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# Signal Theory and Communications Department, University Vigo
E. E. Telecomunicación, Campus-Lagoas Marcosende, Vigo 36310, Spain

1 pcomesan@gts.uvigo.es
2 fperez@gts.uvigo.es

∗ Gradiant (Galician Research and Development Center in Advanced Telecommunications)
Vigo 36310, Spain

Abstract—In the last years a number of counterforensics tools
have been proposed. Although most of them are heuristic and
designed ad hoc, lately a formal approach to this problem,
rooted in transportation theory, has been pursued. This paper
follows this path by designing optimal attacks against histogram-
based detectors where the detection region is non-convex. The
usefulness of our strategy is demonstrated by providing for the
first time the optimal solution to the design of attacks against
Benford’s Law-based detectors, a problem that has deserved large
practical interest by the forensic community. The performance of
the proposed scheme is compared with that of the best existing
counterforensic method against Benford-based detectors, showing
the goodness (indeed, the optimality) of our approach.

I. INTRODUCTION

Many fields of multimedia security, and signal processing
in general, are perfect examples of a race between two parties
with conflicting interests. This is the case, for example, of
watermarking embedding and attacking, steganography and
steganalysis, biometrics and spoofing, and shared-channel le-
gal uses and jamming. In the last years, the general formulation
of these scenarios, which is referred to as Adversarial Signal
Processing [1], has received increasing attention.

Multimedia forensics, due to its nature, is also prone to this
game between forensic detectors and attackers. Specifically,
forensic detectors aim at determining whether a given content
has undergone a certain processing, or even estimate the
applied signal processing tools and their parameters; on the
other hand, forensic attackers try to fool the detectors, by
misleading their decisions/estimates.

The race between forensic detector and attacker can be even
found in seminal works in this field. This is the case of the
work by Popescu and Farid on resampling detection [2], where
the authors do not only present their well-known detection
method, but they also introduce an attack that would deceive
resampling detectors. A number of other works can be found
in the literature dealing with the design of attacks aimed at
fooling JPEG detectors [3], [4], [5].

A common point of these works, as well as most other
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counterforensic methods in the literature, is their somewhat
heuristic and ad hoc nature. In fact, most of these schemes
are designed to deal with a particular forensic problem, and
often to fool a specific detector, with a limited applicability to
different scenarios. Furthermore, they typically show a clear
lack of optimality: in fact, in most cases their optimality with
respect to any meaningful criterion is not even discussed.

In this framework, Barni et al. [6] made an important
contribution, introducing for the first time an attacking strategy
that is general (i.e., non-targeted) and optimal. However,
their approach is not consistent, in the sense that different
target functions are considered at different stages of their
scheme. Barni et al.’s method relies on transportation theory
to address two different forensic problems: gamma-correction
and histogram-stretching detection.

In a recent work, we have proposed another general coun-
terforensic method [7] where a single target function is consis-
tently optimized. Such method targets the so-called histogram-
based forensic detectors, whose decisions are just based on the
histogram of a function of the input signal.

Finally, in [8] Balado establishes connections between the
counterforensics problem in [7], and permutation coding;
through this coding paradigm, interesting mathematical links
between counterforensics and steganography are also pointed
out, thus enlarging the potential applicability of methods like
the one proposed in this paper.

A. Forensic Benford’s law-based detectors and counterforen-
sics

Forensic detectors based on Most Significant Digits (MSD)
have been devoted much attention in the last years. These
detectors work with the relative frequency of the MSDs, and
check the similarity of the resulting distribution with Benford’s
Law [9] (cf. Sect. II-D). Probably the main application of
these methodology is the detection of JPEG compression (both
single compression [10], and multiple compression [11], [12]).

Examples of adversarial signal processing can be also
found in the literature to counteract these detectors. This
is the case of [12], where the coefficients are sequentially
modified depending on their absolute value; only transfers



from those bins with a surplus of elements to those with
a deficit are allowed, imposing a strong constraint on the
attacker’s strategy that will increase the distortion due to the
histogram modification. On the other hand, in [13] an upper
bound between each coefficient and its attacked version is
established. Consequently, the latter scheme does not allow for
producing arbitrary histograms; indeed, the output histogram
might not be accurate for high frequencies. Finally, the attack
proposed in [14] can produce any arbitrary histogram, based
on the heuristic idea that those elements with the largest
values should be modified the least possible, since, in general,
their modification will imply a larger distortion than for the
smaller values. According to the results reported in [14], the
modification distortion achieved by such scheme is smaller
than that in [12].

As it was already mentioned, all three schemes described
in the last paragraph are heuristic. Following the framework
described in [7], one of the aims of this work is to provide the
optimal solution to the modification problem which produces
a Benford’s Law-compliant histogram.

The remaining of this paper is organized as follows: Sect. II
provides the problem formulation, including a general frame-
work description, a summary of the results reported in [7],
and an introduction to Benford’s domain. Sect. III presents
the main results of this work, while Sect. IV reports the
experimental results. Finally, Sect. V summarizes the main
conclusions.

Concerning notation, bold fonts will denote vectors (e.g.,
x), subindices will in general denote the component of a
vector (e.g., xi is the ith component of vector x), and double
subindices stand for the element of a matrix (e.g., mi,j is
the (i, j)th element of matrix M ). Furthermore, calligraphic
capital letters are used for denoting sets (e.g., x ∈ X ).

II. PROBLEM FORMULATION

First of all, we introduce the problem of attacking
histogram-based forensic detectors; although the formulation
of this problem was already posed in [7], it is also provided
here for the sake of readability of the subsequent results.
The main results presented in [7], and the constraints of
that approach are also summarized; then, we explain how
to remove some of those constraints by following a different
optimization approach.

A. Framework description

Let x be a vector containing the samples of a discrete
signal in its original space; x is assumed to belong to a set
X ⊂ RN , and it can be transformed through a function f(·),
yielding y = f(x) (y ∈ Y ⊂ RN ). We will assume f(·)
to be a bijection (e.g., the identity function, the full-frame
Discrete Fourier Transform (DFT), the block-Discrete Cosine
Transform (DCT)).

The forensic detector φx : X 7→ {0, 1} decides between two
alternative hypotheses H0 and H1. For instance, H1 can be “x
was interpolated” and H0 “x was not interpolated”. Often the
detector works in a transform domain, and consequently φx is

expressed in terms of φy : Y 7→ {0, 1}, as φx(x) = φy(f(x)).
Given φx, the acceptance and rejection regions for H0 are
defined in the original space as

Rxk
.
= {x ∈ X : φx(x) = k}, k = 0, 1,

with a similar definition for Ryk, k = 0, 1.
Given a signal x ∈ Rx1 and a distortion assessment function

gx : X × X 7→ R, a forensic attacker is interested in solving

x∗ = arg min
x′∈Rx

0

gx(x,x′).

A typical choice for gx is the squared Euclidean distance.
Based on the bijective nature of f , the previous problem

definition is equivalent to

y∗ = arg min
y′∈Ry

0

gx(f−1(y), f−1(y′)),

where y∗ = f(x∗).
Due to the bijectivity of f , there exists a distortion function

gy : Y × Y 7→ R such that gx(f−1(y), f−1(y′)) = gy(y,y′)
(e.g., f is a wavelet transform and gx is the Structural
Similarity Index (SSIM) [15], or f is an orthonormal transform
and gx and gy are Euclidean distances). Under this assumption,
we can alternatively work in the transform domain, i.e.,

y∗ = arg min
y′∈Ry

0

gy(y,y′). (1)

The value of the ith bin of the histogram of y is defined as

H(bi,y)
.
=

1

N

N∑
j=1

1(yj < bi) · 1(yj ≥ bi−1), i = 1, . . . , n1,

and the corresponding value of the cumulative histogram as

Hc(bi,y)
.
=

1

N

N∑
j=1

1(yj < bi), i = 1, . . . , n1,

where 1(·) is 1 if its Boolean argument is true, and 0
otherwise, and the histogram bins are delimited by the set
of points B = {b0, b1, . . . , bn1

}, where b0 < b1 < . . . < bn1
,

b0 = −∞, bn1 =∞.1 Therefore, the histogram of y is defined
as H(B,y) .= [H(b1,y), H(b2,y), . . . ,H(bn1 ,y)], while the
set containing all the valid H(B,y) will be denoted by H
(similarly, we will use Hc(B,y) and Hc for the cumulative
histograms).

The test statistic φy is said to be histogram-based if there
exists a function φH : H 7→ {0, 1} such that φy(y) =
φH(H(B,y)) for all y ∈ Y . Therefore, given B, for a
histogram-based test we can define the equivalent acceptance
and rejection sets as

RHk
.
= {H(B,y) : φH(H(B,y)) = k}, k = 0, 1.

We introduce gH : H ×H 7→ R to quantify the similarity
between histograms:

gH(H(B,y), H(B,y′)) .= min
y′′:H(B,y′′)=H(B,y′)

gy(y,y′′). (2)

1This definition of the histogram and cumulative histogram is slightly
different from that considered in [7], as in the current work the upper bound
of the considered interval is open, and the lower bound closed.



B. Previous results

As discussed in [7], the solution to (1) is equivalent to
solving

y∗ = arg min
y′:H(B,y′)=H](B,y])

gy(y,y′), (3)

where

H](B,y]) = arg min
H′(B,y′)∈RH

0

gH(H(B,y), H ′(B,y′)).

(4)

In [7] we focused on the particular case where gy is
component-wise additive and dependent on the difference
between the input vectors, i.e., gy(y,y′) =

∑N
i=1 g

yi(yi−y′i),
where each gyi is convex, and B = Y . In such case, the
solution to (1) given H](B, y]) is

y∗πi
= y]τi , i = 1, . . . , N,

where π denotes an ordering permutation of y, i.e., yπ1 ≤
yπ2
≤ . . . yπN

, and τ a similarly defined ordering of y]. There-
fore, the optimization simply amounts to finding H](B, y]),
that is, solving (4).

If the distortion function gy is based on the Euclidean norm,
then

gH(H(B,y), H(B,y′)) =∑N
j=1

[
(Hc)−1

(
j
N ,y

)
− (Hc)−1

(
j
N ,y

′)]2 ,
where one must take into account the straightforward relation-
ship between H and Hc, and

(Hc)−1(p,y)
.
= arg min

bi,1≤i≤n1:Hc(bi,y)≥p
bi

is the inverse mapping of the cumulative histogram.
Consequently, the target function in (4) is convex and the

optimization problem can be solved by off-the-shelf algorithms
as long as RH0 and the feasible region in (3) are also convex.
The usefulness of the derived attack was shown in [7], where
it was used for misleading a well-known double-JPEG com-
pression detector [16] proposed by Pevny and Fridrich. Fur-
thermore, the performance of the proposed attack is compared
to that of other works in the literature specifically designed
for double-JPEG detectors [17], showing the improvement
achieved by the transportation-theoretic approach.

C. Need for the current approach

The main target of the current work is to provide the optimal
solution to (4) for those cases where RH0 and/or the target
function are not convex, but gy is still component-wise additive
and dependent on the difference between the input vectors.
There is a number of practical applications where this problem
arises, that have received much attention in the literature, and
whose optimal solution has not been found yet. These include:
• Benford’s law-based detectors. This is a well-known

problem in the literature (cf., the Introduction), but to
the best of our knowledge the optimal solution (even for
the Mean Square Error (MSE) distortion) is not known.

• Additive but non-convex distortion functions in the trans-
form domain. This is the case, for example, of the
measure proposed in [18], where the output of a steerable
pyramid transform is fed to a normalizing function, which
stands for the limited effect of any image on the visual
system mechanisms. Similarly, in [19] the authors claim
that there is no evidence that the relationship between
the contrast and the perceived distortion is linear, but it
can be probably better modeled by a sigmoid (monotoni-
cally increasing, but non-convex) function that takes into
account the saturation effects typical of human senses.

D. Benford’s domain definition

A set of numbers verify Benford’s law if their MSD is dis-
tributed according to the following probability mass function
(pmf)

P (d) = log10

(
1 +

1

d

)
.

It is easy to check that the MSD of a non-null number x can
be computed as

d(x) =

⌊
|x|

10blog10(|x|)c

⌋
.

Definition: The coset representative of x in Benford’s domain
is defined as

c(x)
.
= log10(|x|)− blog10(|x|)c =

[
log10(|x|)−

1

2

]
mod Z+

1

2
,

where x mod Z returns the quantization noise to the closest
integer to x.

With some abuse notation, we will denote by c(x) the vector
whose ith component is c(xi), 1 ≤ i ≤ N .

In fact, d(x) is a function of c(x), as

d(x) =
⌊
10c(x)

⌋
.

Definition: Two vectors without null components a and b
are said to be equivalent in Benford’s domain iff for each
component they share the coset representative in that domain,
i.e., c(ai) = c(bi), 1 ≤ i ≤ N .
Definition: Two vectors without null components a and b
are said to have equivalent histograms in Benford’s domain,
denoted by a ∼ b, iff H(B, c(a)) = H(B, c(b)).
Definition: Given an input vector x, a forensic detector is said
to be histogram-based in Benford’s domain if its decision is
exclusively based on H(B, c(x)).

Hereafter, we will focus on the analysis of those detectors.
In view of the previous definitions, it is clear that a vector

x is said to follow Benford’s law if and only if

H(bi, c(x)) = N

[
log10

(
1 +

1

i

)]
, (5)

where n1 = 9, and bi = log10(i + 1), 1 ≤ i ≤ 8. From (5),
and noticing that a sufficient condition for Benford’s law veri-
fication is the uniform distribution of the coset representatives
in [0, 1), it is possible to introduce a generalization referred to



as Strong Benford’s law [9]. A vector x is said to follow this
strong law if and only if

H(bi, c(x)) = N
[
log10

(
b+i
)
− log10

(
b+i−1

)]
, (6)

where b+ = min(max(b, 1), 10).
Therefore, the attack optimization problem will be formal-

ized for histogram-based detectors in Benford’s domain by
replacing (2)-(4) by

gHc(H(B,y), H(B,y′)) .= min
y′′:H(B,c(y′′))=H(B,c(y′))

gy(y,y′′),

y∗ = arg min
y′:H(B,c(y′))=H]

c(B,c(y]))
gy(y,y′), (7)

H]
c(B,y]) = arg min

H′(B,y′)∈RHc
0

gHc(H(B,y), H ′(B,y′)),

(8)

where RHc
0 denotes the acceptance region for histogram-based

detectors in Benford’s domain. Due to the modulo-reduction
inherent to the coset representative definition, it is obvious that
the feasible region in (7) is non-convex. This represents a sub-
stantial difference with respect to the framework considered in
[7].

Since x is the realization of a random vector X, some
tolerance on (5) and (6) is typically allowed by Benford’s law
(and strong Benford) detectors, and specifically by histogram-
based ones, meaning that RHc

0 would be a region around the
histogram N ·[P (1), P (2), . . . , P (9)]. However, for the sake of
computational simplicity, and in order to avoid the dependence
of the proposed attack with a particular detector, we will
require (5) (or (6)) to be exactly verified (up to rounding
effects), yielding a single-element set RHc

0 . From a practical
point of view this means that the optimization in (8) is not
longer performed, as its feasible set contains a single point
that, consequently, is the desired solution. A similar approach
was also followed in [14], where the target histogram was the
average histogram of legal images. In any case, the reader
should be aware that, since the approach proposed in the next
section deals with the optimization of (7), it can be still used
for the case where RHc

0 has more than one element, requiring
in such case to additionally perform the optimization in (8).

III. MAIN RESULT

Given a histogram in Benford’s domain H]
c(B, c(y])), we

want to solve (7), or equivalently,

y∗ = arg min
y′:y′∼y]

gy(y,y′). (9)

We assume, as it was already mentioned, gy to be component-
wise additive and dependent on the difference between the
input vectors. In order to solve this problem we consider the
cost matrix M , whose elements are

mi,j = min
a:c(a)∈[bi−1,bi)

gyj (yj − a), (10)

i.e., the cost required to move the jth component of y to the
ith histogram bin in Benford’s domain. Then, solving (11) is
equivalent to solving

min
ai,j∈C

n1∑
i=1

N∑
j=1

ai,jmi,j ,

where C is defined as

C .
=

{
ai,j : ai,j ∈ {0, 1}, 1 ≤ i ≤ n1, 1 ≤ j ≤ N ;

n1∑
i=1

ai,j = 1, 1 ≤ j ≤ N ; (11)

N∑
j=1

ai,j = H]
c(bi, c(y

])), 1 ≤ i ≤ ni
}
. (12)

Indeed, this is a linear optimization problem that can be solved
by using the simplex algorithm [20].

Note that, although the definition of simplex problem does
not enable one to consider ai,j ∈ {0, 1}, 1 ≤ i ≤ n1, 1 ≤
j ≤ N , but only use ai,j ≥ 0 and the two equality constraints
(i.e., (11) and (12)), properties of the simplex guarantee that
the minimum is achieved (at least) at a vertex of the resulting
polytope. By considering (11) and (12), this implies ai,j ∈
{0, 1}. Depending on the structure of M , the minimum could
be simultaneously achieved at several vertices; if this were the
case, then the convex combination of those vertices (i.e., the
corresponding edges and/or faces of the polytope) would also
provide the minimal value. In any case, the simplex algorithm
will return one of those optimal vertices, and therefore the
constraint ai,j ∈ {0, 1}, 1 ≤ i ≤ n1, 1 ≤ j ≤ N will be
implicitly verified.

A. Cost matrix calculation

The only remaining point is the calculation of the cost
matrix M . In order to do that, notice that (10) is equivalent to

mi,j = min
b∈[bi−1,bi)

min
n∈N

gyj (yj − 10b+n),

1 ≤ i ≤ n1, 1 ≤ j ≤ N . Assuming, as it is typically the
case, that gyj (y) is continuous, monotonically increasing for
y > 0, and monotonically decreasing for y < 0, the previous
expression can be written as

mi,j =


gyj (0), if c(yj) ∈ [bi−1, bi)

min
(
gyj (yj − sign(yj)10bi+blog10(|yj |)−bic),

gyj (yj − sign(yj)10bi−1+dlog10(|yj |)−bi−1e)
)
,

otherwise

. (13)

If gyj (y) were not continuous, then one should consider
the possibility for the discontinuities to be at histogram bin
boundaries. Additionally, if gyj (y) were not monotonically
increasing for y > 0 and decreasing for y < 0, then (13)
should be replaced by a more involved optimization procedure
(e.g., splitting the optimization domain in intervals where the
target function is monotonic). In the remaining part of this
paper we will assume that gyj (y) = y2 (i.e., the distortion
criterion is the MSE), and, consequently, (13) can be used.



IV. EXPERIMENTAL RESULTS

In order to show the goodness of the counterforensic method
proposed in the previous section, the following experimental
setup is used:
• We consider the 1338 images in the UCID database [21]

(in grayscale).
• All of them are JPEG compressed with a Quality Factor

(QF) ranging from 10 to 100, with stepsize 10.
• The 8× 8 DCT of the compressed images is computed.
• For each image, we separately consider each of the 63

AC 8× 8 DCT frequencies.
• For each of those frequencies the non-null coefficients

are modified in order to comply with Benford’s Law
or Strong Benford’s Law (in both cases up to rounding
effects), depending on the particular experiment. Null
coefficients are not modified.

• The target function to be minimized is the distortion
Mean Square Error (MSE).

• A further quantization of the DCT coefficients is not
considered.

A possible practical limitation of this framework is the
disregard of both the modification of null components and the
quantization of DCT coefficients, which do not affect either
the methodology or the conclusions. In any event, we remark
that the comparison that we carry out below is fair in the
sense that both methods have exactly the same constraints.
Therefore, the results are illustrative enough of the power of
the simplex method. We also notice that our scheme could
be also easily adapted to deal with those further constraints.
Indeed, both issues are solved by modifying the computation
of mi,j .

Concerning previous works in the literature, we establish
our comparison with [14], since, as there reported, such
scheme outperforms all previous proposals in the literature
(i.e., [22], [13]). Pasquini et al.’s method sorts the DCT coeffi-
cients in decreasing order of magnitude. Then, each coefficient
is orderly assigned to that closest bin whose maximum number
of coefficients (according to the target histogram) has not
been yet achieved. The output value for each coefficient is
the closest point of the assigned bin to the original value.

A. Benford’s Law (n1 = 9)

In this case the target histogram bin boundaries are bi =
log10(i+1), and the target number of coefficients in each bin
H(bi, c(x)) = N log10

(
1 + 1

i

)
, 1 ≤ i ≤ 9.

The obtained results verify that for each image, DCT
frequency, and JPEG compression QF, the MSE necessary for
generating a Benford’s Law-compliant DCT histogram by fol-
lowing the scheme proposed in the previous section is smaller
than that achieved with the scheme in [14]. Fig. 1 shows the
histogram modification distortion Peak Signal-to-Noise Ratio
(PSNR), where we consider the average MSE (over the entire
image database) required to generate a compliant histogram,
for both our simplex-based method and the method in [14], and
different QFs. As one would expect, the MSE is decreasing
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Fig. 1. Histogram modification distortion PSNR as a function of QF for
Benford’s Law.

with the QF, that is, the larger the QF (i.e., the lighter the
compression), the easier it will be to generate a compliant
histogram.

On the other hand, Fig. 2 shows the MSE gain (in dB)
achieved by our simplex-based strategy with respect to the
method in [14], as a function of the DCT coefficient index
when one averages the MSE of the database images, and the
10 values of the QF introduced above.

B. Strong Benford’s Law (n1 = 20)

In this case the target histogram bin boundaries are bi = i
20 ,

and the target number of coefficients in each bin H(bi, c(x)) =
N
20 , 1 ≤ i ≤ 20.

Similarly to Benford’s Law, the plots in Fig. 3 show the
PSNR as a function of the considered QF, while Fig. 2
illustrates the gain achieved by our proposal with respect to
[14], and its dependence with the considered DCT frequency.
The conclusions derived for Benford’s Law in the previous
section are also valid here: the higher the QF, the smaller
the MSE. Furthermore, the MSE required for generating a
compliant histogram with the simplex-based scheme proposed
here is smaller than that required by the method in [14] for
each image, each frequency, and each considered QF.

V. CONCLUSIONS

In this work we have revisited the problem of attacking
histogram-based forensic tools. Specifically, we show that in
a particular case of practical interest (that includes Benford’s
Law-based detectors), the modification distortion optimization
problem can be reframed as a linear programming problem.
Consequently, one can use well-known optimization tools,
such as the simplex, to find the optimal solution. So far, the
proposed solutions to this problem were heuristic and clearly
suboptimal. This paper introduces for the first time the MSE
optimal solution to this well-known problem.

Concerning future work, we will consider the use of differ-
ent distortion measures, provided that the required constraints
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Fig. 3. Histogram modification distortion PSNR as a function of QF for
Strong Benford’s Law.

(i.e., component-wise additive, dependent on the difference
between the input vectors, and monotonically increasing for
positive values and monotonically decreasing for negative
values) are verified.
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