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Abstract

This paper analyzes the performance of the image authgaticamethod based on robust hashing proposed by J. Fridnidhva
Goljan. In this method both the embedder and the detectagrgenthe watermark from a perceptual digest of the imagerefbre,
an accurate performance analysis requires assessinglatierreoetween noise and hash bit errors. Our approach fastes the
probability of hash bit error due to watermark embedding/anthe attack, and then uses such probability to derive thbabilities

of false positive and false negative.

Index Terms

Content-based authentication, robust hash, performamalysas.

I. INTRODUCTION

In the last years, a number of powerful and user-friendlytimadia editing tools for digital video, image and audio éav
proliferated, allowing an unskilled person to easily mgdibntents and produce forgeries. To regain confidence dtabdidpjects,
several authentication tools have been proposed, someenf thlying on digital watermarking techniques. In watetkiray-
based authentication techniques a low-power signal (wetds) is embedded in the digital content to be protectedt (sigsal);
then, the authenticity of the received signal is determibgderifying the presence of the correct watermark. Coringrithe
generation of such watermark, sometimes it is just psendoraly produced using a secret key shared by the embedder and
the detector, whereas in other cases a perceptual digeise afigital content is also used. This low-dimensional sumnod a
digital content is usually referred to asr@bust hash, perceptual hash or soft hash.

In contrast to a cryptographic hash, a robust hash would &allidsensitive only to perceptual changes, meaning that tw
perceptually identical digital objects should yield thensaresult. However, this requirement is difficult to be fultyet in
practice, as the design of a tractable mathematical modeliwfan perception that accurately quantifies perceptualasity is
still an unsolved task. On the other hand, given that onlhaniged users should be able to generate a valid robust Hash,
chosen hash functions usually depend on a secret key.

So far, several authentication techniques based on watkingahave been presented, most of them aimed at imagesef@ehn
et al. [1] proposed, based on the ideas of Friedman [2], onth@fearliest methods which uses a robust hash to aid the
verification of the authenticity of digital contents. Blaatharjee and Kutter [3], proposed a robust hashing autfaiuin scheme
by generating a set of feature-points with a set of Mexica-tdavelets. In [4] Kundur and Hatzinakos described a feagil

method for tamper localization by using a quantization mégphe to embed the watermark in a transform domain. Ven&ates
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et al. [5] developed a robust hashing method which dividesnzage into random non-overlapping blocks. The statistics o
each block are used to generate the robust hash. Lin and 6pigroduced a robust authentication watermarking sahem
designed for JPEG compression, based on the relation hetihealiscrete cosine transform (DCT) coefficients. In [4nGons
and Moulin proposed a non-blind robust authentication wethased on robust hashing and watermarking, and used stistti
description of the host image to analyze its performancereMecently, Swaminathan et al. have proposed a robustrgashi
method for image authentication, based on invariant cleriatics of the images, e.g., the resilience to RST (rotatscaling
and translation) of Fourier-Mellin transform [8]. Finallyn [9] Monga and Mih¢ak have presented a robust hashirigniqae
where a content-based binary vector is extracted by agplgiNon-Negative Matrix Factorization (NMF) to the image.

From the set of authentication techniques which embed armat& that depends on an image robust hash (also known
as watermarking self-embedding authentication), therdhgn proposed by Fridrich and Goljan [10]-[12] is one of tmest
prominent, and has been extensively adopted as a refemrentany other works and comparisons (e.g., [7], [8], [13])adidition,
this method uses a watermark synthesis function which sstdéy fills the gap between robust hashing and watermgrkised
authentication; in fact, the watermark generation has #réqular feature that it can be tuned to account for thereseasitivity
of the overall authentication technique.

However, a performance analysis of this widely-referersmfiembedding authentication algorithm is still lackifitnis means
that for comparison purposes Monte Carlo techniques needsed, with the obvious drawback of requiring long simulatio
runs whenever small probabilities are to be estimated. tlitiad, this lack makes it very difficult to determine the irdhce of
the various parameters of the Fridrich-Goljan method orfopeiance. This paper aims at filling this gap by presentingaeh
performance analysis and drawing some conclusions thabeaxtended to general hash-based authentication schemes.

In our analysis, we first compute the hash bit error probighilue to the watermark embedding and noise, and then we show
its impact on the Receiver Operating Characteristic (ROGh® overall scheme. Notice that this methodology could ®eduo
analyze other authentication schemes based on robushbasisithe same principles would apply. To the best of our letye,
this is the first time that the performance of a watermarkinthentication scheme based on robust hashing is analyzesisin
way.

In the next section we give a brief introduction to the robausthentication method proposed by Fridrich and Goljan, taed
embedding and detection processes, whereas performaacklisssed in Sect. Ill. In Sect. IV simulations are carriatito
validate our approach; in addition, the modifications onittieoduced performance analysis necessary for dealing iwiage
compression, intensity change and linear filtering areimmedl Finally, Sect. V presents the main conclusions andudiges

some future lines.

A. Notation

We will denote scalar random variables with capital letferg., X) and their outcomes with lowercase letters (e:jy. The
same notation criterion applies to random vectors and theicomes, denoted in this case by bold letters (Egx), with
transposes denoted by the superindexThe ith component of a vectdX is denoted asX;. Images in the pixel domain will

be partitioned inN, blocks and arranged as vectors.

Il. DESCRIPTION OFFRIDRICH AND GOLJAN METHOD

In this section a description of the method by Fridrich andj@qd11], that will be analyzed in Sect. Ill, is given; fugimore,

a correlation-based detector for that method is proposed.
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A. Hash Computation

The original host signal in the pixel domain is block-wisetjt@ned and arranged a$; vectorsx’, 1 < i < N,, each of size
M ! For the sake of notational simplicity, we will avoid the bkosuperindex; however, it must be clear that the authemticat
method operates at the block level. From eaglihe variance of which will be denoted I, and depending on a set 8f;,

length\/ pseudo-random sequence’s(generated irrespectively of), 1 < j < Ny, an N}, bits hash vectoh is computed as

By = 0 if L|x"-s/|<T. 7
1 otherwise

whereT. is a quantization threshold (constant along the completg@ncomputed to comply with the constraint that the total
number of0’s over all theN;, hash vectoré of the image must be equal to the total numbet’sf In our analysis this threshold
will be approximated by the median of the absolute value efdbefficients obtained by projecting the host image blocks o
the pseudorandom sequences, %FXT -S7. Noticing that the method operates at the block level, farmurposes we will rely
on a block-wise characterization of the host image. Theeefior the derivations contained in this paper the prolighilensity
function (pdf) of the absolute value of the projected hosphsained by averaging over the projected host blocks. Utiig)
approximation, the number of zeros and ones cannot be gearhto be equal for every hash originated from a given image;
however, their relative frequency will be asymptoticalientical asV, - N, is increased.

Concerning the generation of the projection sequeséesach of them is produced from M x /M pseudo-random

matrix (obtained depending on the system secret key), wbosgonents take values uniformly i@, 1]. Each of these matrices

is then low-pass filtered, mean adjusted, and rearrangeldedengthd/ vectors’.

B. Watermark Computation

Each hash vectoh is permuted usingV, permutationsr®(-), =% : {0,1}™ — {0,1}», with k = 1,--- , N,,. Next, the
results are joined to define the length; vectorst! £ (w} (h), w7 (h), - ,m ?(h)), [ =1,--- , N,. Theset!, jointly with the
secret key of the system, and the index of the current imagekblre used as seed of a Pseudo-Random Number Generator
(PRNG) that generates a lengiti-sequence with components uniformly distributed[erl, +1], and that we will denote by
v'. Finally, the watermarkw corresponding to a block of the original host sigsalis constructed asv = \/Nzhzf\;hl vl
Assuming a good behavior of the PRNG, it is reasonable tdthfrthe v! as being (almost) independent ®fands’ (both
throught'), sow can be considered to be independentxafinds’ as well. Furthermore, given that different seeds are used
for generating the vectors', it follows thatv' will be (almost) independent from each other; hence, founeslof N, large
enough, one can use the Central Limit Theorem (CLT), andoqupate the distribution oW by N(0, Iarxar), With Tasxas
the identity matrix of sizeM/.

This watermarkw is embedded in the host signal using Additive Spread Spmditd] in the /M x +/M-block pixel domain,

so a block of the watermarked image is obtainedras x + vw, where~ is an embedding strength parameter.

C. Detection

On the detector side, the steps described above are follaveltain an estimatés of the watermarkw from a block of the
received signak. Be aware that even in the absence of attacks, the considayedl z will be different from the host image

(due to the presence of the watermark), so the quantizati@shold at the detector will be computed frq@ZT .87, and thus
Following the original description by Fridrich and Goljahi], these blocks correspond to non-overlappii@Z x /M -pixel blocks.
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it will not necessarily coincide with that obtained at thebeuder. In order to make this difference explicit, we wilhdee the
threshold calculated at the detectorZas On the other hand, the same considerations made regatdingpputation of. in
Sect. II-A can be raised here.

The main objective of the detector is to decide on the presehthe watermark estimate in the corresponding block of the
received signal; if the estimate of the watermark is dectdduk present, that block will be declared authentic (i.en-modified);
otherwise, it will be said to be manipulated.

Since in [11] detection is not addressed, we introduce rextdetection process assumed in our analysis. First, thsialec

on the presence or absence of the estimate of the watermarkectormulated as a binary hypothesis test, namely,
Ho : z=nx+yW)+n
Hi © z=X+"W, (1)

where H, represents the hypothesis of the received signal beinguhe of a watermarked signal scaled by a given factor
n € [0, 1] and some complementary signaindependent ok, s andw, with zero mean and varianes;, whereasH; denotes
the hypothesis of the received signal being the output oéthkedder. This hypothesis test comprises several integesttection
scenarios. For example, by setting= 0, the proposed hypothesis test can model the case of decidiether a block was
watermarked with a valid key or it was not watermarked (orenatarked with an invalid key). On the other hand, with- 1,

Ho corresponds to the case where the image under test is tHeakapplying some unacceptable noise/processing (mddsfe
the addition ofn) to an otherwise valid watermarked image. Moreover, otleuwes ofr in (0, 1), may model other scenarios,
e.g., scaling attacks, image fusion, etc.

Additionally, it is worth pointing out that the watermarktdetion problem (a.k.a. one-bit and zero-bit watermarkiaghough
out of the scope of this paper, can be also studied in the frankedefined by the hypothesis test in 1, just by setting: 0
and interpretinga as a non-watermarked content.

When detection mistake costs are not set, or a priori préibabifor the two hypotheses are not available (as is the das
most practical scenarios), the Neyman-Pearson critesaustomarily used, as it minimizes the probability of fafegative

for a given probability of false positive [15]. This criteri implies the use of the likelihood ratio test, taking thenfo

where X is the detection threshold. When both the host signal andhtlige are independent and Gaussian distributed, the

T

correlation between the received block and the correspgndiatermark, i.e.p £ %z - W, is a sufficient statistic for this

problem. In most practical detection methods, and due &iritglicity, this statistic is still used, although the mened condition
on the Gaussianity and independence of the signals is nitederGiven a false positive probability’s, (the probability of

deciding that the received signal was not modified, whendddewas),\ is selected so that the following equation holds

p— 2
Pry /R | a1 @

and the false negative (the probability of deciding thatréeeived signal was modified, when it was not) is then caledlas

n = PH ) 3
Py /R a0 3)
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where in the above expressions (2) and @})) = {x|L(x) > A}, R(})) is the complement of2()), and Jor, and fo,,,
denote the pdf's op when respectivelyo andH: are true (namelyps,, and ps,). For the computation of,,, and f,,

we will take into account thap is the result of addingV;, - M random variables with finite variance, so for large values of
both N, and M, and wheneves3, >> o3 andok >> 2, we can model botlf,,,, and f,,, as Gaussian distributions (see
App. B for further details); therefore, the detection ti@ds onp will be given by the solutions to the following equation (see
Chapter 2.6 [15])

(p—E{p1,})*  (p—E{pm:})*

2V&r{pH0 } 2Var{pH1 }
Var{p, }
+1o ZWPHOT ) og A, 4
& < Var{le} & ( )

where E{-} denotes expectation, anidar{-} variance. Given that the last equation has in general twatisok in p, the
detection region is defined by two thresholds, and T: (with T, < T1), depending the chosen hypothesis on the ratio
Var{pn, }/Var{ps, }; if that ratio is larger thari, H, holds forp € [Tv,T1], andH, elsewhere (conversely, if the ratio is
smaller thanl, the hypothesis choice is the reverse). In the special césgenthe variances of both Gaussians are the same,
(4) becomes a linear equation, and a single solution (orectien threshold) exists. Although in our performance ysialboth
To and T} are used, the analytical expressions will be still valid wiar{p,} = Var{px, } by settingT} = oo.

In order to quantify the performance of the method proposedFiidrich and Goljan, we will derive its Receiver Operating
Characteristic (ROC). This is equivalent to evaluatinghttbe probability of false positivé’;;,, and the corresponding probability

of false negativeP’s,, for a range of values ok, this derivation is the objective of Sect. III.

Ill. PERFORMANCEANALYSIS CONSIDERING THEWATERMARK EMBEDDING

B c
J25, eV TN <1_ o (VMt)) o (W)) i

P w2 /oo Aye-IBntIEN VR Vel
e ~ - N Bx e
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4 AT Axe ) SN g
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+/ Axe 571 [ o _YMTazT) +Q _YMTatT) dr| . (6)
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Prp & > Pr(Ns =ns|Ho) | -¢Q 2k Y
n5=0 \/n20§< +2n20% 403 \/1720§< + 920202 + 0%
all VME(Ny —ns) g — To) VM(T1 = (N, = ns) 7--)

Py, = Z Pr(Ns =ns|H1) | ©

+£Q
na=0 \ ok + 7202, \ ok +7202,

®)
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In this section we will analyze the effect of the watermarkbeniding and the attack on the estimate of the hash on the
detector side, and how a non-perfect estimate of the watkrmidl deteriorate the overall performance. Our first stejtl e
the characterization of the random varialale £ %XT -87. Reasoning that projecting ongd resembles computing an almost
orthogonal transform somewhat similar to the DCT, whosdficdents have been previously characterized in the litemby
a Generalized Gaussian Distribution (GGD) [16], we propmsenodel D; by a GGD, i.e.,[p,(z) ~ Axe 1Px21°% \where
in the above expressioAx, Bx and the shaping parametex are fitted for each block of the image to the experimental data
using Maximum Likelihood Estimation (MLE). This crucial pgthesis has been validated using the luminance compofhent o
set 0f 100 images. This set was built by randomly selectir) images from the Uncompressed Colour Image Database of the
Austin University [17], resizing the chosen image2t® x 256 pixels. For each image, the Kullback-Leibler divergencé K
between the histogram obtained by projecting its blocksz# &1 x 64 over 10000 random vectors and the corresponding GGD
with parameters optimized for those projections has beempated. The mean value of the KLD over th@) images is as small
as2.5- 1073, For the sake of comparison we have also obtained the KLDdmivthe histogram of the projected coefficients
for each image and a Gaussian distribution with zero meanvaridnce empirically estimated from those coefficientsthiis
case the mean value of KLD &1 - 1072, i.e., an order of magnitude difference between the two KL®hich supports the
use of a GGD.

In order to derive the probability of the errors produced gtavmark embedding, the probability of flipping one bit of th
hash obtained at the detector with respect to the robust ¢@siputed at the embedder, has to be calculated. As stated,abo
for large N;, the components of the watermark can be well-approximated N§(0, Irsx as); furthermore,W and S can be
considered as independent, as stated above. Therefotbefeharacterization o{'—;’WT -S7 we will take into account that for

an arbitrary value of the vecte?, - W7 .s7 follows aN (O ”S ” ) so in order to derive the pdf O&WT -S7 one should

M
s7||?
M2

i.i.d. random vector with a low-pass filter and subtractihg tnean, due to the Law of Large Numbers (see Chapter VII) [18]

average the obtained Gaussian distribution over the pesmﬂues of 221 Thus, given tha®’ is obtained by processing an
for large values of\/, the distribution of# will converge toc3 - ||g||*, whereg denotes the coefficients of the mentioned
filter and o3, is the variance of the original i.i.d. signaLet o £ o3 -||g||*, then we can approximate the projected watermark

y N (0, when M is large. On the other hand, the projection of the compleargrgignalN onto S7, i.e.
'”’WTSJbN ﬂ”’US hen M is | On th her hand, th f th I IN S7,

%NT .87, will be modeled by a GGD with parametessy, Sy andcx. This characterization is valid for both the cases where
n is an image (since, as we have discussed at the beginningsadebtion, its projection will be well-modeled by a GGD) or
Gaussian additive noise (for whiehy = 2).

Thus, as shown in App. A, the probability of a hash bit errodemhypothesis, can be expressed as (5), whedéz) £
J% f;" efédr. It is worth pointing out that (5) is valid whenever > 0; in the particular case wheng = 0, due to the
assumption of independence betwé&€randN, it is clear thatP. ~ 1/2. Additionally, (5) can be easily adapted to hypothesis
H:1 by settingn =1 andN7'S7 = 0 (Bny = o0).

Expression (5) admits further simplifications under certg@ircumstances. First, recalling that the threshbldis set so that
it is exceeded half of the time, the denominators of the twmrsands in (5) will be approximately 1 when the statistics of
the different projected blocks are similar. Moreover, wi¥ncorresponds to Gaussian noise, the outer integral in (5)bean

explicitly solved. To this end, we will focus on the first surmnal in (5), since a similar derivation applies to the secamntht

2Border effects were not considered in this derivation duthér marginal consequences.
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. 2 2
Recalling thaiNT8? ~ A/(0, 2874 we can write the numerator of the chosen term as

M
9 _Bx e T4+t
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n nTe Ta+7+t
— e —Ma?
Mz VM 5mE g avar
\2moio?, \/27rfy n>c
2/°° o \Cx/Td”/
= — xe
n nTe Tg+7J —c0
e Mo —1)2
\/ M 203/[;2 —v" . 21\'1;7]220;5) dm2dtd7' (9)
\/271'0501\, \/271”}/ N0 ’
2 2 2,2 2
Given that the inner integral in (9) is the convolutiondf(0, 2572 ) and (0, 2522 ), we can rewrite (9) as

o0 ﬁ c A/ —
2 AX€7 n er|ex 1-09 M(Td T)
1 Jor. VYn2od + ooy

o) < VM(Ta +7) >> dr.

VnPog +ogoy
Summarizing, wheN is Gaussian-distributed, and the projected host blocke Isamilar statisticsP. becomes (6).

Once we have obtained the probability of error of each hashwia want to relate this quantity to the errors made in the
estimate of the watermark. As it was described in Sect. ItH®, estimated watermaw is generated fromV, permutations
of the reconstructed hash vecthr one bit of each of these permutations is picked to form theore!, 1 < I < Nj,. Thus,
N. errors in the estimate of the hash vector, with < N, will be spread to at mostin{N. - N,,, N;,} different vectors
t'. This implies that the correlation between and w for a given block will depend, through the generationvdf on the
number of wrong vectors!, that we will denote byN.. Hence, it is necessary to know the probability that the remmdf
wrong vectorst’ is ns, when there arew. bit errors in the estimate of the hash. In App. B it is showrt tha values of the
probability of false positive and false negative are given(B) and (8), respectively. In both expression¥;(Ns = ns|Ho)
and Pr(Ns = ns|H1) (which are derived in App. B) denote the probability that thenber of wrong vectors' is ns under
hypotheseg{, and’, respectively, and wheWar{p, } # Var{px, }, £ = sign(Var{pr,} — Var{psx, }); for the case where
Var{pn, } = Var{pn, } the obtained expressions are still valid by makifig= co and¢ = 1. In addition,o,,, represents the

standard deviation of the projection of the original watarknw onto w computed at the detector when the number of wrong

vectorst! is ns.

IV. EXPERIMENTAL RESULTS

Next we present the results of several experiments condiwmtehe set of images described above. First, we experithenta
verify the validity of our model. In order to do so, in our fiestperiment we study the scenario where the detector muitedec
whether a given image bears the right watermark. In thispsetie null hypothesig{, is particularized top = 0 andn is
the block of a non-watermarked image. The aforementioneafs€00 images was used, with block size &1 x 64 pixels,

N, = 16 and N, = 5. The results are plotted in Fig. 1, where the empirical aralygical ROC curves almost perfectly match.
Furthermore, the curves for different values~ofy € {2,4,8,10}), show that a better performance, in terms of the ROC, is
achieved with larger values of, although one should also consider that a largexso implies a larger distortion. Hence, in
this case a trade-off between distortion and performanoeldhe achieved. However, the reasoning “larger distoriioplies

better performance”, is not always verified. For examplegrié considers the case= 1, and a fixed distribution olN, an
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increase ofy reduces the detection probability for a given probabilityadse positive, as the effect @¥, which in this scenario
is the part of the received signal that helps us to decide Wadthesis holds, is masked by the watermark.

In the second considered scenario we analyze the perfoemainihe Fridrich-Goljan authentication method when trytog
detect luminance scaling attacks. Fig. 2 compares the tallyand empirical ROC curves for € {0.3,0.5,0.7} and~ = 10
with the same parameters of the previous experiment (ileck® of 64 x 64 pixels, N, = 16 and N, = 5) for Lena without
additive noise, i.en = 0. The close resemblance between the analytical and enipieigalts shows again the goodness of the
proposed model and the subsequent analysis.

It is worth discussing the role of the numbaf, of permutations ofh in the generation ofw. This parameter is used to
control the performance degradation due to image modificatis it was outlined at the end of the Sect. Ill. On one hand, i
important to avoid that a convex combination of a block fromaathentic signal and another from a non-authentic sigaal b
used to produce a forgery. In that case, we would be intatésthaving a large value aW,, producing a sharp degradation of

the correlation statistic, and therefore implying a regrcin the false positive probability. Nevertheless, we als® interested

Figure 1. Analytical and empirical ROC curves for the setl6f images.M = 4096, N}, = 16, N, = 5, n = 0, v € {2,4, 8,10}, and

n = x. The solid and the dashed linee ~arraenand with tha anahaird avnarimantal riiniac rnenective|y_
1 T

—6—n=07
T

L L L
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05

Figure 2. ROC curves witly = {0.3,0.5,0.7} without additive noise for Lena. Heré/ = 4096, N}, = 16, N, = 5 and~ = 10. The
solid lines correspond with the analytical curves and thehdd lines with the empirical curves.
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Figure 3. Py, vs N, for Lena for different values ofV;, with Figure 4. P. vs shaping factorcx curves for different

Py, = 0.005, M = 4096, n = 0 and~y = 15. standard deviations of the GGD which models the projection
of image blockx onto the pseudorandom patterns (ice.=
i ngzg) when’; holds using the following parameters:
M = 4096 and~ = 10.

in having a smooth degradation of the correlation statisttb the number of mistakes in the hash, as the authentitattheme
should be robust to slight modifications, such as transgpdinthe watermark embedding itself. In that sense, the small
the value of N, the smoother the performance degradation, and therelierenbre robust the authentication scheme. As a
conclusion, we can establish that a trade-off exists betwebustness and probability of false positive.

In order to illustrate the dependence of the probabilityadéé negative orvV,, in Fig. 3 the behavior of,, is plotted as a
function of N,, for different values ofNN,, for Lena (withM = 4096, n = 0 and~ = 15), after fixing the probability of false
positive to Py, = 0.005. In the particular case studied in Fig. 3, the valueNgf which minimizesPy,, just slightly depends
on Nj. Notice that ifz is not watermarked or the detector and the embedder useetiffeeys thenP. ~ 1/2. Therefore, if
we increaseN,, the error probability in the seed used to genesdtevill rise and consequently?s,, will also be larger.

The dependence d?. on the parameters of the GGD used for modelk§ - S7 when, holds is illustrated in Fig. 4, where
P, is plotted as a function of the shaping factor for different standard deviations of the projected bloeks, M = 4096
and~ = 10. The considered range ofx corresponds to typical values of the standard deviatiomioet for the projected
coefficients of real images. On one hand, and according tetion, it can be seen that for larger values of the Document t
Watermark Ratio (proportional t@%) the probability that the watermark embedding flips bitstwd briginal robust hash will
be smaller. On the other hand, the results on Fig. 4 showRhatecreases witlax .

Finally, in order to identify the limitations of the analgspresented above, we will show how it can be adapted to delal wi
typical image processing attacks such as JPEG compressiensity transformations and linear filtering.

The JPEG standard compresses an image by quantizirggxit8 block-DCT coefficients so that the step-size of the used
uniform scalar quantizer depends on both the desired JPE®Eygtactor (QF) and the frequency of each particular coffit
(quantization step-sizes for low-frequency coefficients @sually smaller than high-frequency ones). Our analfiamework
can be adapted to deal with large QF JPEG compression by ading quantization approximation, i.e., by modeling the@ff
of the quantization error in the x 8 block-DCT with a noise random variable independent of thédeajuantized coefficient

and uniformly distributed if—A; /2, A; /2], whereA; is the step-size of the-ith coefficient scalar quantizer. Considering the
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Figure 5. 1 — F,JHD(T) vs JPEG quality factor curves using Figure 6. 1 — Fpy, (T) corresponding to image Lena, for
Lena for different values ofl’, with N = 4096, N;, = 16, intensity correction and linear filtering attack® = 4096,
N, = 5,7 =1, andy = 10. Solid lines correspond to the Np, =16, Np = 5, and~ = 10. Solid and symbols correspond
analytical curves, dashed lines were obtained by compigsbe to the analytical and empirical curves, respectively.

watermarked image with JPEG, and symbols correspond to
curves experimentally obtained by adding uniform noisehia t
8 x 8 block-DCT domain to the watermarked signal.

8 x 8 IDCT transform, one can obtain the distributionfin (1). Obviously, when the QF is decreased, the fine quaitiza
approximation fails and our analysis can be no longer agpliéis is illustrated in Fig. 5 where we compare the valuethef
complementary cumulative density functionmf, (i.e.1— F, | (7)) as function of the QF for the actual JPEG compression,
the analytical results obtained by adapting our analysisidering fine-quantization, and the empirical resultsaoigd when
noise uniformly distributed if—A;/2, A;/2] is added to the correspondirggx 8 DCT coefficients. As expected, the plots
corresponding to the two latter are very similar for the falhge of QF, whereas both of them are close to the actual JPEG
compression just for QF 90, i.e. while the fine-quantization approximation holds.

Affine point-wise intensity transformations consist inlgmgthe luminance values of an image and centering the driato of
the resulting image by adding an offset. This processingbeamodeled by changing andn in (1). Analytical and empirical
curves for different intensity change affine correctiondiions can be found in Fig. 6, showing the good match between
both curves; the only plot with a significant difference beéw both results correspondsso= 1/0.7, where the luminance
transformation becomes non-linear due to clipping. Natfieé non-linear transformations are not encompassed byibynodel.

In addition, the proposed analysis can be also adapted tonitbalinear Space Invariant (LSI) image filtering, by moide
both the image block projection distribution and the dsttion of the correlation between the watermark and therditte
watermarked signal. To this end, it is reasonable to nedledder effects and approximate image filtering bgdax 64-block
circular filtering, so the pdf of the mentioned correlatiprcan be calculated by using the circular convolution theorBoe to
space limitations, we have chosen a low-pass (Gaussianp drigh-pass (Sobel) filters as representatives of the clakSlo
filters. Concerning the Gaussian filtering, it is worth ngtthat the obtained. will be very similar to theP. without filtering,
as the Gaussian filters just slightly modify the low frequenomponents used to generate the robust hash. Knowing disat h
signal variance is concentrated in the low frequencies,a@dare using a white watermark, for large document-to-wiaaek
ratios the correlation between the Gaussian filtered watdma signal and the reconstructed watermark will have @wvee

similar to the non-filtered case, whereas its mean will beiced. On the other hand, when the image is Sobel-filtétedan
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be approximated by).5, as most frequencies used to produce the robust hash aefleessa consequence, the mean of the
correlation between the Sobel filtered watermarked signdlthe reconstructed watermark will be approximately nuliereas

its variance will be dramatically reduced due to the low frexgcies host power allocation. The behavior of both filtershiown

in Fig. 6, in accordance to our previous discussion.

Finally, we would like to emphasize that, as stated above,cttmputation time needed to assess the performance of the

analyzed self-embedding authentication algorithm usimgamalytical methodology is dramatically smaller thantihee required

by Monte Carlo techniques; as an example, a common PC witiiah Core2 Quad CPU at.4 Ghz and4 Gb of RAM

with Matlab 7.4 spends more than six days carrying out the Monte Carlo simukneeded to obtain the curves of Fig. 1. In

contrast, less than five minutes are needed to generate tesponding analytical plots.

V. CONCLUSIONS

(H;zi;,jfneﬂ 1) (Hzilikl,l(Nh*l)) if  mz < Ny and

(.
ne—1

Pr (Ns,k = mk‘Ns,kfl =mg_1, Ne = TLe) = e~ k-1 =0 (Np=0) ’ 0<mr —mp_1 < ne . (10)
0, otherwise
1, if k=1andm; = ne
0, if k=1andm; # ne
Pr(Ns,k = mk|Ne = ne) = Ny (11)
Som_ =0 Pr (Ns o = my|Ng -1 =mg_1, Ne = ne)
Pr(Ng j—1 =mp_1|Ne = ne) , otherwise

A thorough performance analysis of the self-embedding emiitation method proposed by Fridrich and Goljan was given
in this paper. In this analysis the hash bit error is firstiynpated; then, the pdf of the projection of the received imbigeks
onto the reconstructed watermark is approximated depgratinthat robust hash bit error probability. This allows ukbtain
closed formulas for the false positive and false negativbaiilities.

An important characteristic of the self-embedding auticatibn method is that the embedding process itself can fiypoké
robust hash of the image and consequently corrupt the reaotesd watermark; however in practical cases, a largereeldibg
distortion could increase the correlation between theivedesignal and the watermark estimated at the detector.a@alysis
shows that, although the hash bit error probabilities iaseewith the embedding distortion, the overall performaoc¢he
authentication system improves. We have also observedg {8) and (8), that giverPs,, Py, is a convex function ofV,,
with the optimal NV, almost invariant with/V,,. Furthermore, we have seen hdw depends on the standard deviation and the
shaping parameter of the projection (modeled by a GGD) ofirttege blocks onto the pseudorandom patterns.

Future research will focus on the analysis of self-embegldinthentication techniques where the spread-spectrunediny

is replaced by informed embedding strategies, e.g. [19].
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APPENDIXA

DERIVATION OF HASH BIT ERROR PROBABILITY

A

Defining G; £ LZ"S7 = L (nX"S7 4+ ynW™S’ + N”'87), the hash bit error probability can be written as

1 1
5P7’(|Gj| < Td|H]‘ = 1) + §PT(|GJ'| > Td|Hj = O)

P

%Pr <|Gj| < m%mszﬂ > nTe)
+1ip, <|Gj| > Td]i|nXTSj| < nTe>
2 M
Pr (|G| < Ta, & nX"S?| > nTe)
- 2Pr (L [nXTSI| > nT.)

Pr (|G| > Ta, & nX"S7| < nTe)
2Pr (ﬁ|nXTSJ| < nTe)

- 1 7o
= Pr{—N"S" =t
[ (s
Jor, Pr (57 F5 +t] < Ta, 5 InX"8%| = 7) dr
2Pr (L [nXTSi| > nT.)
o Pr(GrlES 4t > Ta, 57 |nXTS7| = 7) dr
2P (LInXTS1| < o)

+

dt, (12)

which yields (5) and where in (12); 2 nX7S7 + ynW7T's7,

APPENDIXB

DERIVATION OF THE DETECTION ERROR PROBABILITIES

First, we will derive the probability that given a number af érrorsn. in the estimate of the hash, the number of wrong
vectorst' is ns. In order to do so, we will obtain the probabilitiddr (N, = mk|Ns x—1 = mir—1, Ne = n.), where N j
denotes the number of wrong vectdfsafter k permutations of the reconstructed hash vedtor, k < N,. These probabilities
can be shown to be given by (10), whexe< k < N, ne < Nj. From there it is possible to writ€r(Ns , = mi|Ne = ne)
as (11). Finally, given that the probability of having mistakes in the hash estimate is

P'I'(]\/vE = ne) = <Nh>P:e (1 — Pe)(Nhine) 5

Ne
the probability of having:, wrong vectorst’ after N, permutations can be written as

Ny,
Pr(Ns=ns) = Y Pr(Nyn, =m|Ne = ne)Pr(Ne = ne). (13)

ne=0

On the other hand, the correlation statistic under the thgsi$H, is given by

PHy = % (nxT\fv +ynwT W + nTW)

Np Np

% <nxTw + Niﬂ” SN v+ nTw> : (14)

=1 j=1

Whenx andw are uncorrelated, so ak¢ andv? when! # j, while if N, = n., the vectorsv’ and¥' coincide in precisely

Ny — ns values; then, using (14) it is possible to conclude that tleamofps, is

E{pro|Ne = 15} = (N — ) - 7;} : (15)
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Similarly, the variance op, becomes

1
Var {pyo|Ns = ns} = 57 (7" 0% +9° - 0* - on, +0%) (16)
where
ol 2 1 ((Nn —ns)ova +nsoy
v W v
+(Nh - 1)Nha'<l/ + (Nh - ns)(Nh —Ns — 1)03/) 5
and o7, £ Var{V;?}, i = 1,--- ,M. SinceV; ~ U(—1,1), thenoy, = 1/9 and o7, = 4/45. In order to analyze the

distribution of ps,, one can straightforwardly adapt the discussion in Settabbut the distribution ofW” - S’ to obtain
the distribution ofX” - W and N7 - W, and apply the CLT for approximating the pdf W W by a Gaussian for large

values of N}, and M. The resulting approximation ig,|n,—n, ~ N ((Nh —ns) - s qp (17 ok 470 on, a?\,)).

Equivalently, it is clear that fol{; we can approximat@s, |, —n, ~ N ((Nh —ns) - 3 = (0% +7° ~a,§s)). In this way,
when Var{py, }/Var{px,} > 1, Psp = 271:2‘:0 Pr(Ns = ns|Ho)Pr(To < pn, < T1) and Py,, = Zf::o Pr(Ns =
ns|H1)[Pr(pw, < To) + Pr(pw, > T1)]; on the other hand, wheNar{py,}/Var{pwn,} < 1, Ps, = 30" ( Pr(N, =
ns|Ho)[Pr(pr, < To) + Pr(px, > T1)] and Py, = SN Pr(Ns = ns|H1)Pr(To < pn, < Ti). Finally, when

ns=0 =

Var{py,} = Var{pm,}, Ti = oo 50 Py, = SN Pr(Ns, = ns|Ho)Pr(To < pr,) and Py, = SN Pr(N, =

ng=0 ns=0
ns|H1)Pr(To > pwn,). Replacing in the previous expressions the probabilitiesof, by their integral form, one obtains
(7) and (8), respectively. Aside from the obvious differendetween the expressions (7) and (8), it is important te it
Pr(Ns = ns|Ho) and Pr(Ns = ns|H1) are different, since the expression fBr depends on the considered hypothesis, as

stated in Sect. Ill.
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