Deep Learning Assisted Rate Adaptation in Spatial Modulation Links

Anxo Tato, Carlos Mosquera

atlanTTic Research Center, University of Vigo

Galicia (SPAIN)

August 28, 2019

Motivation

- Increment of mobile data traffic (7x in 2017-2022)
- Mobile networks represented 0.2 % of global carbon emissions in 2017 (3x in 2020)
- Increment of M2M connections (4x in 2017-2022)
- Spectrum saturation

• Spatial Modulation

- \bullet New modulation scheme for 5G and beyond 5G
- Multi-antenna: high spectral efficiency
- Low complexity: single RF chain
- Better energy efficiency

Introduction

• Link adaptation

• Coding rate adaptation mechanism for adaptive SM systems

- Supervised learning
- Deep neural network
- Domain knowledge: Input features extracted from the channel matrix and the SNR

Block diagram adaptive SM system

• Signal model:

$$\mathbf{y} = \sqrt{\gamma} \mathbf{H} \mathbf{x} + \mathbf{w} = \sqrt{\gamma} \mathbf{h}_l s + \mathbf{w} \tag{1}$$

• SM rate adaptation problem:

maximize
$$r \log_2(N_t M)$$

subject to $r \in \{r_1, r_2, \dots, r_K\}$ (2)
BER $(\gamma; r, \mathbf{H}) \le p_0.$

		γ	SNR	н	Chanel matrix
		x	Transmitted signal	w	Noise
٩	Variables:	l	Selected antenna	s	Modulation symbol
		r	Coding rate	M	Constellation order
		K	Number of coding rate options	p_0	Target BER

Osign phase

- Evaluation of the performance of the channel codes
- ② Extraction of the SNR thresholds
- **3** Building the dataset for Machine Learning
- Neural network training
- **6** Performance evaluation

Operation phase

• Neural network assisted coding rate selection by the receivers in real time.

• Evaluation of the performance of the channel codes System level simulations

 $\text{BER}(\gamma; r, \mathbf{H})$

2 Extraction of the SNR thresholds

Figure 1: The minimum required SNR to guarantee a given BER p_0 with each coding rate for a set of 20 different channel matrices.

3 Building the dataset for Machine Learning

- Dataset $\mathbb{X} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, 2, \dots, m\}$
- Neural network input features:
 - $\mathbf{x} = g(\gamma, \mathbf{H}) = \left[\operatorname{sort} \left(\gamma \| \mathbf{h}_1 \|^2, \ \gamma \| \mathbf{h}_2 \|^2 \right), \ \Theta_H, \ \varphi \right]^t$
 - Columns norms scaled by the SNR
 - Hermitian angle Θ_H and Kasner's pseudoangle φ between matrix columns: $\mathbf{h}_1^H \mathbf{h}_2 = \|\mathbf{h}_1\| \cdot \|\mathbf{h}_2\| \cdot \cos \Theta_H \cdot e^{i\varphi}$

• Neural network output variable: $y = r_k$ (target coding rate)

Neural network training

- Training (70 %) and validation (15 %) datasets
- Neural network configuration
 - \bullet Three hidden layers: 20+15+10 neurons
 - Activation function: tangent hyperbolic
 - Output layer: linear
- Levenberg-Marquardt (LM) backpropagation algorithm
- Cost function: MSE

o Performance evaluation

- Testing dataset (15 %)
- Coding rate selection

•
$$r = Q(\hat{\mathbf{y}}) = \arg\min_{r_k} |\hat{\mathbf{y}} - r_k|$$

• Confussion matrix: accuracy, rate of under-selection, outage probability

Operation phase

 • Coding rate selection with fixed neural network parameters $\pmb{\theta}$

$\bullet~{\rm SM}~2\times2$ with QPSK constellation and 9 coding rate options

Paramter	Value
Transmit and receive antennas	$N_t = 2, N_r = 2$
Constellation	QPSK $(M = 4)$
Channel coding	DVB-S2 codes (BCH + LDPC)
Coding rate options	1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 5/6, 9/10
Target BER	$p_0 = 10^{-4}$
Channel matrices	1000 Rayleigh ditributed
SNR range	-5 to 15 dB (0.5 dB steps)

Raw classification performance (I)

•
$$r = Q(\hat{\mathbf{y}}) = \arg\min_{r_k} |\hat{\mathbf{y}} - r_k|$$

- Accuracy: 96.2 %
- Outage probability: 2.1 %
- Rate of under-selection: 1.7~%

Raw classification performance (II)

Confusion Matrix											
N/T	1192	49	0	0	0	0	0	0	0	0	96.1%
	19.4%	0.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.9%
1/4	1	311	1	0	0	0	0	0	0	0	99.4%
	0.0%	5.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%
1/3	0	28	232	25	0	0	0	0	0	0	81.4%
	0.0%	0.5%	3.8%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	18.6%
2/5	0	0	2	377	12	0	0	0	0	0	96.4%
	0.0%	0.0%	0.0%	6.1%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	3.6%
1/2	0	0	0	11	352	18	0	0	0	0	92.4%
	0.0%	0.0%	0.0%	0.2%	5.7%	0.3%	0.0%	0.0%	0.0%	0.0%	7.8%
tput Class	0	0	0	0	9	307	11	0	0	0	93.9%
	0.0%	0.0%	0.0%	0.0%	0.1%	5.0%	0.2%	0.0%	0.0%	0.0%	6.1%
D	0	0	0	0	0	15	292	19	0	0	89.6%
2/3	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	4.7%	0.3%	0.0%	0.0%	10.4%
3/4	0	0	0	0	0	0	2	335	5	0	98.0%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	5.4%	0.1%	0.0%	2.0%
5/6	0	0	0	0	0	0	0	21	355	6	92.9%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	5.8%	0.1%	7.1%
9/10	0	0	0	0	0	0	0	0	30	2131	98.8%
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	34.7%	1.4%
	99.9%	80.2%	98.7%	91.3%	94.4%	90.3%	95.7%	89.3%	91.0%	99.7%	95.7%
	0.1%	19.8%	1.3%	8.7%	5.6%	9.7%	4.3%	10.7%	9.0%	0.3%	4.3%
	47	1	<i>'</i> o	Ŷ	_(® Ta	్లీ rget Class	Ŷ	o ^{ja}	°°	a ¹⁰	

Target coding rate	N/T	1/4	1/3	2/5	1/2	3/5	2/3	3/4	5/6	9/10
Accuracy (%)	98.7	95.9	91.9	94.2	93.8	91.8	94.4	89.3	89.7	99.5
Outage (%)	1.3	2.3	4.3	1.5	2.1	4.4	1.6	6.9	8.5	-
Underselection (%)	-	1.8	3.8	4.4	4.0	3.8	3.9	3.7	1.8	0.5

Table 1: Classification performance (no margin is applied, $\Delta = 0$).

Anxo Tato (atlanTTic, UVigo)

ISWCS 2019 Oulu (Finland)

Margin for reducing the outage

• Coding rate r selection with margin Δ :

$$r = Q\left(\hat{\mathbf{y}} - \Delta\right) = \arg\min_{r_k} \left|\hat{\mathbf{y}} - \Delta - r_k\right|,\tag{3}$$

Figure 2: Required margin Δ per each target coding rate for having a zero outage probability in the testing dataset.

Classification performance with margin

	Margin						
	${f \Delta}=0$	$oldsymbol{\Delta}=0.03$	$oldsymbol{\Delta}=0.13$				
Accuracy	96.2~%	80.0~%	21.6~%				
Mean accuracy ¹	92.6~%	68.1~%	4.4 %				
Outage	2.0~%	$0.21~\%^2$	0 %				
Underselection	1.7~%	19.8~%	78.4~%				

¹ Without taking into account N/T and 9/10.

 2 It already corresponds to zero outage if N/T is disregarded.

Table 2: Classification performance with and without a margin Δ .

System level performance (I)

• SM 2×2 system with a QPSK constellation and Rayleigh distributed channel matrices:

System level performance (II)

• SM 2 \times 2 system with a QPSK constellation and Rayleigh distributed channel matrices:

Conclusions and future work

CONCLUSIONS

- Coding rate selection for adaptive SM systems
 - Throughput near maximum achievable
 - Outage probability reduced with a margin Δ
- Remarkable gain compared with fixed coding rate allocation

FUTURE WORK

- Extension to higher number of antennas $(N_t = 2, 4, 8)$
- Several constellations (QPSK, 8PSK, 16QAM, 64QAM)
- Selection of codebook (subset of active antennas and constellation per antenna)

Thanks for your attention!

atlanTTic research center for Telecommunication Technologies

Universida_{de}Vigo

Deep Learning Assisted Rate Adaptation in Spatial Modulation Links