE(ci+1,Bi+1) ⊇ E(ci,Bi) ∩ Fk,i+1, i = 0, . . . , nf/2 − 1

3) Finally, makeE(θ̂k+1, P̂k+1) = E(cnf /2,Bnf /2)

This way, in Step 2 we are intersecting iteratively one ellipsoid with one setFk,i, as is depicted in Figure 5-(b).

Clearly, we are interested in finding the ellipsoid with minimum volume that contains such intersection, i.e.

(c∗i+1,B
∗
i+1) = arg min

c,B
vol(E(c,B))

subject to E(ci,Bi) ∩ Fk,i+1 ⊆ E(c,B).

(57)

which is precisely the minimization problem addressed in the OVE algorithm [33], whose analytic solution reads as

c∗i+1 = ci +
τiBiφi

(

φT
i Biφi

)1/2
, B∗

i+1 = δi

(

Bi − σi
Biφiφ

T
i Bi

φT
i Biφi

)

, (58)

whereτi, σi, δi are variables that depend on the observationṽk, the current ellipsoidE(ci,Bi) andFk,i+1 (details

about their calculation can be found in [33]), and finallyφi is the i-th column of matrixΦ.

11Should this not be true, the problem can still be recast in a similar manner byadding some additional hyperplanes.
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The algorithm just described is obviously optimal in one dimension, since the ellipsoids are simply real intervals.

Another interesting feature of this approach, and common tomany other iterative SME algorithms, is that further

refinements on the solution set are possible by recirculatingthe observed data, i.e., by feeding to the system the same

set of observations repeatedly (as if they were in a circularbuffer, for instance). This is possible because the resulting

bounding ellipsoid in thei-th iteration depends on both the(i − 1)-th bounding ellipsoid and thei-th observation.

This important feature provides performance similar to thatof the aboveinner polytopealgorithm, as will be checked

in Section V.

C. Dither estimation in the CMA scenario

The CMA scenario implies minor changes to the estimation algorithms proposed above for the KMA case. Actually,

estimation in the CMA case can be performed as follows:

1) Assume that the sequence of observations is watermarked with messagem ∈ M,

2) Perform estimation as in the KMA case,

3) OnceŜNo
has been obtained, compute the approximate feasible regionŜCMA

No
as in Eq. (23).

4) Provided thatT ∼ U(V(Λ)), two possible cases may arise after performing Step 3:

• The resulting feasible regions (ŜNo
+ dm) overlap; then, according to Eq. (22), the probability of finding the

dither in their intersection is higher than in the remainingregions.

• The regions do not overlap; then, the dither is equally likelyin any of the feasible regions.

V. EXPERIMENTAL RESULTS

This section provides a comparison of the practical performance for the different estimators proposed in Section IV,

considering only the KMA scenario. The optimization problems involving LMI’s were solved using the optimization

packages YALMIP [34] and SeDuMi [35] for Matlab, and the set of observations̃yi was generated according to the

distribution given in (5). As for the theoretical part, we will consider here some of the so-calledroot latticesand

their duals, introduced in Section III. The Voronoi regions ofthese lattices are described in [24], from which we

derived all the parameters needed for implementing our attack. We provide two different measures of performance of

the proposed estimators:

1) the first one is based on the volume of the estimated feasibleregions. The volume of thek-th ellipsoid reads as

vol(E(θ̂k, P̂k)) = (det P̂k)
1/2 · Vn(1), (59)

whereVn(1) stands for the volume of then-dimensional sphere of unit radius. WhenT ∼ U(V(Λ)), all points in

the interior of the estimated feasible region̂SNo
have the same probability of being the true dither vectort0, so it

is immediate to compute the residual entropy of the dither aslog(vol(ŜNo
)). The average value of thisempirical

residual entropy is computed over a large number of realizations. The performance of each method is quantified by

the gap between this measure and the theoretical result of Section III.
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Fig. 6. Performance comparison (in terms of residual entropy) for the hexagonal lattice (a) and Gosset latticeE8 (b), for KMA and α = 0.5.

2) the second measure of performance is the squared estimation error per dimension, i.e.1n ||t − t̂||2, wheret̂ has

been taken as the center of the resulting ellipsoid. Note that, as long as this center is close to the center of masses of

SNo
, the resulting estimator will be close to the minimum mean-squared error estimator (i.e., the conditional mean

estimator). Again, the plots represent this squared error averaged over a large number of observations.

In the experiments, the embedding distortion was fixed toDw = α2/12, with α = 0.5. Figure 6 shows the

performance (in residual entropy terms) of the different estimators when the embedding lattices are the hexagonal and

E8 [19]. Although the inner polytope algorithm provides the best performance, it can be observed that the property

of recirculation allows to compensate for the loss of optimality of the OVE algorithm. The performance gain is

remarkable for the first recirculations, but marginal above acertain number, as can be seen in Fig. 6-(b). Also notice

that the number of recirculations must be increased withn in order to match the performance of the inner polytope

algorithm. Finally, the plots in Figure 7 show the empirical mean squared error per dimension obtained with each

method. The lower bound given by Eq. (40) is plotted for comparison, showing the good performance of both methods.

Interestingly, the OVE algorithm seems to perform better than the inner polytope in terms of mean squared error. The

performance of the averaging estimator is also plotted for reference; such estimator is optimal forn → ∞ andΛ∗
n,

as discussed in Section III-D, but for smalln it is clearly far from being so.

A. Possible attacks based on dither estimates

Once the attacker has estimated the dither signal (using themethods proposed here, for instance), he can exploit

this knowledge in order to devise powerful attacks against the data hiding scheme which would not be possible for

a blind attacker. The following are some examples:

1) Complete watermark removal: under the KMA assumptions (i.e., knowledge of the message embedded) the em-

bedding process of lattice DC-DM is fully invertible when the dither is known, as long as the distortion compensation

parameter used is smaller than 1 [16, Sect. VII]. This implies that the attacker is able to recover the original host
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Fig. 7. Mean squared error per dimension of the dither estimate, for the hexagonal lattice (a) and Gosset latticeE8 (b), for KMA andα = 0.5.

signal, provided thatα < 1 and the watermarked signal does not suffer any non-invertible transformation a posteriori,

such as clipping or rounding. In the CMA case, there is not a unique possible original host, but the uncertainty is

reduced to a finite set of vectors (as many as|M|).
2) Unauthorized embedding of messages: in copy protection scenarios the attacker may remove the watermark

inserted in a certain protected content and embed later a different message: for instance, he may change the status of

a video from ”Copy Never” to ”Copy Once”.

3) Generation of forgeries: in the authentication scenarios proposed by Eggerset al. [17], that are mainly threatened

by the CMA attack, as it was discussed in the introduction, the attacker can watermark contents that will be taken as

authentic. Notice that for generating a forgery there is no need to know the exact correspondence between messages

and coset representatives.

4) And finally, unauthorized decoding of messages embedded inother pieces of content watermarked with the

same key. Take into account that reliable decoding is possible only if the dither estimate was obtained in the KMA

scenario; in the CMA case, the ambiguity on the embedded message will allow, at most, to check whether different

watermarked contents convey the same message or not.

Obviously, the goodness of the host reconstruction in the first attack will depend on the accuracy of the dither

estimate at hand. For the other attacks, this accuracy will affect their probability of success, in the sense that poor

estimates may lead to the wrong decoding/detection region.

B. Complexity issues

One can find in the literature of set-membership estimation approaches that offer better performance than the ellip-

soidal approximations, by computing the exact solution sets [28],[36]. Nevertheless, they may be very computationally

demanding in large-scale problems. Instead, the algorithms considered in this paper have proved to be efficient in

giving approximate solutions for several hundreds of observations. For the optimization problem in (53), it has been
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shown that the number of iterations needed to solve the problem (by means of interior-point methods) does not grow

faster than a polynomial of the problem size [32].12 Most of the computational cost of each iteration lies in the

least-squares problem (of the same size as the original problem) that must be solved, whose number of iterations is

again polynomial with the problem size. However, in practice it is possible to exploit the problem structure (sparsity,

for instance) so as to reduce complexity: in our case, for example, there is a potentially large number of redundant

constraints that can be removed for alleviating the computational burden. For high-dimensional lattices it is also

possible to simplify the problem description (albeit resulting in looser estimates) by approximating the considered

Voronoi region by another simpler polytope that boundsV(Λ).

For the OVE algorithm, the number of arithmetic operations (scalar sums and products) carried out in each iteration

isO(n2). Also, in the OVE algorithm we perform exactlyNo·nf

2 ·nr iterations, whereNo is the number of observations,

nf is the number of facets of the Voronoi cell (equivalently, the number of linear inequalities specifying the problem),

and nr is the number of recirculations of the data. The termnf will largely depend on the considered lattice, in

general, andnr will be determined by the required accuracy, giving a degreeof freedom to the attacker. Finally, it is

interesting to note that OVE-like algorithms automaticallyget rid of redundant constraints, using only those pairs of

hyperplanes that produce an update on the solution set.

VI. COMPARISON: LATTICE DC-DM VS. COSTA

For the lattice DC-DM scheme we have analyzed in Section II, the entropy of the codebook is rather limited

due to the codeboook structure and the chosen form of randomization, negatively affecting security. Lattice DC-DM

schemes are deeply connected with the theoretical construction developed by Costa [18]. However, the codebookU in

the latter is totally different, since it is random by definition. The main purpose of the brief comparison given in the

following is to quantify how much can be gained in terms of security by using a codebook with these characteristics.

The theoretical security analysis for Costa’s scheme will not be included in this paper due to the lack of space, but

it can be found in [10].

In Costa’s scheme, for the KMA case andNo = 1, it can be shown that (recall thath(U|Y,M) = h(U) −
I(Y;U|M))

h(U|Y,M)

n
=
h(U)

n
− 1

2
log

(

P + σ2
X

(1 − α)2σ2
X

)

, (60)

whereσ2
X andP stand for host and watermark power, respectively, andh(U) denotes the differential entropy of the

codebook, given byh(U) = n
2 |U| log

[

2πe(P + α2σ2
X)
]

. Eq. (60) depends on the ratioλ , σ2
X/P which quantifies

the embedding distortion, whereas|U| depends both onλ andξ , P/σ2
N , whereσ2

N is the channel noise. Interestingly,

if we makeλ → ∞ (which corresponds to a low embedding distortion regime), the information leakage for Costa

tends to−n log(1−α), exactly as for DC-DM (see Eq. (17)). Actually, the information leakage in lattice DC-DM also

depends onλ, and in fact it is possible to compute this dependency numerically, by means of numerical integration.

12The size of an optimization problem is commonly understood as the dimensionality of a vector whose components are the coefficients of

the analytical expressions for the constraints and the objective variables.
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In Fig. 8-(a), the information leakage for Costa and scalar DC-DM (i.e., SCS) is shown. It is remarkable the striking

similarity in the behavior of both schemes. Furthermore, it can be seen that the asymptotic analysis is in good

agreement with the numerical results for the range of embedding distortions of practical interest.

Nevertheless, when the comparison between Costa and lattice DC-DM is made in terms of residual entropy, the

similarities disappear (see Figure 8-(b)): whereas for lattice DC-DM the entropy of the codebook is bounded by

log(vol(V(Λ))), the residual entropy in Costa’s scheme is unbounded whenλ → ∞. The last fact is a consequence

of the codebook construction in Costa, where all codewords are mutually independent and its number increases with

λ. This constitutes the main advantage, in terms of security, of the random codebook scheme over the lattice scheme

that relies solely on dithering. For lattice DC-DM, the number of codewords follow a similar dependence withλ, but

every codeword just depends onΛ, the corresponding coset representative, and the secret dither.

On the other hand, for the CMA case, and assuming that the watermarker is transmitting information at the maximum

reliable rate allowed by the channel, we have (forNo = 1)

I(Y1;U|CM)

n
=
I(Y1;U|M)

n
− I(Y1;M |U)

n
. (61)

This result is clearly related to that given in (24) for DC-DM.Here, we can see that the uncertainty about the codebook

increases exactly in the same quantity as the reliable transmission rate.

VII. A PPLICATION TO OTHER SCENARIOS

In this section we discuss the application of the proposed approaches to other related but more involved scenarios.

This also shows the importance of the KMA scenario and of the estimators developed for such case.

1) α < 0.5: Our analysis was restricted to the caseα ≥ 0.5. In the theoretical part, all the given information

leakages constitute upper bounds forα < 0.5. For this case, the theoretical analysis gets more intricate, since the

feasible regionSNo
may be composed of multiple modulo-Λ convex sets (recall Figure 2). Difficulty of the estimation
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is also greatly increased, since it would be necessary to apply several KMA/CMA estimators in parallel, one for each

possible convex set. WithNo large enough, all convex feasible regions are likely to vanish except one (in the KMA

case), but the increase in the number of convex sets during the first observations may be fairly large, especially when

α→ 0. In such case, other set-membership approaches suited to non-convex solution sets may perform better [28].

2) Spread Transform Dither Modulation (STDM) [13]: DC-DM schemes may be applied in conjunction with spread

transform in low-rate data hiding applications. In that kind of schemes, lattice quantization takes place in a secret

projected domain, parameterized by certain projection matrix, and secret dithering can still be used in the projected

domain for improving the security of the scheme. Ignorance of the projection matrix invalidates direct application of

the estimation algorithms proposed here; however, recent works [2], [12] have shown that independent component

analysis (ICA) may be used for estimating the projection matrix. Thus, if ICA is successful, dither estimators may

be applied in a second step.

3) Total ignorance of the embedded messages: consider a general scenario where the only information at hand for

the attacker is the set of watermarked signals; this is the so-called Watermark Only Attack (WOA), following the

nomenclature introduced in [2]. A theoretical analysis similar to that of the KMA may be used to show that in this

framework it is possible to achieve (at least theoretically) perfect secrecy in some cases [10], [37], for instance when

α = 0.5 is used in a binary transmission scheme. In the practical side it is still possible to carry out dither estimation as

long as the perfect secrecy condition is not fulfilled; however, KMA estimators cannot be directly applied: one needs

to hypothesize first a message sequence and then apply the KMA estimator. However, the problem can be tackled

without the need of a brute-force approach if the posterior probability of the message sequences is considered. The

maximum likelihood estimate of the message sequence is

(m̂1, . . . , m̂No
) = arg max

m1,...,mNo

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

), (62)

and the posterior probability can be factored as

f(ỹ1, . . . , ỹNo
|m1, . . . ,mNo

) =

No
∏

k=1

∫

f(ỹk|mk, t) · f(t|ỹ1, . . . , ỹk−1,m1, . . . ,mk−1)dt, (63)

where the conditional pdf of the secret dither is given by (11). When the pdf of the secret dither is uniform, computation

of each term in (63) is straightforward, since it is proportional to the volume ofDk∩Sk−1. Based on this factorization,

dither estimation in the WOA scenario may be thought of as a tree search where a KMA estimator is applied to

each branch, and each of these branches corresponds to a hypothesized message sequence whose probability can be

computed through (63). During the tree search, those branches with low probability may be discarded for simplifying

the estimation. Moreover, if the value ofα is above a certain threshold (which depends on|M| and the specific

lattice partition) the complexity of the tree search can be dramatically reduced because all branches with non-null

probability can be written in terms of a unique branch. As an interesting byproduct of this approach, an estimate of

the embedded message sequence can be also obtained. Nevertheless, notice that these are only the main guidelines of

the procedure that should be applied to the WOA scenario; a more rigorous and complete analysis will be published

elsewhere.
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4) Permutations: the security of a lattice DC-DM scheme may beimproved by applying secret permutations to

the host vectors. This introduces an additional degree of uncertainty that invalidates the direct application of the

estimators proposed in this paper. However, if the same permutation is used in multiple watermarked blocks, it is

still possible to exploit the information leakage, as shownin the next example: assume that the host is partitioned in

l n-length vectorsxi, i = 1, . . . , l, and these vectors are arranged in an × l matrix X. Given a secret permutation

matrix P, the columns of the new matrixX′ = PX are watermarked using the standard lattice DC-DM scheme,

yielding a watermarked matrixY′. Later on, the inverse permutation is applied toY′, obtainingY, and its rows are

the observations that are made available to the attacker. Depending on the symmetry properties of the embedding

lattice, two possible cases arise:

1) The lattice is symmetric to permutations of its components. This happens, for instance, to the cubic and

checkerboard(akaquincunx) lattices in 2 dimensions [7], [19]. If this is the case, thenthe attacker can run the

dither estimation algorithm disregarding the actual permutation, obtaining an estimate of the permuted dither.

It is easy to see that this permuted estimate allows the same attacks as those discussed in Section V-A, as long

as the permutation and the secret dither are the same in the attacked contents.

2) The lattice is not symmetric to permutations. The main consequence is that the feasible regions for the dither

are different under each permutation, and this can be exploited to detect inconsistent arrangements in the

components of the observations, i.e., those arrangements that produce an empty feasible region cannot be

correct. Some experiments performed with the OVE algorithm and the hexagonal lattice have shown that, using

10 recirculations, an average of 32 observations are neededto successfully detect inconsistent arrangements of

the components. Using the inner polytope algorithm it is also possible to check inconsistencies: one just needs

to run thefeasibility testto check whether all constraints in the optimization problem can be simultaneously

satisfied or not. If not, the considered arrangement is inconsistent.

VIII. C ONCLUSIONS

The main conclusion of this work is that lattice DC-DM schemesfor data hiding relying only on secret dithering

are vulnerable to security attacks both in the KMA and CMA scenarios, of practical interest as discussed in the

Introduction. For the scenarios considered in this paper, it was shown in Section III that the security level (in

terms of residual entropy) can be enlarged by increasing thedimensionality and choosing the appropriate lattice

quantizer, although the gain for smalln is rather limited; also, asymptotic values are given for theequivocation and

the variance of the estimation error, explaining the fundamental gap between the security of DC-DM schemes and

spread spectrum methods. Section V shows the strong link between the information-theoretic and set-membership

estimation frameworks, applying the latter for the first timeto attacks in the data hiding scenario. Additionally, the

results in that section confirm that (suboptimal) attacks to security can be made with manageable complexity, yielding

accurate dither estimates. This highlights the need for key management solutions, such as those proposed in [38]

through temporal redundancy control, in order to reduce thenumber of observations conveying information about the

same dither sample.
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The comparison given in Section VI shows that the security weaknesses of lattice DC-DM are not inherent to

quantization-based schemes, but they are due to the fact that the randomness of the codeboook relies only on secret

dithering. A possible improvement using permutations was briefly considered in Section VII, but dither estimation

attacks still seem to be possible, at least with low-dimensional lattices. A new strategy, recently proposed in [39],

is the application of secret rotations to the embedding lattice. This approach, in conjunction with permutations, still

keeps the structure of the codebook (which is desirable froman implementation point of view) while increasing its

a priori entropy. Obviously, the counterpart is the increase needed in the length of the key, but it still constitutes a

promising strategy that deserves rigorous analysis in the future.
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APPENDIX I

RESIDUAL ENTROPIES IN ONE DIMENSION

Here we compute the mean value of (28). It can be seen thatW = 2µ+ min{Ṽ1, . . . , ṼNo
} − max{Ṽ1, . . . , ṼNo

}.

Hence,W = 2µ+X, whereX is the random variable defined as

X , min{Ṽ1, . . . , ṼNo
} − max{Ṽ1, . . . , ṼNo

},

wherex ∈ (−2µ, 0], so the pdf ofW is fW (w) = fX(w − 2µ). This allows us to rewrite the problem as

E[log(W )] =

∫ 2µ

0
log(w) · fW (w)dw. (64)

First, let us see how the pdf ofX can be computed. For havingX = x, it should bemin{. . .} = t andmax{. . .} =

t− x; this is so wheñvi = t, ṽj = t− x, andt ≤ ṽk ≤ t− x, for k = {1, . . . , No} \ {i, j}, but taking into account

that there are infinite values oft that yieldX = x. Hence, the pdf ofX reads as

fX(x) = No(No − 1)

∫ µ+x

−µ
fṼi

(t) · fṼi
(t− x) · (Prob{t < Ṽi < t− x})No−2dt, (65)

where the factorNo(No − 1) comes from the number of different orderings of the minimum and the maximum

in vector (ṽ1, . . . , ṽNo
); since all observations are i.i.d., we can simply multiply the integral by this factor. When

Ṽi ∼ U(−µ, µ), computation of (65) in this case is straightforward and yields

fX(x) = No(No − 1) · (−x)No−2

((1 − α)∆)No
· [(1 − α)∆ + x], (66)

for µ = (1 − α)∆/2. By inserting (66) into (64) and applying integration by parts recursively, the residual entropy

results finally in

E[log(W )] = log (1 − α)∆ −HNo
+ 1, (67)

whereHNo
=
∑No

i=1
1
i is theNo-th harmonic number.
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APPENDIX II

LOWER BOUND ON THE EQUIVOCATION

By the definition of mutual information, we have

I(Ỹ2, . . . , ỸNo
;T′|M2, . . . ,MNo

) = h(Ỹ2, . . . , ỸNo
|M2, . . . ,MNo

) −
No
∑

i=2

h(Ỹi|T′,Mi). (68)

The first term of (68) can be bounded from above as [6]

h(Ỹ2, . . . , ỸNo
|M2, . . . ,MNo

) = h(Z2 + T′, . . . ,ZNo
+ T′) ≤

n
∑

i=1

h(Zi,2 + T ′
i , . . . , Zi,No

+ T ′
i ), (69)

whereZi,j is the i-th component ofZj , andT ′
i denotes thei-th component ofT′. Since the host signalsXj and the

secret ditherT are mutually independent, it follows thatZi,j andT ′
i are independent. Hence, we can write

R , Cov(Zi,2 + T ′
i , . . . , Zi,No

+ T ′
i ) = RZi

+ RT ′

i
, (70)

whereRZi
, Cov(Zi,2, . . . , Zi,No

), andRT ′

i
, Cov(T ′

i , . . . , T
′
i ). Furthermore, it follows from Assumption 2 that the

self-noise is white [26] with variance per dimension(1 − α)2P (Λ∗
n). Hence, by considering thatZi,j are mutually

independent for allj, we have

RZi
= (1 − α)2P (Λ∗

n) · INo−1, RT ′

i
= (1 − α)2P (Λ∗

n) ·











1 1 . . . 1
...

...
...

...

1 1 . . . 1.











, (71)

for i = 1, . . . , n. This allows us to bound Eq. (69) as [6, Th. 9.6.5]:

h(Ỹ2, . . . , ỸNo
|M2, . . . ,MNo

) ≤ n

2
log
(

(2πe)No−1|R|
)

=
n

2
log
(

(2πe(1 − α)2P (Λ∗
n))No−1 ·No

)

. (72)

The equivocation or residual entropy is

h(T′|Ỹ2, . . . , ỸNo
,M2, . . . ,MNo

) = h(T′) − I(Ỹ2, . . . , ỸNo
;T′|M2, . . . ,MNo

), (73)

hence, using (68) and (72), Eq. (73) can be lower bounded as

h(T′|Ỹ2, . . . , ỸNo
,M2, . . . ,MNo

) ≥ h(T′) +

No
∑

i=2

h(Ỹi|T′,Mi) −
n

2
log
(

(2πe(1 − α)2P (Λ∗
n))No−1 ·No

)

. (74)

Taking into account thath(Ỹi|T′,Mi) = h(T′) = h(T) + n log(1 − α), and rearranging terms, we finally arrive at

the following lower bound to the equivocation per dimension:

1

n
h(T′|Ỹ2, . . . , ỸNo

,M2, . . . ,MNo
) ≥ No

h(T)

n
− 1

2
log
(

(2πeP (Λ∗
n))No−1 ·No

)

+ log(1 − α), (75)

and after substituting1nh(T) = 1
n log(vol(V(Λ∗

n))) = 1
2 log

(

P (Λ∗

n)
G(Λ∗

n)

)

, we obtain Eq. (34).
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APPENDIX III

PROOF OFTHEOREM 1

In order to arrive at Eq. (35), we start from the expression

1

n
h(T′|Ỹ2, . . . , ỸNo

,M2, . . . ,MNo
) = No

h(T)

n
+No log(1 − α) − 1

n
h(Ỹ2, . . . , ỸNo

|M2, . . . ,MNo
), (76)

which can be straightforwardly obtained by following the reasoning in Appendix II. First, we note that for the sequence

of optimum lattice quantizersΛ∗
n we have [26]

lim
n→∞

h(T)

n
=

1

2
log(2πeP (Λ∗

n)). (77)

On the other hand, we want to prove that the following relation holds:

lim
n→∞

1

n
h(Ỹ1, . . . , ỸNo−1|M1, . . . ,MNo−1) = lim

n→∞

1

n
h(Z1 + T′, . . . ,ZNo−1 + T′)

=
1

2
log
(

(2πe(1 − α)2 · P (Λ∗
n))No−1 ·No

)

, (78)

with Zi, T′ independent and uniformly distributed in(1−α)V(Λ∗
n), beingV(Λ∗

n) the Voronoi cell ofΛ∗
n with second

moment per dimensionP (Λ∗
n). Notice that we have rearranged the observation indices from 1 toNo −1, for the sake

of clarity. We will prove this result by making use of two lemmas.

Lemma 3:Let Z, T′ be two independent random variables uniformly distributedin (1 − α)V(Λ∗
n). We have that

lim
n→∞

h(Z + T′)

n
=

1

2
log
(

2πe(1 − α)2P (Λ∗
n) · 2

)

. (79)

Proof: The entropy power inequality [6] states that

e
2

n
h(Z+T

′

) ≥ e
2

n
h(Z) + e

2

n
h(T

′

). (80)

Furthermore, we know that [26]

lim
n→∞

h(Z)

n
= lim

n→∞

h(T′)

n
=

1

2
log
(

2πe(1 − α)2P (Λ∗
n)
)

, (81)

so we can write

lim
n→∞

e
2

n
h(Z) + e

2

n
h(T

′

) = 2 · elog(2πe(1−α)2P (Λ∗

n)) = 2πe(1 − α)2P (Λ∗
n) · 2 = e

2

n
h(U), (82)

with U ∼ N (0, 2(1 − α)2P (Λ∗
n) · In). Thus, from Eq. (80) we have that

lim
n→∞

1

n
h(Z + T′) ≥ h(U)

n
=

1

2
log(2πe(1 − α)2P (Λ∗

n) · 2), (83)

and we know from Eq. (72) that

h(Z + T′)

n
≤ 1

2
log
(

2πe(1 − α)2P (Λ∗
n) · 2

)

(84)

for all n. Hence, by combining (83) and (84) the lemma follows.

Lemma 4:For Zi, T′ uniformly distributed in(1 − α)V(Λ∗
n), the following result holds

lim
n→∞

1

n
h(Zm + T′|Zm−1 + T′, . . . ,Z1 + T′) =

1

2
log

(

2πe(1 − α)2P (Λ∗
n) · m+ 1

m

)

, for m ≥ 1. (85)
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Proof: We will prove the result by induction. Since it was proven form = 1 in Lemma 3, we will show now

that it is true form = i, assuming that it holds form ≤ i− 1. Making use of the entropy power inequality and the

convexity of log(ex + c) in x [40], we can write

2

n
h(Zi + T′|Zi−1 + T′, . . . ,Z1 + T) ≥ log

(

e
2

n
h(Zi) + e

2

n
h(T

′

|Zi−1+T
′

,...,Z1+T
′

)
)

. (86)

By using the chain rule for entropies, it can be shown that thefollowing equivocation can be written as

h(T′|Zi−1 + T′, . . . ,Z1 + T′) = i · h(Zi) −
i−1
∑

j=1

h(Zj + T′|Zj−1 + T′, . . . ,Z1 + T′), (87)

and making use of the inductive hypothesis we have that

lim
n→∞

1

n
h(T′|Zi−1 + T′, . . . ,Z1 + T′) =

i

2
log
(

2πe(1 − α)2P (Λ∗
n)
)

− 1

2

i−1
∑

j=1

log

(

2πe(1 − α)2P (Λ∗
n) · j + 1

j

)

=
1

2
log

(

2πe · (1 − α)2P (Λ∗
n)

i

)

. (88)

Thus, if we take limits in (86) we arrive at the following bound:

lim
n→∞

1

n
h(Zi + T′|Zi−1 + T′, . . . ,Z1 + T′) ≥ 1

2
log

(

2πe(1 − α)2P (Λ∗
n) · i+ 1

i

)

. (89)

Note that from the bounding given in (72) and the inductive hypothesis it follows that

lim
n→∞

1

n
h(Zi + T′|Zi−1 + T′, . . . ,Z1 + T′) ≤ 1

2
log

(

2πe(1 − α)2P (Λ∗
n) · i+ 1

i

)

. (90)

Hence, by combining (89) and (90), the lemma follows.

Now, using the chain rule for differential entropies we can write

1

n
h(Z1 + T′, . . . ,ZNo−1 + T′) =

1

n

No−1
∑

i=1

h(Zi + T′|Zi−1 + T′, . . . ,Z1 + T′), (91)

and taking the limit whenn→ ∞, by virtue of Lemma 4, we arrive at the result given in (78). Finally, by combining

(76), (77) and (78) we can conclude that

lim
n→∞

1

n
h(T′|Ỹ2, . . . , ỸNo

,M2, . . . ,MNo
) =

1

2
log(2πeP (Λ∗

n)) − 1

2
log(No) + log(1 − α),

which is the desired result. If we identify nowP (Λ∗
n) = Dw/α

2, then Theorem 1 follows.
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[8] M. K. Mihçak, R. Venkatesan, and M. Kesal, “Cryptanalysis of discrete-sequence spread spectrum watermarks,” in5th International

Workshop on Digital Watermarking, F. A. P. Petitcolas, Ed. Noordwijkerhout, The Netherlands: Springer-Verlag, October 2002, pp.

226–246.
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