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Why do we like location based apps?



Google maps
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Foursquare
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Facebook place tips
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Waze
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And, of  course…
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How can you be geolocated?
(without you fully knowing)



IP-based Geolocation
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Source: GeoIPTool



Meta-data based Geolocation
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Landmark recognition Geolocation
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Biometric geolocation
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Credit card usage Geolocation
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Triangulation and other geolocation techniques
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Signal strength-based triangulation
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Source: The Wrongful Convictions Blog
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Source: The Wrongful Convictions Blog

Signal strength-based triangulation



Multilateration: Time Difference of  Arrival (TDOA)
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Source:[Fujii et al. 2015] 



Wardriving geolocation (Wigle)
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Source:Wigle.net



Electrical Network Frequency Geolocation
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Why is it dangerous?
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Buster busted!
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6 months in the life of  Malte Spitz (2009-2010)
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Source:http://www.zeit.de/datenschutz/malte-spitz-data-retention 
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Are we concerned about it?



Are people really concerned about location
privacy?

• Survey by Skyhook Wireless (July 2015) of 1,000 
Smartphone app users. 

• 40% hesitate or don’t share location with apps. 

• 20% turned off location for all their apps. 

• Why people don’t share location?
• 50% privacy concerns. 

• 23% don’t see value in location data. 

• 19% say it drains their battery.

• Why people turn off location?
• 63% battery draining.

• 45% privacy.

• 20% avoid advertising. 
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How much is geolocation data worth?
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How much value do we give to location data? 
[Staiano et al. 2014]

35

D
ai

ly
V

al
u

e
(€

)

Many participants opted-out of 
revealing geolocation information. 

Avg. daily value of location info: 3 €

Strong correlation between the amount traveled 
and the value given to location data.



Earn money as you share data
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• GeoTask

• £1 PayPal cash voucher per 
100 days of location data 
sharing (£0.01/day)

Financial Times in 2013: advertisers are willing 
to pay a mere $0.0005 per person for general 
information such as their age, gender and 
location, or $0.50 per 1,000 people.

http://www.ft.com/cms/s/0/3cb056c6-d343-11e2-b3ff-00144feab7de.html#axzz3sKYPVPiL


Pay as you drive
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• Formula can be a function 
of the amount of miles 
driven, or the type of 
driving, age of the driver, 
type of roads used…

• Up to 40% reduction in the 
cost of insurance.



39

BIA/Kelsey projects U.S. location-targeted 
mobile ad spending to grow from $9.8 billion in 
2015 to $29.5 billion in 2020.

That’s $90 per person year!!!!
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SAP, Germany, estimates wireless carrier 
revenue from selling mobile-user behavior data 
in $5.5 billion in 2015 and predicts $9.6 billion 
for 2016. 
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How about
anonymization/pseudonymization?



Anonymity

Problems: 

• Difficult authentication and personalization.

• Operating system or apps may access location before 
anonymization. 
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Anonymity provider
(local/central)

LocationLocation

Service provider



Pseudonimity

Problems: 

• Operating system or apps may access location data before 
pseudonymization. 

• Deanonymization.
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Deanonymization based on home location [Hoh, 
Gruteser 2006]

• Data from GPS traces of larger Detroit area (1 min resolution). 

• No data when vehicle parked. 

• K-means algorithm for clustering locations + 2 heuristics:
• Eliminate centroids that don’t have evening visits.

• Eliminate centroids outside residential areas (manually).
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Source: [Hoh, Gruteser 2006] 



Deanonymization based on home location
[Krummer 2007]

• 2- week GPS data from 172 subjects (avg. 6 sec resolution).

• Use heuristic to single out trips by car. 

• Then use several heuristics: destination closest to 3 a.m. is
home; place where individual spends most time is home; 
center of cluster with most points is home. 

• Use reverse geocoding and white pages to deanonymize. 
Success measured by finding out name of individual. 

• Positive identification rates around 5%. 

• Even noise addition with std=500 m gives around 5% success
when measured by finding out correct address. 
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Mobile trace uniqueness [de Montjoye et al 2013]

• Study on 15 months of mobility data; 0.5M individuals.

• Dataset with hourly updates and resolution given by cell
carrier antennas, only 4 points suffice to identify 95% of 
individuals. 

• Uniqueness of mobility traces decays as 1/10th power of 
their resolution. 
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Source: [de Montojoye et al. 2013] 
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Location privacy protection mechanisms



Location white lies
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Source: Caro Spark (CC BY-NC-ND)



Location based privacy mechanisms
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Location privacy protection mechanisms (LPPMs)

•

• The mechanism may be deterministic (e.g., quantization) or
stochastic (e.g., noise addition). 

• Function may depend on other contextual (e.g., time) 
or user-tunable (e.g., privacy level) parameters. 

• When the mechanism is stochastic, there is an underlying
probability density function, i.e., 
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Hiding
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Perturbation: (indepedent) noise addition
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Perturbation: quantization
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Obfuscation
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Spatial Cloaking
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How to commit the perfect murder
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Space-time
Cloaking
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Time



Dummies
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User-centric vs. Centralized LPPM
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User-centric



User-centric vs. Centralized LPPM
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Centralized
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Utility vs. Privacy
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Very nice, but…

• There are two main problems:

How do we measure utility?

How do we measure privacy?
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How to measure utility?
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How to measure utility?



How to measure utility?
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A note about distances
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Adversarial definition of  privacy [Shokri et al 2011-]

• Assume stochastic mechanism for the user . 

• Adversary constructs a (possibly stochastic) estimation
remapping . 

• Prior                  assumed available to the adversary. 

• :  Distance between and   

• : Distance between and 
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Adversarial definition of  privacy [Shokri et al 2011-]

• Establish a cap on average utility loss:

• This is a Stackelberg game in which the user chooses first
and the adversary plays second. 

• Find optimal adversarial ‘remapping’: 

• Optimal remapping depends on and             . 

where
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Example: uniform noise addition
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Adversarial definition of  privacy [Shokri et al 2011-]

• When for a given there are several minimizers the
function becomes stochastic. 

• The user now must maximize privacy:

• Which is achieved for some mechanism

• Privacy is defined as                              after solving this
maxmin problem.   

80

)ˆ,()()|()|ˆ(max)},ˆ({max
ˆ,,

* XXdXXZfZXrXXdE p

XXZ

p 

X̂Z

)|ˆ(* ZXr

)},ˆ({ XXdE p

)|(* XZf



An interesting result

• When :

i.e. do nothing!

• When the following identity must hold

• When both user and adversary play optimally:
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The Utility Loss-Privacy plane
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What’s wrong with priors? 

• Is it realistic to asume that the adversary knows the prior? 

• Adversary no longer plays optimally with the ‘wrong’ prior.

• Shokri’s privacy definition is prior-dependent. 

• Definition of differential privacy is prior-independent:

- Two databases differing in a single element.

- A: randomized algorithm.  

- S: set of possible subsets of im(A).
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Geoindistinguishability [Chatzikokolakis et al 2013-]

• A mechanism is geo-indistinguishable iff:

for all

• Differential privacy corresponds to dp = Hamming distance.

• Definition is prior-independent.

• Guarantees a small leakage of information BUT is no 
defense against EVERY adversary: with proper side
information, adversary can learn a lot!  

87

)',(|)'|(log()|(log(| xxdxXzfxXzf p 

.,', zxx



Uniform mechanisms do not provide geo-ind
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Laplacian mechanism

• Laplacian distribution in polar coordinates:

• Then,

• The Laplacian mechanism satisfies the geo-ind condition.
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Laplacian mechanism
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Optimal mechanisms for geo-ind

• Minimize quality loss (i.e.,                          ) subject to geo-
ind constraint.  

• Fact: geo-ind constraint is kept under any adversarial
remapping

• Optimal mechanism is then

where

• The optimal adversarial remapping would find
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Optimal mechanisms for geo-ind

• If the adversary does nothing. Minimization of the
QL has been already done by the mechanism!!

• But if the adversary does nothing, Privacy=QL. 

• The operating value thus depends on (the smaller, the
larger the privacy). 
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Where are we going?



Sensitivity [Bertino et. al 2010]
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Sensitivity

• The mechanism should weigh the importance given by the
user to each location. 

• This can be specified semantically by defining categories. 

• Sensitivity of a region:

prob. that the user, 

known to be in that

region, is actually in 

a sensitive place. 

• For other mechanisms:

open problem. 
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Graph-based models
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Graph-based models
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Graph-based models
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Trace



Graph-based models

• A trace is a path together with time                    .  

• Common assumption for an adversary: the true trace can be 
described through a Markov chain. 

• Prior transition probabilities between states can be 
estimated if training traces are (at least partially) available.  
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Graph-based models

• Shokri et al.’s approach: depending on what the adversary
wants to learn, apply a different method. 

• Maximum likelihood: find the most likely trace given the
observed trace

• Dynamic programming (e.g., Viterbi algorithm) can be used. 
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Graph-based models

• Distribution estimation: estimate the probabilities of all
traces using the Metropolis-Hastings algorithm. 
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Graph-based models

• Location estimation: find the most likely node at time  

• Can be solved using the backward-forward algorithm to 
recursively compute the probabilities. 
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Privacy as a zero-sum game
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Adding a new dimension: bandwidth
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The Utility Loss-Privacy-Bandwidth region
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Space-time cloaking
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Privacy-preserving queries

Retrieval in Encrypted Domain

Encrypted query

Encrypted reply
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Thanks!

fperez@gts.uvigo.es
www.gpsc.uvigo.es

Grupo Procesado de 
Señal en Comunicaciones

mailto:fperez@gts.uvigo.es
http://www.gpsc.uvigo.es/


What utility? An example
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But delay also counts…
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What utility? Another example

• Space-time slicing

• Is this related to bandwidth?
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• Space-time slicing

• Is this related to bandwidth?
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