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Motivation

Increment of mobile data traffic (7x in 2017-2022)

Mobile networks represented 0.2 % of global carbon emissions in
2017 (3x in 2020)

Increment of M2M connections (4x in 2017-2022)

Spectrum saturation

Spatial Modulation
• New modulation scheme for 5G and beyond 5G
• Multi-antenna: high spectral efficiency
• Low complexity: single RF chain
• Better energy efficiency
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Introduction

Link adaptation

Coding rate adaptation mechanism for adaptive SM systems
• Supervised learning
• Deep neural network
• Domain knowledge: Input features extracted from the

channel matrix and the SNR
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Block diagram adaptive SM system
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System model

Signal model:

y =
√
γHx + w =

√
γhls+ w (1)

SM rate adaptation problem:

maximize
r

r log2(NtM)

subject to r ∈ {r1, r2, . . . , rK}
BER(γ; r,H) ≤ p0.

(2)

Variables:

γ SNR H Chanel matrix
x Transmitted signal w Noise
l Selected antenna s Modulation symbol
r Coding rate M Constellation order
K Number of coding rate options p0 Target BER
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DL based coding rate selection

1 Design phase
1 Evaluation of the performance of the channel codes
2 Extraction of the SNR thresholds
3 Building the dataset for Machine Learning
4 Neural network training
5 Performance evaluation

2 Operation phase
1 Neural network assisted coding rate selection by the receivers in real

time.
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DL based coding rate selection

1 Evaluation of the performance of the channel codes
System level simulations

BER(γ; r,H)
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DL based coding rate selection

2 Extraction of the SNR thresholds
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Figure 1: The minimum required SNR to guarantee a given BER p0 with
each coding rate for a set of 20 different channel matrices.
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DL based coding rate selection

3 Building the dataset for Machine Learning
Dataset X = {(xi, yi), i = 1, 2, . . . ,m}
Neural network input features:

x = g(γ,H) =
[
sort

(
γ‖h1‖2, γ‖h2‖2

)
, ΘH , ϕ

]t
Columns norms scaled by the SNR
Hermitian angle ΘH and Kasner’s pseudoangle ϕ
between matrix columns: hH

1 h2 = ‖h1‖ · ‖h2‖ · cos ΘH · eiϕ
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Neural network output variable: y = rk (target coding rate)
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DL based coding rate selection

4 Neural network training

Training (70 %) and validation (15 %) datasets
Neural network configuration
• Three hidden layers: 20+15+10 neurons
• Activation function: tangent hyperbolic
• Output layer: linear

Levenberg-Marquardt (LM) backpropagation algorithm
Cost function: MSE

5 Performance evaluation

Testing dataset (15 %)
Coding rate selection
• r = Q (ŷ) = arg minrk |ŷ − rk|

Confussion matrix: accuracy, rate of under-selection, outage
probability

6 Operation phase

Coding rate selection with fixed neural network parameters θ
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Simulated system parameters

SM 2× 2 with QPSK constellation and 9 coding rate options

Paramter Value

Transmit and receive antennas Nt = 2, Nr = 2

Constellation QPSK (M = 4)

Channel coding DVB-S2 codes (BCH + LDPC)

Coding rate options 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 5/6, 9/10

Target BER p0 = 10−4

Channel matrices 1000 Rayleigh ditributed

SNR range −5 to 15 dB (0.5 dB steps)
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Raw classification performance (I)

• r = Q (ŷ) = arg minrk |ŷ − rk|
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(a) Neural network ouput
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(b) Selected coding rate index, ∆ = 0

Accuracy: 96.2 %

Outage probability: 2.1 %

Rate of under-selection: 1.7 %
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Raw classification performance (II)
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Target coding rate N/T 1/4 1/3 2/5 1/2 3/5 2/3 3/4 5/6 9/10

Accuracy (%) 98.7 95.9 91.9 94.2 93.8 91.8 94.4 89.3 89.7 99.5

Outage (%) 1.3 2.3 4.3 1.5 2.1 4.4 1.6 6.9 8.5 -

Underselection (%) - 1.8 3.8 4.4 4.0 3.8 3.9 3.7 1.8 0.5

Table 1: Classification performance (no margin is applied, ∆ = 0).
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Margin for reducing the outage

Coding rate r selection with margin ∆:

r = Q (ŷ −∆) = arg min
rk
|ŷ −∆− rk| , (3)
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Figure 2: Required margin ∆ per each target coding rate for having a zero
outage probability in the testing dataset.
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Classification performance with margin

Margin
∆ = 0 ∆ = 0.03 ∆ = 0.13

Accuracy 96.2 % 80.0 % 21.6 %

Mean accuracy1 92.6 % 68.1 % 4.4 %

Outage 2.0 % 0.21 %2 0 %

Underselection 1.7 % 19.8 % 78.4 %

1 Without taking into account N/T and 9/10.
2 It already corresponds to zero outage if N/T is dis-
regarded.

Table 2: Classification performance with and without a margin ∆.
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System level performance (I)

SM 2× 2 system with a QPSK constellation and Rayleigh
distributed channel matrices:
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System level performance (II)

SM 2× 2 system with a QPSK constellation and Rayleigh
distributed channel matrices:

Maximum throughput
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Conclusions and future work

CONCLUSIONS

Coding rate selection for adaptive SM systems
• Throughput near maximum achievable
• Outage probability reduced with a margin ∆

Remarkable gain compared with fixed coding rate allocation

FUTURE WORK

Extension to higher number of antennas (Nt = 2, 4, 8)

Several constellations (QPSK, 8PSK, 16QAM, 64QAM)

Selection of codebook (subset of active antennas and constellation
per antenna)
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Thanks for your attention!

Deep Learning Assisted Rate Adaptation in Spatial
Modulation Links
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