Universida_{de}Vigo

AtlantTIC Research Center for Information & Communication Technologies

Link Adaptation in Mobile Satellite Links: Field Trial Results

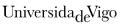
Anxo Tato*, Carlos Mosquera* and Iago Gómez~

* Signal Processing in Communications Group Universidade de Vigo {anxotato, mosquera}@gts.uvigo.es

GRADIANT Centro Tecnolóxico de Telecomunicacións de Galicia {igomez@gradiant.org}

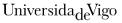
About us

Universida_{de}Vigo


AtlantTIC

Research Center for Information & Communication Technologies

Vigo (Galicia) SPAIN

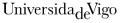


Contributions and Novelty

- Implementation of a Mobile SatCom standard:
 - ETSI TS 102 704 (S-UMTS family SL) ----> BGAN (Inmarsat)
- Use of Software Defined Radio (SDR) technology
 - The whole physical layer of the two bearers fitted in an ARM Cortex A9 667 MHz dual-core processor
- Experimental test of Link Adaptation algorithms
 - Not only simulations
- Deployment of a SatCom link using a S-band MEO satellite
- Successful operation in mobile challeging environments
 - Terrestrial: car in highway and semirural environments
 - Aeronautical: fixed-wing Unmanned Aerial Vehicle (UAV)

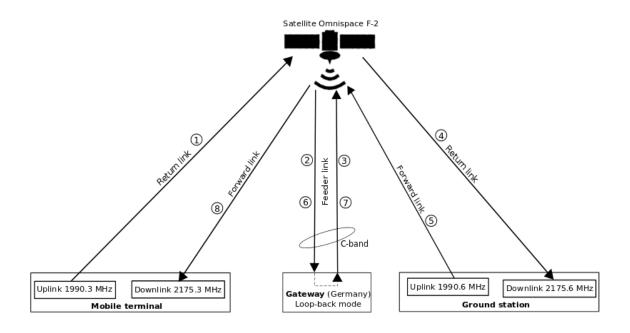
The SatUAV project

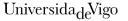
- Duration: 12 months
- Project coordination: AtlantTIC
- Manpower: 4
- Partners


Satellite operator (USA)

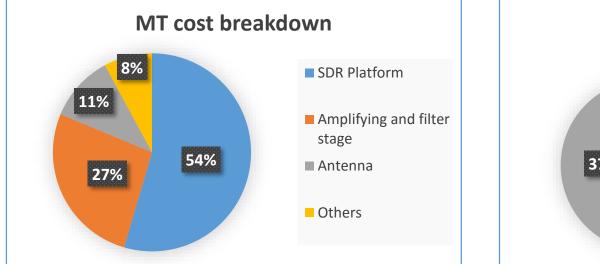
UAV manufactor and operator (Spain)

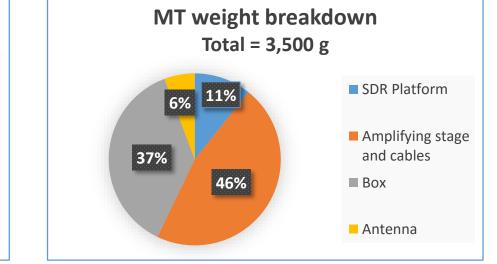
- Objectives
 - Development of the Mobile Satellite Terminal and the Ground Station
 - Test and compare the link adaptation algorithms
 - Perform channel model measurements
 - Test and validate the real-time communications system in terrestrial and aeronautical environments



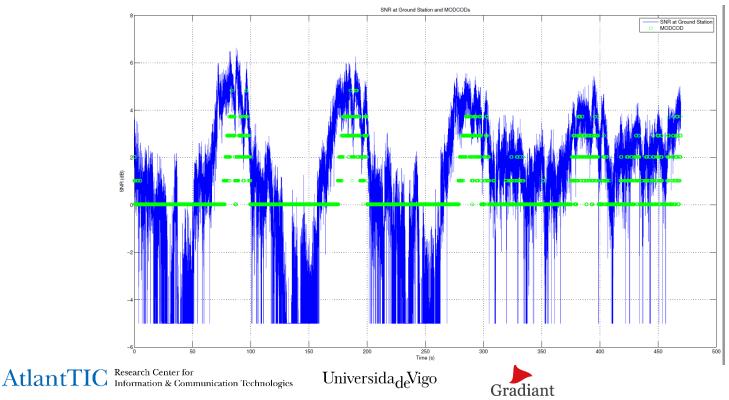


Link Adaptation in Mobile Satellite Links: Field Trial Results The elements of the system




Link Adaptation in Mobile Satellite Links: Field Trial Results The Mobile Terminal (MT) prototype

- Weight: 3.5 kg (4.6 kg with batteries)
- **Dimensions**: 25 x 25 x 10 cm (without antenna)
- Data rates:
 - π/4-QPSK bearer: 41,2 113,6 kbps
 - 16-QAM bearer: 83,6 211,2 kbps

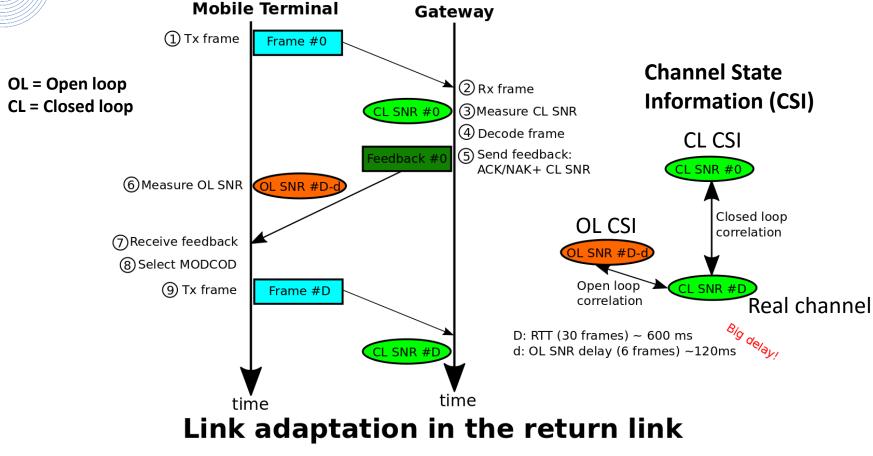


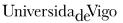
Universidade Vigo

The problem of Link adaptation

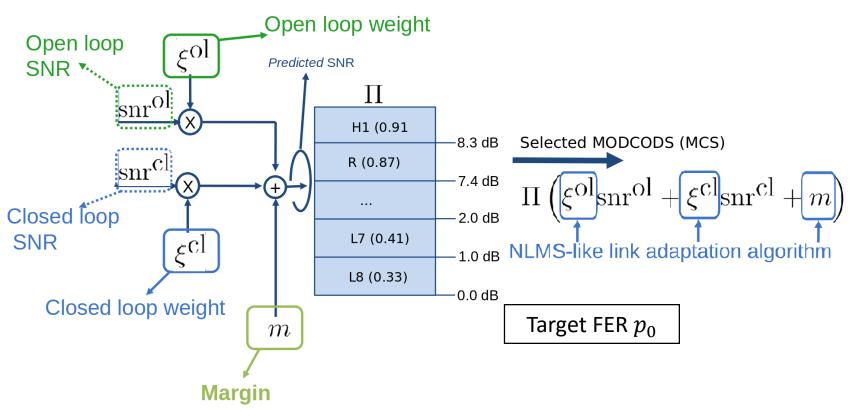
Origin of the variations in the RSSI/SNR

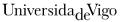
- Weather conditions
- Shadowing due to small obstacles
- Obstruction due to big obstacles (non-Line-of-Sight)
- Fast fading (multipath)
- Distance to the satellite (for non-GEO)
- Antenna gain in the direction of the satellite (changing elevation & azimuth and terminal movement)
- Beam switch





Link adaptation in the satellite scenario




Our proposal for Link Adaptation in the Return link ASMS 2014: Balancing closed and open loop CSI in mobile satellite link adaptation

Novel algorithm with simulation results

ASMS 2016: Field Trial Results

AtlantTIC Research Center for Information & Communication Technologies

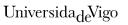
Equations for updating the parameters

- Four similar algorithms were compared:
 - Closed loop
 - Open loop
 - Balanced
 - Balanced convex
- Example of an adaptation rule:

$$\begin{bmatrix} c_{i+1} \\ \boldsymbol{\xi}_{i+1} \end{bmatrix} = \begin{bmatrix} c_i \\ \boldsymbol{\xi}_i \end{bmatrix} - \frac{\mu}{\theta^2 + \|\mathbf{SNR}_{i-d}\|^2} \left(\epsilon_{i-d} - \tilde{p}_{0,i}\right) \begin{bmatrix} \theta \\ \mathbf{SNR}_{i-d} \end{bmatrix}$$

$$\boldsymbol{\xi}_{i} = [\xi^{cl} \ \xi^{ol}]^{T}$$
$$\mathbf{SNR}_{i} = [\mathrm{SNR}_{i}^{cl} \ \mathrm{SNR}_{i}^{ol}]^{T}$$

- Practical operation:
 - $\epsilon_i = 0$: **ACK** \implies Slight \uparrow of Weights and Margin
 - $\epsilon_i = 1$: **NAK** Strong \downarrow of Weights and Margin

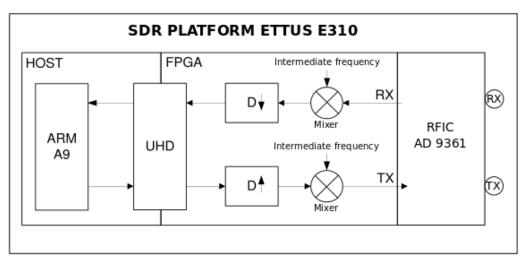


Satellite component

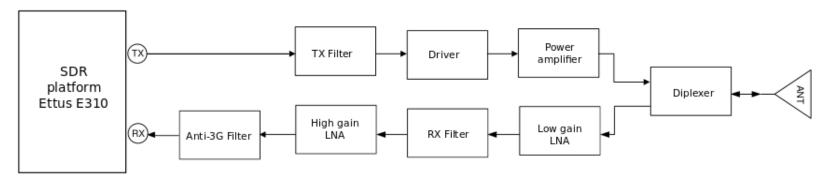
Characteristic	Value
Operator	Omnispace LLC
Satellite	Omnispace F-2 (former ICO F-2)
Orbit	MEO (10,500 km) 45° inclination
Coverage availability	21% (5 hours/day) in 2/3 passes per day
Frequency	S-band @ 2 GHz
Leased bandwidth	200 kHz in each direction
Doppler	± 20 kHz

Link Adaptation in Mobile Satellite Links: Field Trial Results Physical layer

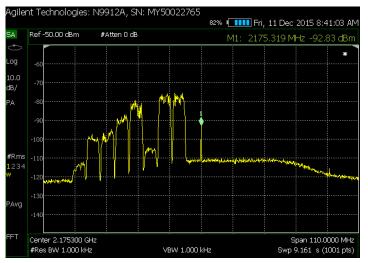
- Standard ETSI TS 102 704, October 2015
 - BGAN (Inmarsat)
- Two shared access bearers were implemented
 - R20T2Q & R20T2X


Characteristic	Value
Frame length	20 ms
Modulation	π/4-QPSK (Q), 16-QAM (X)
Symbol rate	67,2 ksymb/s
Channel bandwidth	84 kHz
Transmit chain elements	Scrambler, Turbo-coding, Puncturing, Channel Interleaving, Modulation, Matched Filter (RRC)
Turbo-coding	10 code rates: rates from 0.33 to 0.91 (R20T2Q) and from 0.33 to 0.84 (R20T2X)

spsc2016


Hardware

- SDR platform USRP Ettus E310
 - ARM Cortex A9 667 MHz dual core + 7 Series FPGA + AD 9361



• External analog front-end

Issues during development

3G base stations interferences

Real-time operation

- Optimization of correlations implementation
- Exploit both cores with two threads synchronized with semaphores

High frequency deviation

- Large Doppler (20 kHz) compared with BW (84 kHz)
- Solution: Variable bandwidth matched filter

Time flies!

Field trial results together with simulation results

Markers = field trials Lines = simulations using experimental data

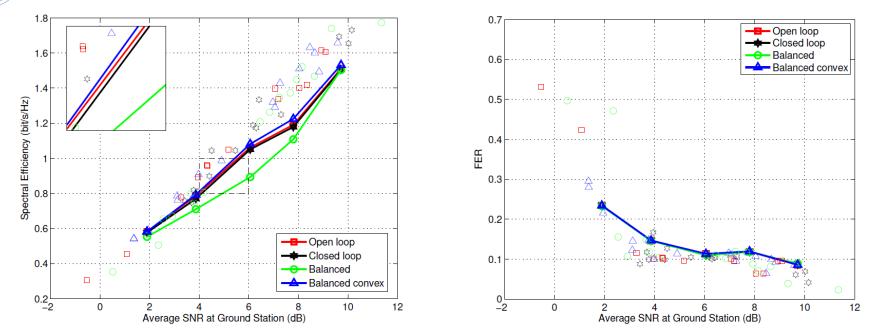
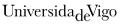
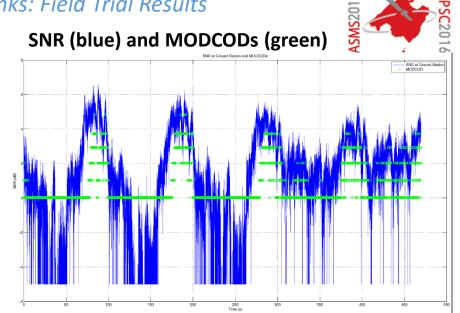
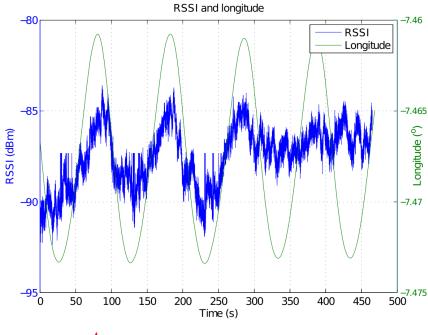



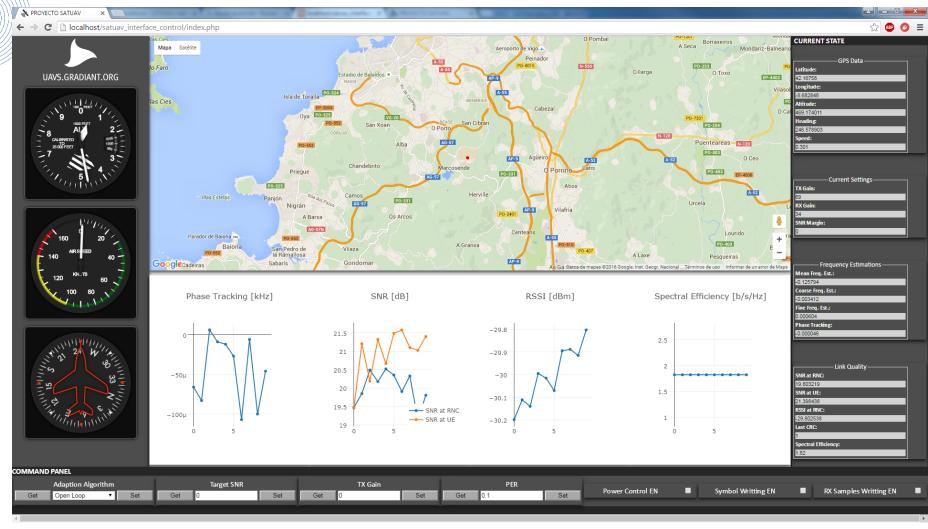
Fig. 7: Mean spectral efficiency (left) and cumulative FER (right) of field trials (independent markers) and simulations (markers connected with lines).

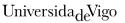



Link adaptation in action

Algorithms can follow the channel variations due to decrement of the antenna gain in the direction of the satellite when the UAV turns

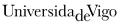
UAV trajectory


AtlantTIC Research Center for Information & Communication Technologies Universida_{de}Vigo



Tracking of the UAV and the SatCom link

Web application



- The system worked correctly during the final trials
- The open loop SNR seems useful in the link adaptation
- The Link adaptation schemes were able to track the fluctuations of the SNR due the the orientation of the UAV
- All algorithms satisfy the objective FER of 10 %
- All algorithms behave similarly in terms of spectral efficiency
- It is very difficult to compare the algorithms in the same conditions
- Later simulation show that balanced convex algorithm outperforms others
- Using SDR technology eases development time



SPSC2016

Future work

- Comparison with BGAN algorithms
- Explore new link adaptation algorithms for L-band SatComs which exploit dual polarization
- Deep analysis of all the data collected within the Project
- Continue with the theoretical study of the adaptive algorithms
- Propose link adaptation algorithms for mobile SatCom systems employing DVB-S2X/DVB-RCS2+M in higher frequencies (Ku/Ka band)
- Put at the disposal of all the research community an open database with the data collected within the SatUAV Project

Universida_{de}Vigo

AtlantTIC Research Center for Information & Communication Technologies

Thank you!

Questions and comments are welcome

www.atlanttic.uvigo.es

f ♥ in

/AtlantTIC | @AtlantTIC_

List of Acronyms

- ACK. Acknowledgement
- ANT. Antenna
- **BGAN.** Broadband Global Area Network
- BW. Bandwidth
- CL. Closed loop
- CSI. Channel State Information
- DVB-S2X. Digital Video Broadcasting Satellite Extensions of the Second Generation
- **DVB-RCS2+M.** Digital Video Broadcasting Return Channel via Satellite with Mobile Extensions
- ETSI. European Telecommunications Standards Institute
- FER. Frame Error Rate
- FPGA. Field-Programmable Gate Array
- GEO. Geostationary Earth Orbit
- LNA. Low Noise Amplifier
- MEO. Medium Earth Orbit
- MODCOD. Modulation and Coding Scheme. (Also MCS)
- NAK. No-Acknowledgement
- OL. Open loop
- **QPSK.** Quadrature phase-shift keying

- **QAM.** Quadrature Amplitude Modulation
- **RFIC.** Radio Frequency Integrated Circuit
- **RPA.** Remotely Piloted Aircraft
- RRC. Root Raised Cosine
- **RSSI.** Received Signal Strength Indicator
- **RTT.** Round Trip Delay Time
- SatCom. Satellite Communications
- SDR. Software Defined Radio
- SNR. Signal to Noise Ratio
- **S-UMTS.** Satellite component of UMTS (Universal Mobile Telecommunications System)
- UAV. Unmanned Aerial Vehicle
- UHD. USRP Hardware Driver
- USRP. Universal Software Radio Peripheral
- VAT. Value-added tax