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Performance Analysis of Fridrich-Goljan Self-Embedding Authentication Method

Gabriel Domı́nguez-Conde†*, Pedro Comesaña† and Fernando Pérez-González†

Abstract

This paper analyzes the performance of the image authentication method based on robust hashing proposed by J. Fridrich and M.

Goljan. In this method both the embedder and the detector generate the watermark from a perceptual digest of the image. Therefore,

an accurate performance analysis requires assessing the relation between noise and hash bit errors. Our approach first derives the

probability of hash bit error due to watermark embedding and/or the attack, and then uses such probability to derive the probabilities

of false positive and false negative.

Index Terms

Content-based authentication, robust hash, performance analysis.

I. I NTRODUCTION

In the last years, a number of powerful and user-friendly multimedia editing tools for digital video, image and audio have

proliferated, allowing an unskilled person to easily modify contents and produce forgeries. To regain confidence on digital objects,

several authentication tools have been proposed, some of them relying on digital watermarking techniques. In watermarking-

based authentication techniques a low-power signal (watermark) is embedded in the digital content to be protected (host signal);

then, the authenticity of the received signal is determinedby verifying the presence of the correct watermark. Concerning the

generation of such watermark, sometimes it is just pseudorandomly produced using a secret key shared by the embedder and

the detector, whereas in other cases a perceptual digest of the digital content is also used. This low-dimensional summary of a

digital content is usually referred to as arobust hash, perceptual hash or soft hash.

In contrast to a cryptographic hash, a robust hash would be ideally sensitive only to perceptual changes, meaning that two

perceptually identical digital objects should yield the same result. However, this requirement is difficult to be fullymet in

practice, as the design of a tractable mathematical model ofhuman perception that accurately quantifies perceptual similarity is

still an unsolved task. On the other hand, given that only authorized users should be able to generate a valid robust hash,the

chosen hash functions usually depend on a secret key.

So far, several authentication techniques based on watermarking have been presented, most of them aimed at images. Schneider

et al. [1] proposed, based on the ideas of Friedman [2], one ofthe earliest methods which uses a robust hash to aid the

verification of the authenticity of digital contents. Bhattacharjee and Kutter [3], proposed a robust hashing authentication scheme

by generating a set of feature-points with a set of Mexican-Hat wavelets. In [4] Kundur and Hatzinakos described a fragile

method for tamper localization by using a quantization technique to embed the watermark in a transform domain. Venkatesan
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et al. [5] developed a robust hashing method which divides animage into random non-overlapping blocks. The statistics of

each block are used to generate the robust hash. Lin and Chang[6] introduced a robust authentication watermarking scheme,

designed for JPEG compression, based on the relation between the discrete cosine transform (DCT) coefficients. In [7], Cannons

and Moulin proposed a non-blind robust authentication method based on robust hashing and watermarking, and used a statistical

description of the host image to analyze its performance. More recently, Swaminathan et al. have proposed a robust hashing

method for image authentication, based on invariant characteristics of the images, e.g., the resilience to RST (rotation, scaling

and translation) of Fourier-Mellin transform [8]. Finally, in [9] Monga and Mıhçak have presented a robust hashing technique

where a content-based binary vector is extracted by applying a Non-Negative Matrix Factorization (NMF) to the image.

From the set of authentication techniques which embed a watermark that depends on an image robust hash (also known

as watermarking self-embedding authentication), the algorithm proposed by Fridrich and Goljan [10]–[12] is one of themost

prominent, and has been extensively adopted as a reference in many other works and comparisons (e.g., [7], [8], [13]). Inaddition,

this method uses a watermark synthesis function which successfully fills the gap between robust hashing and watermarking-based

authentication; in fact, the watermark generation has the particular feature that it can be tuned to account for the error sensitivity

of the overall authentication technique.

However, a performance analysis of this widely-referencedself-embedding authentication algorithm is still lacking. This means

that for comparison purposes Monte Carlo techniques need beused, with the obvious drawback of requiring long simulation

runs whenever small probabilities are to be estimated. In addition, this lack makes it very difficult to determine the influence of

the various parameters of the Fridrich-Goljan method on performance. This paper aims at filling this gap by presenting a novel

performance analysis and drawing some conclusions that canbe extended to general hash-based authentication schemes.

In our analysis, we first compute the hash bit error probability due to the watermark embedding and noise, and then we show

its impact on the Receiver Operating Characteristic (ROC) of the overall scheme. Notice that this methodology could be used to

analyze other authentication schemes based on robust hashing, as the same principles would apply. To the best of our knowledge,

this is the first time that the performance of a watermarking authentication scheme based on robust hashing is analyzed inthis

way.

In the next section we give a brief introduction to the robustauthentication method proposed by Fridrich and Goljan, andthe

embedding and detection processes, whereas performance isaddressed in Sect. III. In Sect. IV simulations are carried out to

validate our approach; in addition, the modifications on theintroduced performance analysis necessary for dealing with image

compression, intensity change and linear filtering are outlined. Finally, Sect. V presents the main conclusions and discusses

some future lines.

A. Notation

We will denote scalar random variables with capital letters(e.g.,X) and their outcomes with lowercase letters (e.g.x). The

same notation criterion applies to random vectors and theiroutcomes, denoted in this case by bold letters (e.g.X, x), with

transposes denoted by the superindexT . The ith component of a vectorX is denoted asXi. Images in the pixel domain will

be partitioned inNb blocks and arranged as vectors.

II. D ESCRIPTION OFFRIDRICH AND GOLJAN METHOD

In this section a description of the method by Fridrich and Goljan [11], that will be analyzed in Sect. III, is given; furthermore,

a correlation-based detector for that method is proposed.
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A. Hash Computation

The original host signal in the pixel domain is block-wise partitioned and arranged asNb vectorsxi, 1 ≤ i ≤ Nb, each of size

M .1 For the sake of notational simplicity, we will avoid the block superindex; however, it must be clear that the authentication

method operates at the block level. From eachx, the variance of which will be denoted byσ2
X , and depending on a set ofNh

length-M pseudo-random sequencessj (generated irrespectively ofx), 1 ≤ j ≤ Nh, anNh bits hash vectorh is computed as

hj =

8

<

:

0 if 1
M
|xT · sj | < Te

1 otherwise
,

whereTe is a quantization threshold (constant along the complete image) computed to comply with the constraint that the total

number of0’s over all theNb hash vectorsh of the image must be equal to the total number of1’s. In our analysis this threshold

will be approximated by the median of the absolute value of the coefficients obtained by projecting the host image blocks onto

the pseudorandom sequences, i.e.1
M

XT ·Sj . Noticing that the method operates at the block level, for our purposes we will rely

on a block-wise characterization of the host image. Therefore, for the derivations contained in this paper the probability density

function (pdf) of the absolute value of the projected host isobtained by averaging over the projected host blocks. Usingthis

approximation, the number of zeros and ones cannot be guaranteed to be equal for every hash originated from a given image;

however, their relative frequency will be asymptotically identical asNb · Nh is increased.

Concerning the generation of the projection sequencessj , each of them is produced from a
√

M ×
√

M pseudo-random

matrix (obtained depending on the system secret key), whosecomponents take values uniformly in[0, 1]. Each of these matrices

is then low-pass filtered, mean adjusted, and rearranged as the length-M vectorsj .

B. Watermark Computation

Each hash vectorh is permuted usingNp permutationsπk(·), π
k : {0, 1}Nh → {0, 1}Nh , with k = 1, · · · , Np. Next, the

results are joined to define the length-Np vectorstl , (π1
l (h), π2

l (h), · · · , π
Np

l (h)), l = 1, · · · , Nh. Thesetl, jointly with the

secret key of the system, and the index of the current image block, are used as seed of a Pseudo-Random Number Generator

(PRNG) that generates a length-M sequence with components uniformly distributed on[−1, +1], and that we will denote by

vl. Finally, the watermarkw corresponding to a block of the original host signalx, is constructed asw =
q

3
Nh

PNh
l=1 vl.

Assuming a good behavior of the PRNG, it is reasonable to think of the vl as being (almost) independent ofx and sj (both

throughtl), so w can be considered to be independent ofx and sj as well. Furthermore, given that different seeds are used

for generating the vectorsvl, it follows that vl will be (almost) independent from each other; hence, for values ofNh large

enough, one can use the Central Limit Theorem (CLT), and approximate the distribution ofW by N (0, IM×M ), with IM×M

the identity matrix of sizeM .

This watermarkw is embedded in the host signal using Additive Spread Spectrum [14] in the
√

M×
√

M -block pixel domain,

so a block of the watermarked image is obtained asy = x + γw, whereγ is an embedding strength parameter.

C. Detection

On the detector side, the steps described above are followedto obtain an estimatêw of the watermarkw from a block of the

received signalz. Be aware that even in the absence of attacks, the consideredsignalz will be different from the host image

(due to the presence of the watermark), so the quantization threshold at the detector will be computed from1
M

ZT ·Sj , and thus

1Following the original description by Fridrich and Goljan [11], these blocks correspond to non-overlapping
√

M ×
√

M -pixel blocks.
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it will not necessarily coincide with that obtained at the embedder. In order to make this difference explicit, we will denote the

threshold calculated at the detector asTd. On the other hand, the same considerations made regarding the computation ofTe in

Sect. II-A can be raised here.

The main objective of the detector is to decide on the presence of the watermark estimate in the corresponding block of the

received signal; if the estimate of the watermark is decidedto be present, that block will be declared authentic (i.e., non-modified);

otherwise, it will be said to be manipulated.

Since in [11] detection is not addressed, we introduce next the detection process assumed in our analysis. First, the decision

on the presence or absence of the estimate of the watermark can be formulated as a binary hypothesis test, namely,

H0 : z = η (x + γŵ) + n

H1 : z = x + γŵ, (1)

whereH0 represents the hypothesis of the received signal being the sum of a watermarked signal scaled by a given factor

η ∈ [0, 1] and some complementary signaln independent ofx, s andw, with zero mean and varianceσ2
N , whereasH1 denotes

the hypothesis of the received signal being the output of theembedder. This hypothesis test comprises several interesting detection

scenarios. For example, by settingη = 0, the proposed hypothesis test can model the case of decidingwhether a block was

watermarked with a valid key or it was not watermarked (or watermarked with an invalid key). On the other hand, withη = 1,

H0 corresponds to the case where the image under test is the result of applying some unacceptable noise/processing (modeled by

the addition ofn) to an otherwise valid watermarked image. Moreover, other values ofη in (0, 1), may model other scenarios,

e.g., scaling attacks, image fusion, etc.

Additionally, it is worth pointing out that the watermark detection problem (a.k.a. one-bit and zero-bit watermarking), although

out of the scope of this paper, can be also studied in the framework defined by the hypothesis test in 1, just by settingη = 0

and interpretingn as a non-watermarked content.

When detection mistake costs are not set, or a priori probabilities for the two hypotheses are not available (as is the case in

most practical scenarios), the Neyman-Pearson criterion is customarily used, as it minimizes the probability of falsenegative

for a given probability of false positive [15]. This criterion implies the use of the likelihood ratio test, taking the form

L(z) =
f(z|H1)

f(z|H0)

H1

≷

H0

λ,

where λ is the detection threshold. When both the host signal and thenoise are independent and Gaussian distributed, the

correlation between the received block and the corresponding watermark, i.e.,ρ , 1
M

zT · ŵ, is a sufficient statistic for this

problem. In most practical detection methods, and due to itssimplicity, this statistic is still used, although the mentioned condition

on the Gaussianity and independence of the signals is not verified. Given a false positive probabilityPfp (the probability of

deciding that the received signal was not modified, when indeed it was),λ is selected so that the following equation holds

Pfp =

Z

R(λ)

fρH0
(τ )dτ, (2)

and the false negative (the probability of deciding that thereceived signal was modified, when it was not) is then calculated as

Pfn =

Z

R̄(λ)

fρH1
(τ )dτ, (3)
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where in the above expressions (2) and (3),R(λ) , {x|L(x) > λ}, R̄(λ) is the complement ofR(λ), andfρH0
and fρH1

denote the pdf’s ofρ when respectivelyH0 andH1 are true (namely,ρH0 andρH1 ). For the computation offρH0
andfρH1

we will take into account thatρ is the result of addingNh · M random variables with finite variance, so for large values of

both Nh andM , and wheneverσ2
X >> σ2

N andσ2
X >> γ2, we can model bothfρH0

andfρH1
as Gaussian distributions (see

App. B for further details); therefore, the detection thresholds onρ will be given by the solutions to the following equation (see

Chapter 2.6 [15])

(ρ − E{ρH0})2
2Var{ρH0}

− (ρ − E{ρH1})2
2Var{ρH1}

+ log

 
s

Var{ρH0}
Var{ρH1}

!

= log λ, (4)

where E{·} denotes expectation, andVar{·} variance. Given that the last equation has in general two solutions in ρ, the

detection region is defined by two thresholds,T0 and T1 (with T0 < T1), depending the chosen hypothesis on the ratio

Var{ρH0}/Var{ρH1}; if that ratio is larger than1, H1 holds for ρ ∈ [T0, T1], andH0 elsewhere (conversely, if the ratio is

smaller than1, the hypothesis choice is the reverse). In the special case where the variances of both Gaussians are the same,

(4) becomes a linear equation, and a single solution (one detection threshold) exists. Although in our performance analysis both

T0 andT1 are used, the analytical expressions will be still valid when Var{ρH0} = Var{ρH1} by settingT1 = ∞.

In order to quantify the performance of the method proposed by Fridrich and Goljan, we will derive its Receiver Operating

Characteristic (ROC). This is equivalent to evaluating both the probability of false positivePfp and the corresponding probability

of false negativePfn for a range of values ofλ; this derivation is the objective of Sect. III.

III. PERFORMANCEANALYSIS CONSIDERING THEWATERMARK EMBEDDING

Pe ≈ 2

η

Z ∞

−∞
AN e−|βN t|cN

2

6

6

6

6

4

R∞
ηTe

AXe
−| βX

η
τ |cX

 

1 −Q
 √

M(Td−τ−t)
q

γ2η2σ2
S

!

−Q
 √

M(Td+τ+t)
q

γ2η2σ2
S

!!

dτ

4
η

R∞
ηTe

AXe
−|βX

η
τ |cX

dτ

+

R ηTe

0
AXe

−|βX
η

τ |cX

 

Q
 

√
M(Td−τ−t)
q

γ2η2σ2
S

!

+ Q
 

√
M(Td+τ+t)
q

γ2η2σ2
S

!!

dτ

4
η

R ηTe

0 AXe
−|βX

η
τ |cX

dτ

3

7

7

7

7

5

dt. (5)
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0
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√
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q
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N

1

C

A
−Q

0

B
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√
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q
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1

C

A

1

C

A
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0
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0

B
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Q
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√
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C
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5
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Pfp ≈
Nh
X
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B
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N

1

C

A
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0

B
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√
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)
q
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N

1

C

A

1

C

A
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Pfn ≈
Nh
X
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Pr(Ns = ns|H1)

0

B

@
Q

0

B

@

√
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γ
Nh
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1
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A
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In this section we will analyze the effect of the watermark embedding and the attack on the estimate of the hash on the

detector side, and how a non-perfect estimate of the watermark will deteriorate the overall performance. Our first step will be

the characterization of the random variableDj , 1
M

XT ·Sj . Reasoning that projecting ontosj resembles computing an almost

orthogonal transform somewhat similar to the DCT, whose coefficients have been previously characterized in the literature by

a Generalized Gaussian Distribution (GGD) [16], we proposeto modelDj by a GGD, i.e.,fDj (x) ≈ AXe−|βXx|cX , where

in the above expressionAX , βX and the shaping parametercX are fitted for each block of the image to the experimental data

using Maximum Likelihood Estimation (MLE). This crucial hypothesis has been validated using the luminance component of a

set of100 images. This set was built by randomly selecting100 images from the Uncompressed Colour Image Database of the

Austin University [17], resizing the chosen images to256×256 pixels. For each image, the Kullback-Leibler divergence (KLD)

between the histogram obtained by projecting its blocks of size 64×64 over10000 random vectors and the corresponding GGD

with parameters optimized for those projections has been computed. The mean value of the KLD over the100 images is as small

as2.5 · 10−3. For the sake of comparison we have also obtained the KLD between the histogram of the projected coefficients

for each image and a Gaussian distribution with zero mean andvariance empirically estimated from those coefficients; inthis

case the mean value of KLD is3.1 · 10−2, i.e., an order of magnitude difference between the two KLD’s which supports the

use of a GGD.

In order to derive the probability of the errors produced by watermark embedding, the probability of flipping one bit of the

hash obtained at the detector with respect to the robust hashcomputed at the embedder, has to be calculated. As stated above,

for large Nh the components of the watermark can be well-approximated bya N (0, IM×M ); furthermore,W and S can be

considered as independent, as stated above. Therefore, forthe characterization ofγη
M

WT ·Sj we will take into account that for

an arbitrary value of the vectorsj , 1
M

WT · sj follows aN
“

0, ||sj ||2
M2

”

, so in order to derive the pdf of1
M

WT ·Sj one should

average the obtained Gaussian distribution over the possible values of ||s
j ||2

M2 . Thus, given thatSj is obtained by processing an

i.i.d. random vector with a low-pass filter and subtracting the mean, due to the Law of Large Numbers (see Chapter VII, [18])

for large values ofM , the distribution of||s
j ||2

M
will converge toσ2

Q · ||g||2, whereg denotes the coefficients of the mentioned

filter andσ2
Q is the variance of the original i.i.d. signal.2 Let σ2

S , σ2
Q · ||g||2, then we can approximate the projected watermark

γη
M

WT ·Sj by N (0,
γ2η2σ2

S

M
) whenM is large. On the other hand, the projection of the complementary signalN ontoSj , i.e.

1
M

NT ·Sj , will be modeled by a GGD with parametersAN , βN andcN . This characterization is valid for both the cases where

n is an image (since, as we have discussed at the beginning of this section, its projection will be well-modeled by a GGD) or

Gaussian additive noise (for whichcN = 2).

Thus, as shown in App. A, the probability of a hash bit error under hypothesisH0 can be expressed as (5), whereQ(x) ,

1√
2π

R∞
x

e−
τ2

2 dτ . It is worth pointing out that (5) is valid wheneverη > 0; in the particular case whereη = 0, due to the

assumption of independence betweenX andN, it is clear thatPe ≈ 1/2. Additionally, (5) can be easily adapted to hypothesis

H1 by settingη = 1 andNT Sj = 0 (βN = ∞).

Expression (5) admits further simplifications under certain circumstances. First, recalling that the thresholdTe is set so that

it is exceeded half of the time, the denominators of the two summands in (5) will be approximately 1 when the statistics of

the different projected blocks are similar. Moreover, whenN corresponds to Gaussian noise, the outer integral in (5) canbe

explicitly solved. To this end, we will focus on the first summand in (5), since a similar derivation applies to the second term.

2Border effects were not considered in this derivation due totheir marginal consequences.
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Recalling thatNT Sj ∼ N (0,
σ2

Sσ2
N

M
), we can write the numerator of the chosen term as

2

η

Z ∞

ηTe

AXe
−|βX

η
τ |cX

Z ∞

−∞

Z Td+τ+t

−Td+τ+t

√
M

p

2πσ2
Sσ2

N

e
−Mt2

2σ2
S

σ2
N

√
M

p

2πγ2η2σ2
S

e

−Mx2
1

2γ2η2σ2
S dx1dtdτ

=
2

η

Z ∞

ηTe

AXe−|βX
η

τ |cX

Z Td+τ

−Td+τ

Z ∞

−∞
√

M
p

2πσ2
Sσ2

N

e
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2σ2
S

σ2
N

√
M

p

2πγ2η2σ2
S

e
−M(x2−t)2

2γ2η2σ2
S dx2dtdτ, (9)

Given that the inner integral in (9) is the convolution ofN (0,
σ2

Sσ2
N

M
) andN (0,

γ2η2σ2
S

M
), we can rewrite (9) as

2

η

Z ∞

ηTe

AXe
−|βX

η
τ |cX

 

1 −Q
 √

M(Td − τ )
p

γ2η2σ2
S + σ2

Sσ2
N

!

−Q
 √

M(Td + τ )
p

γ2η2σ2
S + σ2

Sσ2
N

!!

dτ.

Summarizing, whenN is Gaussian-distributed, and the projected host blocks have similar statistics,Pe becomes (6).

Once we have obtained the probability of error of each hash bit, we want to relate this quantity to the errors made in the

estimate of the watermark. As it was described in Sect. II-B,the estimated watermark̂w is generated fromNp permutations

of the reconstructed hash vectorĥ; one bit of each of these permutations is picked to form the vector tl, 1 ≤ l ≤ Nh. Thus,

Ne errors in the estimate of the hash vector, withNe ≤ Nh, will be spread to at mostmin{Ne · Np, Nh} different vectors

tl. This implies that the correlation betweenw and ŵ for a given block will depend, through the generation ofvl, on the

number of wrong vectorstl, that we will denote byNs. Hence, it is necessary to know the probability that the number of

wrong vectorstl is ns, when there arene bit errors in the estimate of the hash. In App. B it is shown that the values of the

probability of false positive and false negative are given by (7) and (8), respectively. In both expressions,Pr(Ns = ns|H0)

and Pr(Ns = ns|H1) (which are derived in App. B) denote the probability that thenumber of wrong vectorstl is ns under

hypothesesH0 andH1, respectively, and whenVar{ρH0} 6= Var{ρH1}, ξ = sign(Var{ρH0} − Var{ρH1}); for the case where

Var{ρH0} = Var{ρH1} the obtained expressions are still valid by makingT1 = ∞ andξ = 1. In addition,σns represents the

standard deviation of the projection of the original watermark w onto ŵ computed at the detector when the number of wrong

vectorstl is ns.

IV. EXPERIMENTAL RESULTS

Next we present the results of several experiments conducted on the set of images described above. First, we experimentally

verify the validity of our model. In order to do so, in our firstexperiment we study the scenario where the detector must decide

whether a given image bears the right watermark. In this setup, the null hypothesisH0 is particularized toη = 0 and n is

the block of a non-watermarked image. The aforementioned set of 100 images was used, with block size of64 × 64 pixels,

Nh = 16 andNp = 5. The results are plotted in Fig. 1, where the empirical and analytical ROC curves almost perfectly match.

Furthermore, the curves for different values ofγ (γ ∈ {2, 4, 8, 10}), show that a better performance, in terms of the ROC, is

achieved with larger values ofγ, although one should also consider that a largerγ also implies a larger distortion. Hence, in

this case a trade-off between distortion and performance should be achieved. However, the reasoning “larger distortion implies

better performance”, is not always verified. For example, ifone considers the caseη = 1, and a fixed distribution ofN, an
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increase ofγ reduces the detection probability for a given probability of false positive, as the effect ofN, which in this scenario

is the part of the received signal that helps us to decide whathypothesis holds, is masked by the watermark.

In the second considered scenario we analyze the performance of the Fridrich-Goljan authentication method when tryingto

detect luminance scaling attacks. Fig. 2 compares the analytical and empirical ROC curves forη ∈ {0.3, 0.5, 0.7} andγ = 10

with the same parameters of the previous experiment (i.e., blocks of 64 × 64 pixels, Nh = 16 andNp = 5) for Lena without

additive noise, i.e.,n = 0. The close resemblance between the analytical and empirical results shows again the goodness of the

proposed model and the subsequent analysis.

It is worth discussing the role of the numberNp of permutations ofh in the generation ofw. This parameter is used to

control the performance degradation due to image modification, as it was outlined at the end of the Sect. III. On one hand, it is

important to avoid that a convex combination of a block from an authentic signal and another from a non-authentic signal be

used to produce a forgery. In that case, we would be interested in having a large value ofNp, producing a sharp degradation of

the correlation statistic, and therefore implying a reduction in the false positive probability. Nevertheless, we arealso interested
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Figure 1. Analytical and empirical ROC curves for the set of100 images.M = 4096, Nh = 16, Np = 5, η = 0, γ ∈ {2, 4, 8, 10}, and

n = x. The solid and the dashed lines correspond with the analytical and experimental curves, respectively.
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Figure 2. ROC curves withη = {0.3, 0.5, 0.7} without additive noise for Lena. Here,M = 4096, Nh = 16, Np = 5 and γ = 10. The

solid lines correspond with the analytical curves and the dashed lines with the empirical curves.
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Pfp = 0.005, M = 4096, η = 0 andγ = 15.
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Figure 4. Pe vs shaping factorcX curves for different

standard deviationsσ of the GGD which models the projection

of image blockx onto the pseudorandom patterns (i.e.σ =

1
βX

q

Γ(3/cX)
Γ(1/cX)

) whenH1 holds using the following parameters:

M = 4096 andγ = 10.

in having a smooth degradation of the correlation statisticwith the number of mistakes in the hash, as the authentication scheme

should be robust to slight modifications, such as transcoding or the watermark embedding itself. In that sense, the smaller

the value ofNp, the smoother the performance degradation, and therefore the more robust the authentication scheme. As a

conclusion, we can establish that a trade-off exists between robustness and probability of false positive.

In order to illustrate the dependence of the probability of false negative onNp, in Fig. 3 the behavior ofPfn is plotted as a

function of Np for different values ofNh for Lena (withM = 4096, η = 0 andγ = 15), after fixing the probability of false

positive toPfp = 0.005. In the particular case studied in Fig. 3, the value ofNp which minimizesPfn just slightly depends

on Nh. Notice that ifz is not watermarked or the detector and the embedder use different keys thenPe ≈ 1/2. Therefore, if

we increaseNp, the error probability in the seed used to generatevl will rise and consequentlyPfn will also be larger.

The dependence ofPe on the parameters of the GGD used for modelingXT ·Sj whenH1 holds is illustrated in Fig. 4, where

Pe is plotted as a function of the shaping factorcX for different standard deviations of the projected blocksσX , M = 4096

and γ = 10. The considered range ofσX corresponds to typical values of the standard deviation obtained for the projected

coefficients of real images. On one hand, and according to intuition, it can be seen that for larger values of the Document to

Watermark Ratio (proportional toσ
2
X

γ2 ) the probability that the watermark embedding flips bits of the original robust hash will

be smaller. On the other hand, the results on Fig. 4 show thatPe decreases withcX .

Finally, in order to identify the limitations of the analysis presented above, we will show how it can be adapted to deal with

typical image processing attacks such as JPEG compression,intensity transformations and linear filtering.

The JPEG standard compresses an image by quantizing its8 × 8 block-DCT coefficients so that the step-size of the used

uniform scalar quantizer depends on both the desired JPEG quality factor (QF) and the frequency of each particular coefficient

(quantization step-sizes for low-frequency coefficients are usually smaller than high-frequency ones). Our analytical framework

can be adapted to deal with large QF JPEG compression by usinga fine quantization approximation, i.e., by modeling the effect

of the quantization error in the8 × 8 block-DCT with a noise random variable independent of the to-be-quantized coefficient

and uniformly distributed in[−∆i/2, ∆i/2], where∆i is the step-size of the i−th coefficient scalar quantizer. Considering the
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analytical curves, dashed lines were obtained by compressing the

watermarked image with JPEG, and× symbols correspond to

curves experimentally obtained by adding uniform noise in the

8 × 8 block-DCT domain to the watermarked signal.
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Figure 6. 1 − FρH0
(T ) corresponding to image Lena, for

intensity correction and linear filtering attacks.N = 4096,

Nh = 16, Np = 5, andγ = 10. Solid and symbols correspond

to the analytical and empirical curves, respectively.

8× 8 IDCT transform, one can obtain the distribution ofN in (1). Obviously, when the QF is decreased, the fine quantization

approximation fails and our analysis can be no longer applied. This is illustrated in Fig. 5 where we compare the values ofthe

complementary cumulative density function ofρH0 (i.e. 1−FρH0
(T )) as function of the QF for the actual JPEG compression,

the analytical results obtained by adapting our analysis considering fine-quantization, and the empirical results obtained when

noise uniformly distributed in[−∆i/2, ∆i/2] is added to the corresponding8 × 8 DCT coefficients. As expected, the plots

corresponding to the two latter are very similar for the fullrange of QF, whereas both of them are close to the actual JPEG

compression just for QF> 90, i.e. while the fine-quantization approximation holds.

Affine point-wise intensity transformations consist in scaling the luminance values of an image and centering the histogram of

the resulting image by adding an offset. This processing canbe modeled by changingη andn in (1). Analytical and empirical

curves for different intensity change affine correction functions can be found in Fig. 6, showing the good match between

both curves; the only plot with a significant difference between both results corresponds toη = 1/0.7, where the luminance

transformation becomes non-linear due to clipping. Noticethat non-linear transformations are not encompassed by by our model.

In addition, the proposed analysis can be also adapted to deal with Linear Space Invariant (LSI) image filtering, by modeling

both the image block projection distribution and the distribution of the correlation between the watermark and the filtered

watermarked signal. To this end, it is reasonable to neglectborder effects and approximate image filtering by a64 × 64-block

circular filtering, so the pdf of the mentioned correlationρ can be calculated by using the circular convolution theorem. Due to

space limitations, we have chosen a low-pass (Gaussian) anda high-pass (Sobel) filters as representatives of the class of LSI

filters. Concerning the Gaussian filtering, it is worth noting that the obtainedPe will be very similar to thePe without filtering,

as the Gaussian filters just slightly modify the low frequency components used to generate the robust hash. Knowing that host

signal variance is concentrated in the low frequencies, andwe are using a white watermark, for large document-to-watermark

ratios the correlation between the Gaussian filtered watermarked signal and the reconstructed watermark will have a variance

similar to the non-filtered case, whereas its mean will be reduced. On the other hand, when the image is Sobel-filteredPe can
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be approximated by0.5, as most frequencies used to produce the robust hash are erased; as a consequence, the mean of the

correlation between the Sobel filtered watermarked signal and the reconstructed watermark will be approximately null,whereas

its variance will be dramatically reduced due to the low frequencies host power allocation. The behavior of both filters is shown

in Fig. 6, in accordance to our previous discussion.

Finally, we would like to emphasize that, as stated above, the computation time needed to assess the performance of the

analyzed self-embedding authentication algorithm using our analytical methodology is dramatically smaller than thetime required

by Monte Carlo techniques; as an example, a common PC with an Intel Core2 Quad CPU at2.4 Ghz and4 Gb of RAM

with Matlab 7.4 spends more than six days carrying out the Monte Carlo simulations needed to obtain the curves of Fig. 1. In

contrast, less than five minutes are needed to generate the corresponding analytical plots.

V. CONCLUSIONS

Pr
`

Ns,k = mk|Ns,k−1 = mk−1, Ne = ne
´

=

8

>

>

<

>

>

:

` ne

mk−mk−1

´

“

Qmk−1
l=mk−ne+1

l
”

„

Qmk−1

l=mk−1
(Nh−l)

«

Qne−1
l=0

(Nh−l)
,

if mk ≤ Nh and

0 ≤ mk − mk−1 ≤ ne

0, otherwise

. (10)

Pr(Ns,k = mk|Ne = ne) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1, if k = 1 andmk = ne

0, if k = 1 andmk 6= ne
PNh

mk−1=0 Pr
`

Ns,k = mk |Ns,k−1 = mk−1, Ne = ne
´

·Pr
`

Ns,k−1 = mk−1|Ne = ne
´

, otherwise

. (11)

A thorough performance analysis of the self-embedding authentication method proposed by Fridrich and Goljan was given

in this paper. In this analysis the hash bit error is firstly computed; then, the pdf of the projection of the received imageblocks

onto the reconstructed watermark is approximated depending on that robust hash bit error probability. This allows us toobtain

closed formulas for the false positive and false negative probabilities.

An important characteristic of the self-embedding authentication method is that the embedding process itself can modify the

robust hash of the image and consequently corrupt the reconstructed watermark; however in practical cases, a larger embedding

distortion could increase the correlation between the received signal and the watermark estimated at the detector. Ouranalysis

shows that, although the hash bit error probabilities increase with the embedding distortion, the overall performanceof the

authentication system improves. We have also observed, using (7) and (8), that givenPfp, Pfn is a convex function ofNp,

with the optimalNp almost invariant withNh. Furthermore, we have seen howPe depends on the standard deviation and the

shaping parameter of the projection (modeled by a GGD) of theimage blocks onto the pseudorandom patterns.

Future research will focus on the analysis of self-embedding authentication techniques where the spread-spectrum embedding

is replaced by informed embedding strategies, e.g. [19].
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APPENDIX A

DERIVATION OF HASH BIT ERROR PROBABILITY

Defining Gj , 1
M

ZT Sj = 1
M

`

ηXT Sj + γηWT Sj + NT Sj
´

, the hash bit error probability can be written as

Pe =
1

2
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1
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dt, (12)

which yields (5) and where in (12)Fj , ηXT Sj + γηWT Sj .

APPENDIX B

DERIVATION OF THE DETECTION ERROR PROBABILITIES

First, we will derive the probability that given a number of bit errors ne in the estimate of the hash, the number of wrong

vectorstl is ns. In order to do so, we will obtain the probabilitiesPr(Ns,k = mk|Ns,k−1 = mk−1, Ne = ne), whereNs,k

denotes the number of wrong vectorstl after k permutations of the reconstructed hash vector,1 ≤ k ≤ Np. These probabilities

can be shown to be given by (10), where2 ≤ k ≤ Np, ne ≤ Nh. From there it is possible to writePr(Ns,k = mk|Ne = ne)

as (11). Finally, given that the probability of havingne mistakes in the hash estimate is

Pr(Ne = ne) =

 

Nh

ne

!

P ne
e (1 − Pe)

(Nh−ne) ,

the probability of havingns wrong vectorstl after Np permutations can be written as

Pr(Ns = ns) =

Nh
X

ne=0

Pr(Ns,Np = m|Ne = ne)Pr(Ne = ne). (13)

On the other hand, the correlation statistic under the hypothesisH0 is given by

ρH0 =
1

M

“

ηxT
ŵ + γηwT

ŵ + n
T
ŵ
”

=
1

M

 

ηxT
ŵ +

3

Nh
γη

Nh
X

l=1

Nh
X

j=1

v
lT

v̂
j + n

T
ŵ

!

. (14)

Whenx andŵ are uncorrelated, so arevl andv̂j whenl 6= j, while if Ns = ns, the vectorsvl andv̂l coincide in precisely

Nh − ns values; then, using (14) it is possible to conclude that the mean ofρH0 is

E{ρH0 |Ns = ns} = (Nh − ns) · γη

Nh
. (15)
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Similarly, the variance ofρH0 becomes

Var{ρH0 |Ns = ns} =
1

M

`

η2 · σ2
X + γ2 · η2 · σ2

ns
+ σ2

N

´

, (16)

where

σ2
ns

,
1

N2
hσ4
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`

(Nh − ns)σ
2
V 2 + nsσ

4
V

+(Nh − 1)Nhσ4
V + (Nh − ns)(Nh − ns − 1)σ4

V

´

,

and σ2
V 2 , Var{V 2

i }, i = 1, · · · , M . SinceVi ∼ U(−1, 1), then σ4
V = 1/9 and σ2

V 2 = 4/45. In order to analyze the

distribution of ρH0 , one can straightforwardly adapt the discussion in Sect. III about the distribution ofWT · Sj to obtain

the distribution ofXT · W andNT · W, and apply the CLT for approximating the pdf of̂W
T · W by a Gaussian for large

values ofNh andM . The resulting approximation isρH0|Ns=ns
∼ N

“

(Nh − ns) · γη
Nh

, 1
M

`

η2 · σ2
X + γ2 · η2 · σ2

ns
+ σ2

N

´

”

.

Equivalently, it is clear that forH1 we can approximateρH1|Ns=ns
∼ N

“

(Nh − ns) · γ
Nh

, 1
M

`

σ2
X + γ2 · σ2

ns

´

”

. In this way,

when Var{ρH0}/Var{ρH1} > 1, Pfp =
PNh

ns=0 Pr(Ns = ns|H0)Pr(T0 ≤ ρH0 ≤ T1) and Pfn =
PNh

ns=0 Pr(Ns =

ns|H1)[Pr(ρH1 < T0) + Pr(ρH1 > T1)]; on the other hand, whenVar{ρH0}/Var{ρH1} < 1, Pfp =
PNh

ns=0 Pr(Ns =

ns|H0)[Pr(ρH0 < T0) + Pr(ρH0 > T1)] and Pfn =
PNh

ns=0 Pr(Ns = ns|H1)Pr(T0 ≤ ρH1 ≤ T1). Finally, when

Var{ρH0} = Var{ρH1}, T1 = ∞ so Pfp =
PNh

ns=0 Pr(Ns = ns|H0)Pr(T0 ≤ ρH0) and Pfn =
PNh

ns=0 Pr(Ns =

ns|H1)Pr(T0 > ρH1). Replacing in the previous expressions the probabilities on ρHi by their integral form, one obtains

(7) and (8), respectively. Aside from the obvious differences between the expressions (7) and (8), it is important to note that

Pr(Ns = ns|H0) and Pr(Ns = ns|H1) are different, since the expression forPe depends on the considered hypothesis, as

stated in Sect. III.
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