Link Adaptation Techniques for Future Terrestrial and Satellite Communications

Anxo Tato Arias

Supervised by Carlos Mosquera Nartallo

atlanTTic Research Center, Universidade de Vigo

December 13, 2019

Outline

1. Motivation

- 2) 2. Mobile Satellite System: Field Trial Results
- 3 3. Multibeam Satellite Systems with Linear Precoding
- 4. Spatial Modulation Transmission Capacity
- 5. Mobile Satellite Systems with Dual Polarization
- 6. Spatial Modulation Systems
- 7. Conclusions

Motivation

Data traffic

Carbon emissions

M2M and IoT connections

Anxo Tato Arias

Motivation

1. Motivation

Motivation

Outline

1. Motivation

2 2. Mobile Satellite System: Field Trial Results

- 3 3. Multibeam Satellite Systems with Linear Precoding
- 4. Spatial Modulation Transmission Capacity
- 5. Mobile Satellite Systems with Dual Polarization
- 6. Spatial Modulation Systems

7. Conclusions

Chapter 2

Link Adaptation in Mobile Satellite Links: Field Trials Results

Motivation

• Experimental validation of the link adaptation algorithms

- Deployment of a Mobile SatCom link
- Implementation of S-UMTS standard (family SL)
- Using SDR technology
- With a real S-band MEO satellite

Partners

The whole system

Anxo Tato Arias

Outer Loop Link Adaptation (OLLA)

$$m_i = \Pi(SNR_i + c_i)$$

Balancing Closed and Open Loop CSI

• Closed loop CSI (SNR^{cl}_i)

- Measured by the Ground Station (GS) and fed back
- 🖌 Accurate
- 🗶 After a potentially large delay

• Open loop CSI (SNR^{ol}_i)

- Measured directly by the Mobile Terminal (MT)
- 🖌 Small delay
- X Less accurate

Balancing Closed and Open Loop CSI

• Closed loop CSI (SNR^{cl}_i)

- Measured by the Ground Station (GS) and fed back
- 🖌 Accurate
- 🗶 After a potentially large delay

• Open loop CSI (SNR^{ol}_i)

- Measured directly by the Mobile Terminal (MT)
- 🖌 Small delay
- X Less accurate
- Balanced convex algorithm

$$m_i = \Pi\left(\left(1-\xi_i\right)\operatorname{SNR}_i^{\operatorname{ol}} + \xi_i\operatorname{SNR}_i^{\operatorname{cl}} + c_i\right) \tag{1}$$

Satellite Component

Characteristic	Value
Satellite	Omnispace F-2 (former ICO F-2)
Operator	Omnispace LLC
Orbit	MEO (10,500 km) 45° inclination
Leased bandwidth	200 kHz in each direction
Maximum EIRP (MT and GS)	43 dBm
Minimum Delay (RTT)	140 ms (280 ms)

Table 1: Main parameters of the satellite link.

Physical Layer Specification

Characteristic	Value
Standard	ETSI TS 102 704 (S-UMTS family SL)
Frame length	20 ms
Modulation	π /4-QPSK
Sybmol rate	67.2 ksymb/s
Channel bandwidth	84 kHz
Polarization	RHCP
Channel coding	Turbocodes (10 coding rates)

Table 2: Physical layer parameters.

Spectral efficiency and FER

- Three trial environments: highway, semi-rural and aeronautical
- Tests of 5 minutes
- Target FER of 10 %

- Markers: trials
- Lines: simulations with data from the trials

Experimental Results

Link adaptation in action

Algorithms can follow the channel variations due to decrement of the antenna gain in the direction of the satellite when the UAV turns.

Conclusions

- $\bullet\,$ All algorithms satisfy the objective FER of 10 $\%\,$
- All algorithms behave similarly in terms of spectral efficiency
- Adaptation schemes were able to track the fluctuations of the SNR
- The open loop SNR seems useful in the link adaptation
- Later on Chapter 5: Dual Polarization (DP) Mobile Satellite Systems

Outline

1. Motivation

2 2. Mobile Satellite System: Field Trial Results

3. Multibeam Satellite Systems with Linear Precoding

- 4. Spatial Modulation Transmission Capacity
- 5. Mobile Satellite Systems with Dual Polarization
- 6. Spatial Modulation Systems

7. Conclusions

Chapter 3

Link Adaptation and SINR Errors in Practical Multicast Multibeam Satellite Systems with Linear Precoding

Introduction

- High Throughput Satellite (HTS) at Ka-band
 - Multibeam satellite + Linear Precoding + Link Adaptation

Full Frequency reuse, 245 beams

• Imperfect Channel State Information at the Transmitter (CSIT)

System Model

• Signal model:

$$\mathbf{y}^{[i]} = \mathbf{H}^{[i]}\mathbf{x} + \mathbf{n}^{[i]} = \mathbf{H}^{[i]}\mathbf{W}\mathbf{s} + \mathbf{n}^{[i]}, \quad i = 1, \ 2, \dots, M,$$
(2)

- Channel model: ESA's 245 beams radiation pattern
- \hat{H} : Imperfect CSIT due to...
 - Nullification
 - Gaussian estimation errors
- Linear Precoding: MMSE with Sum Power Constraint (SPC)

$$\mathbf{W} = \eta \cdot \hat{\mathbf{H}}^{H} \left(\hat{\mathbf{H}} \hat{\mathbf{H}}^{H} + \frac{1}{\mathsf{snr}} \mathbf{I}_{N} \right)^{-1}$$
(3)

Nullification effect

SINR Absolute Error due to Nullification

Simulated System Parameters

Number of Estimated Channel Coefficients

- Total number of coefficients per channel vector = 245
- DVB-S2X standard allows to report up to 32 coefficients
- Number of estimated coefficients with nullification: 1-15

SINR Absolute Error (Aggregated Results)

- Averaging more pilots reduces the nullification threshold and the errors
- CCDF allows to obtain the margin for a given target FER

SINR Absolute Error at a Fixed Position

- Error much lower than the maximum in the vast majority of the positions
- Stationary behavior of SINR and SINR error

System Throughput and Back-off Margin

- Global margin: 79 % throughput
- Margin per beam: 84 % throughput
- Margin per user: 94 % throughput

Nullification Countermeasure: Adaptive Margin per User

[1] R. A. Delgado, K. Lau, R. Middleton, R. S. Karlsson, T. Wigren, and Y. Sun. *Fast convergence outer loop link adaptation with infrequent updates in steady state*. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall).

• Simulations

- Without fading
- Rice fading K = 25 dB (terrestrial)
- Rice fading K = 34 dB (aeronautical)

Experimental FER

• 80-120 % of the target FER

Conclusions

- The practical problem of the nullification in multibeam precoded systems was analyzed
- A solution based on a link adaptation algorithm was proposed
- The adaptive margin per user allows to meet the FER constraint with a small impact on the throughput of the system

Outline

1. Motivation

- 2 2. Mobile Satellite System: Field Trial Results
- 3 3. Multibeam Satellite Systems with Linear Precoding

4. Spatial Modulation Transmission Capacity

- 5. Mobile Satellite Systems with Dual Polarization
- 6. Spatial Modulation Systems

7. Conclusions

Chapter 4

Evaluation of the Spatial Modulation Transmission Capacity

What is Spatial Modulation?

Spatial Multiplexing (SMux)

- N_t Radio Frequency (RF) chains
- Max. spectral efficiency:

 $\eta = \mathit{N_t} \log_2 \mathit{M}$

What is Spatial Modulation?

Spatial Multiplexing (SMux)

- N_t Radio Frequency (RF) chains
- Max. spectral efficiency:

 $\eta = N_t \log_2 M$

Spatial Modulation (SM)

- One RF chain
- Max. spectral efficiency:

$$\eta = \log_2 N_t + \log_2 M$$

What is Spatial Modulation?

Spatial Multiplexing (SMux)

- N_t Radio Frequency (RF) chains
- Max. spectral efficiency:

 $\eta = N_t \log_2 M$

Spatial Modulation (SM)

- One RF chain
- Max. spectral efficiency:

$$\eta = \log_2 \textit{N}_t + \log_2 \textit{M}$$

Generalized Spatial Modulation (GSM)

- $R < N_t$ RF chains
- Max. spectral efficiency:

$$\eta = \lfloor \log_2 \binom{N_t}{R} \rfloor + \log_2 M$$

Problem Formulation

• Applications:

- Adaptation of transmission bit rate in adaptive (G)SM systems
- Theoretical performance evaluation of (G)SM systems
Problem Formulation

• Applications:

- Adaptation of transmission bit rate in adaptive (G)SM systems
- Theoretical performance evaluation of (G)SM systems

• Solutions in the literature:

- Expressions for obtaining the capacity with numerical integration
- Two analytical approximations of the SM capacity

• Comparison:

- Numerical integration: accurate but very time consuming
- Approximations: reduce notably the time calculation but less accurate

Problem Formulation

- Applications:
 - Adaptation of transmission bit rate in adaptive (G)SM systems
 - Theoretical performance evaluation of (G)SM systems

• Solutions in the literature:

- Expressions for obtaining the capacity with numerical integration
- Two analytical approximations of the SM capacity

• Comparison:

- Numerical integration: accurate but very time consuming
- Approximations: reduce notably the time calculation but less accurate
- Our proposal:

Machine Learning (ML) based capacity calculation

Introduction

System Model

• SM:

$$\mathbf{y} = \sqrt{\gamma} \cdot \mathbf{H} \cdot \mathbf{x} + \mathbf{w} = \sqrt{\gamma} \cdot \mathbf{h}_{l} \cdot \mathbf{s} + \mathbf{w}$$

$$\mathbf{h}_{l}: \text{ Column of the channel matrix } \mathbf{H}, \ l = 1, \ 2, \dots, N_{t}$$

Introduction

System Model

• SM:

$$\begin{aligned} \mathbf{y} &= \sqrt{\gamma} \cdot \mathbf{H} \cdot \mathbf{x} + \mathbf{w} = \sqrt{\gamma} \cdot \mathbf{h}_{l} \cdot \mathbf{s} + \mathbf{w} \\ \mathbf{h}_{l}: \text{ Column of the channel matrix } \mathbf{H}, \ l = 1, \ 2, \dots, N_{t} \end{aligned}$$

• GSM:

$$\mathbf{y} = \sqrt{\gamma/R} \cdot \mathbf{H} \cdot \mathbf{x} + \mathbf{w} = \sqrt{\gamma/R} \cdot \mathbf{H} \cdot \mathbf{A}_{l} \cdot \mathbf{1} \cdot \mathbf{s} + \mathbf{w}$$

$$\mathbf{A}_{l}: \text{ Antenna activation pattern matrix from the set } \mathcal{A}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}^{T}$$

$$\text{Set of } L = |\mathcal{A}| = 2^{\lfloor \log_{2} \binom{N_{t}}{R} \rfloor} \text{ matrices}$$

$$\text{Sum of R columns of } \mathbf{H}: \mathbf{c}_{l} = \sqrt{\gamma/R} \cdot \mathbf{H} \cdot \mathbf{A}_{l} \cdot \mathbf{1}$$

Mutual Information and Capacity Expressions

• Mutual Information (MI) or constrained capacity of SM:

$$I_{T} = \log_{2}(2M) - \frac{1}{2M} \sum_{s \in S} \sum_{l=1}^{2} \mathbb{E}_{\mathbf{W}} \left\{ \log_{2} \left(\sum_{s' \in S} \sum_{l'=1}^{2} e^{-\gamma \left\| \mathbf{h}_{l} s - \mathbf{h}_{l'} s' + \frac{\mathbf{W}}{\sqrt{\gamma}} \right\|^{2} + \|\mathbf{w}\|^{2}} \right) \right\}$$

Capacity of GSM:

$$C_{\mathsf{GSM}} = -\frac{1}{L} \sum_{i=1}^{L} \int_{\mathbf{y}} \mathcal{CN}(\mathbf{0}, \Phi_i) \log_2\left(\frac{1}{L} \sum_{j=1}^{L} \mathcal{CN}(\mathbf{0}, \Phi_j)\right) d\mathbf{y} - \log_2 \det(\pi e I_{N_r})$$

Analytical Approximations to the SM MI

• Taylor approximation Henarejos et al.

• Jensen approximation Guo et al.

$$I_{T_{\text{Jensen}}} = -\log_2\left(\frac{\sum_{\Delta_x \in \mathcal{D}} e^{-\frac{1}{2}\Delta_x^H \mathbf{H}^H \mathbf{H} \Delta_x}}{(2M)^2}\right)$$

• Drawbacks of these approximations:

- Biased and limited accuracy
- Complexity scales with the square of the constellation size M and the number of antennas N_t
- Calculation for a single constellation

Proposed Solution

• Spatial Modulation

Proposed Solution

• Spatial Modulation

• Generalized Spatial Modulation

Proposed Solution

• Spatial Modulation

• Generalized Spatial Modulation

Features selection for 2×2 SM

$$\mathcal{X} = \{\mathbf{h}_{l} \cdot s_{k}\} \longrightarrow \mathbf{D} = \{\|\mathbf{h}_{l}s_{k} - \mathbf{h}_{l'}s_{k'}\|^{2}\} = \begin{pmatrix}\|\|\mathbf{h}_{1}\|^{2}\mathbf{D}_{S} & \mathbf{D}_{L}\\\mathbf{D}_{L}^{t} & \|\mathbf{h}_{2}\|^{2}\mathbf{D}_{S}\end{pmatrix}$$

 \mathbf{D}_L can be characterized with four real values: $\|\mathbf{h}_1\|^2$, $\|\mathbf{h}_2\|^2$ and $\mathbf{h}_1^H \mathbf{h}_2$

$$\mathbf{h}_{1}^{H}\mathbf{h}_{2} = \|\mathbf{h}_{1}\| \cdot \|\mathbf{h}_{2}\| \cdot \cos \Theta_{H} \cdot e^{i\varphi}, \ \begin{cases} \Theta_{H} \in [0, \pi/2] \longrightarrow \text{Hermitian angle} \\ \varphi \in [-\pi, \pi] \rightarrow \text{Kasner's pseudoangle} \end{cases}$$

Generalization for More Antennas and GSM

Features for GSM

$$\mathcal{X} = \{\mathbf{H} \cdot A_{l} \cdot \mathbf{1} \cdot s_{k}\}$$
$$\mathbf{h}_{l} \longrightarrow \mathbf{c}_{l} = \sqrt{\gamma/R} \cdot \mathbf{H} \cdot \mathbf{A}_{l} \cdot \mathbf{1}$$

Number of features

	# norms	# pairs of angles		# norms	# pairs of angles
SM	Nt	$\binom{N_t}{2}$	SM 8 × 8	8	28
GSM	$L = 2^{\lfloor \log_2 \binom{N_t}{R} \rfloor}$	$L_2 = \binom{L}{2}$	GSM 8 × 8, <i>R</i> = 2	16	$L_2 = 120$

Features reduction

- Characterize norms and angles distribution with Q quantiles, equispaced in [0,1]
- Example Q=5:
 - Minimum, 25th percentile, median, 75th percentile, maximum

Simulation Results

Simulations setup

Supervised learning

ML dataset

- 50,000 Rayleigh distributed random matrices $h_{ij} \sim \mathcal{CN}(0,1)$
- SNR $\gamma \sim$ U(-20, 20) dB
- $\bullet~70\,\%$ training, $15\,\%$ validation, $15\,\%$ testing

• Calculation reference values of MI and capacity

- Monte Carlo simulation with 5,000 realizations of the noise w
- ${\scriptstyle \bullet}\,$ Variance in the estimation $\sim 10^{-5}$

Learning algorithm

- Levenberg-Marquardt (LM) backpropagation algorithm
- MSE as cost function
- Random initialization of weights and margins

Architecture

- One hidden layer of 10 or 20 neurons with sigmoid activation function
- Linear output

• Impact of different input features

Option	# Features	Global MSE
i) Column norms and scalar product	4	$6.98 \cdot 10^{-4}$
ii) Column norms and angles	4	$3.36 \cdot 10^{-4}$
iii) Column norms and distances	6	$5.21 \cdot 10^{-5}$
iv) Column norms, distances and scalar product	8	$4.96 \cdot 10^{-5}$
v) Column norms, distances and angles	8	$2.97 \cdot 10^{-5}$

• Impact of different input features

Option	# Features	Global MSE
i) Column norms and scalar product	4	$6.98 \cdot 10^{-4}$
ii) Column norms and angles	4	$3.36 \cdot 10^{-4}$
iii) Column norms and distances	6	$5.21 \cdot 10^{-5}$
iv) Column norms, distances and scalar product	8	$4.96 \cdot 10^{-5}$
v) Column norms, distances and angles	8	$2.97 \cdot 10^{-5}$

• Comparison with analytical approximations

• Impact of different input features

Option	# Features	Global MSE
i) Column norms and scalar product	4	$6.98 \cdot 10^{-4}$
ii) Column norms and angles	4	$3.36 \cdot 10^{-4}$
iii) Column norms and distances	6	$5.21 \cdot 10^{-5}$
iv) Column norms, distances and scalar product	8	$4.96 \cdot 10^{-5}$
v) Column norms, distances and angles	8	$2.97 \cdot 10^{-5}$

• Comparison with analytical approximations

		QPSK	
	GIODAI IVISE	3 σ	Max. error
Taylor approximation	$1.87 \cdot 10^{-2}$	0.330	0.523
Jensen based approximation	$1.21 \cdot 10^{-2}$	0.229	0.300
Neural network	$2.97\cdot 10^{-5}$	0.016	0.067

• Impact of different input features

Option	# Features	Global MSE
i) Column norms and scalar product	4	$6.98 \cdot 10^{-4}$
ii) Column norms and angles	4	$3.36 \cdot 10^{-4}$
iii) Column norms and distances	6	$5.21 \cdot 10^{-5}$
iv) Column norms, distances and scalar product	8	$4.96 \cdot 10^{-5}$
v) Column norms, distances and angles	8	$2.97 \cdot 10^{-5}$

• Comparison with analytical approximations

		QPSK	
	GIODAI IVISE	3 σ	Max. error
Taylor approximation	$1.87 \cdot 10^{-2}$	0.330	0.523
Jensen based approximation	$1.21 \cdot 10^{-2}$	0.229	0.300
Neural network	$2.97\cdot 10^{-5}$	0.016	0.067

Computational complexity

	Taylor approx.	Jensen approx.	Neural network
Real products	7,168	32,800	368
Non linear operations	784	1,347	20

• MI of SM with 4 and 8 antennas

	# features	Global MSE
SM 2×2 option (ii)	4	$3.36 \cdot 10^{-4}$
SM 4×4	16	$2.40 \cdot 10^{-4}$
SM $8 \times 8 (Q = 5)$	18	$5.06 \cdot 10^{-5}$

• MI of SM with 4 and 8 antennas

	# features	Global MSE
SM 2×2 option (ii)	4	$3.36 \cdot 10^{-4}$
SM 4×4	16	$2.40 \cdot 10^{-4}$
SM $8 \times 8 (Q = 5)$	18	$5.06 \cdot 10^{-5}$

- Dual Polarization Mobile Satellite Channel: PMod
 - Global MSE 7.40 \cdot 10⁻⁵

• MI of SM with 4 and 8 antennas

	# features	Global MSE
SM 2×2 option (ii)	4	$3.36 \cdot 10^{-4}$
SM 4×4	16	$2.40 \cdot 10^{-4}$
SM $8 \times 8 (Q = 5)$	18	$5.06 \cdot 10^{-5}$

• Dual Polarization Mobile Satellite Channel: PMod

• Global MSE 7.40 \cdot 10⁻⁵

Correlated channels

• Performance degrades with increasing correlation

• MI of SM with 4 and 8 antennas

	# features	Global MSE
SM 2×2 option (ii)	4	$3.36 \cdot 10^{-4}$
SM 4×4	16	$2.40 \cdot 10^{-4}$
SM $8 \times 8 (Q = 5)$	18	$5.06 \cdot 10^{-5}$

• Dual Polarization Mobile Satellite Channel: PMod

• Global MSE 7.40 \cdot 10⁻⁵

Correlated channels

• Performance degrades with increasing correlation

Capacity of GSM

- Studied scenarios
 - SM with 2, 4 and 8 antennas
 - GSM with 6 and 8 antennas and 2 or 3 RF chains

Results

- MSE $\sim 10^{-4}$
- ${f 3}\sigma\sim 0.05$
- Number of neural network inputs: 4 27

Conclusions

- A Machine Learning-based solution was proposed for obtaining the capacity of SM and GSM systems
- Simple neural networks outperform approximations of the literature both in terms of accuracy and complexity
- The fast and accurate calculation can find applications in adaptive SM systems

Outline

1. Motivation

- 2) 2. Mobile Satellite System: Field Trial Results
- 3 3. Multibeam Satellite Systems with Linear Precoding
- 4. Spatial Modulation Transmission Capacity
- 5. Mobile Satellite Systems with Dual Polarization
- 6. Spatial Modulation Systems

7. Conclusions

Chapter 5

Link Adaptation in Mobile Satellite Systems with Dual Polarization

Motivation

Introduction

Introduction

- Link adaptation in...
- Mobile Satellite Communications with Dual Polarization (DP)
 - L-band (1-2 GHz) and S-band (2-4 GHz)
 - $\bullet\,$ RHCP and LHCP as a 2 $\times\,2$ MIMO
 - Several MIMO modes and MCS available

SISO

SISO

• Orthogonal Polarization-Time Block Code (OPTBC) ~ Alamouti

- SISO
- Orthogonal Polarization-Time Block Code (OPTBC) ~ Alamouti

• Polarized Modulation (PMod) ~ Spatial Modulation (SM)

- SISO
- Orthogonal Polarization-Time Block Code (OPTBC) ~ Alamouti

• Polarized Modulation (PMod) ~ Spatial Modulation (SM)

Vertical-Bell Lab. Layered Space-Time (V-BLAST) ~ Spatial Multiplexing

Modulation and Coding Schemes (MCS)

- QPSK constellation
- 9 coding rates for symbols bits (SISO, OPTBC, PMod, V-BLAST)

• 9 coding rates for polarization bits of PMod

Coding rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Channel Generation

 M. Sellathurai et al., "Space-time coding in mobile satellite communications using dual-polarized channels", IEEE Transactions on Vehicular Technology, Jan 2006

Physical Layer Abstraction

• Channel generator: $\{H_n, n = 1, 2, ..., N\}$

SINR calculation per received symbols

- Different equation for each MIMO mode
- SINR compression

Link Adaptation Algorithms

MIMO mode selection

- Mode which maximizes spectral efficiency
- By the receiver

MCS selection

- Using LUT with adaptive margins
- By the transmitter
- **PMod**: two LUTs (independent coding rates for symbols and polarization)

SISO, OPTBC, V-BLAST. PMod (symbols bits)

Link Adaptation Algorithms

• MIMO mode selection

- Mode which maximizes spectral efficiency
- By the receiver

MCS selection

- Using LUT with adaptive margins
- By the transmitter
- **PMod**: two LUTs (independent coding rates for symbols and polarization)

SISO, OPTBC, V-BLAST. PMod (symbols bits)

PMod (polarization bits)

Anxo Tato Arias

MIMO Mode

Selected mode

- Very low SNRs: OPTBC (~ Transmit diversity)
- Low SNRs: PMod
- Moderate and high SNRs: V-BLAST (~ Spatial Multiplexing)

Spectral Efficiency

• Operation at lower SNRs and better spectral efficiency

• + 50 % spectral efficiency

 \bullet + 100 % spectral efficiency

Spectral Efficiency and Frame Error Rate

- Inclusion of PMod improves efficiency at low SNRs
- Target FER is satisfied

Conclusions

- Higher rates can be achieved by exploiting both polarizations
- MIMO mode and MCS can be adjusted
- Polarized Modulation increases spectral efficiency at low SNRs

Outline

1. Motivation

- 2 2. Mobile Satellite System: Field Trial Results
- 3 3. Multibeam Satellite Systems with Linear Precoding
- 4. Spatial Modulation Transmission Capacity
- 5. Mobile Satellite Systems with Dual Polarization
- 6 6. Spatial Modulation Systems
 - 7. Conclusions

Chapter 6

Deep Learning Assisted Rate Adaptation in Spatial Modulation Links

Introduction

• Spatial Modulation

- New modulation scheme for 5G and beyond 5G
- Multi-antenna: high spectral efficiency
- Low complexity: single RF chain
- Better energy efficiency

Introduction

Spatial Modulation

- New modulation scheme for 5G and beyond 5G
- Multi-antenna: high spectral efficiency
- Low complexity: single RF chain
- Better energy efficiency

• Coding rate selection mechanism for adaptive SM systems

- Supervised learning
- Deep neural network

Introduction

Spatial Modulation

- New modulation scheme for 5G and beyond 5G
- Multi-antenna: high spectral efficiency
- Low complexity: single RF chain
- Better energy efficiency

• Coding rate selection mechanism for adaptive SM systems

- Supervised learning
- Deep neural network

• SM rate adaptation problem

maximize
$$r \log_2(N_t M)$$

subject to $r \in \{r_1, r_2, \dots, r_K\}$ (4)
BER $(\gamma; r, \mathbf{H}) \leq p_0$.

Block Diagram of an Adaptive SM System

Figure 1: Block diagram of an adaptive SM system with variable coding rate.

• Evaluation of the performance of the channel codes System level simulations

Figure 2: The different channel codes performance must be evaluated for a large number of channel matrices.

Proposed Method

DL-based Coding Rate Selection

Extraction of the SNR thresholds

Figure 3: The minimum required SNR to guarantee a given BER p_0 with each coding rate for a set of 20 different channel matrices.

Building the dataset for Machine Learning

- Dataset $\mathbb{X} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, 2, \dots, m\}$
- Neural network input features:
 - $\mathbf{x} = g(\gamma, \mathbf{H}) = \begin{bmatrix} \text{sort} \left(\gamma \| \mathbf{h}_1 \|^2, \ \gamma \| \mathbf{h}_2 \|^2 \right), \quad \Theta_H, \quad \varphi \end{bmatrix}^t$
- Neural network output variable: $y = r_k$ (target coding rate)

Building the dataset for Machine Learning

- Dataset $\mathbb{X} = \{(\mathbf{x}_i, \mathsf{y}_i), i = 1, 2, \dots, m\}$
- Neural network input features:
 - $\mathbf{x} = g(\gamma, \mathbf{H}) = \begin{bmatrix} \text{sort} (\gamma \| \mathbf{h}_1 \|^2, \ \gamma \| \mathbf{h}_2 \|^2), \ \Theta_H, \ \varphi \end{bmatrix}^t$
- Neural network output variable: $y = r_k$ (target coding rate)

Neural network training

• Training (70 %) and validation (15 %) datasets

Building the dataset for Machine Learning

- Dataset $\mathbb{X} = \{(\mathbf{x}_i, \mathsf{y}_i), i = 1, 2, \dots, m\}$
- Neural network input features:
 - $\mathbf{x} = g(\gamma, \mathbf{H}) = \begin{bmatrix} \text{sort} \left(\gamma \| \mathbf{h}_1 \|^2, \ \gamma \| \mathbf{h}_2 \|^2 \right), \quad \Theta_H, \quad \varphi \end{bmatrix}^t$
- Neural network output variable: $y = r_k$ (target coding rate)

Neural network training

• Training (70 %) and validation (15 %) datasets

Performance evaluation

- Testing dataset (15 %)
- Confussion matrix: accuracy, rate of under-selection, outage probability

Building the dataset for Machine Learning

- Dataset $\mathbb{X} = \{(\mathbf{x}_i, \mathsf{y}_i), i = 1, 2, \dots, m\}$
- Neural network input features:
 - $\mathbf{x} = g(\gamma, \mathbf{H}) = \begin{bmatrix} \text{sort} \left(\gamma \| \mathbf{h}_1 \|^2, \ \gamma \| \mathbf{h}_2 \|^2 \right), \ \Theta_H, \ \varphi \end{bmatrix}^t$
- Neural network output variable: $y = r_k$ (target coding rate)

Neural network training

• Training (70 %) and validation (15 %) datasets

Performance evaluation

- Testing dataset (15 %)
- Confussion matrix: accuracy, rate of under-selection, outage probability

Operation phase

ullet Coding rate selection with fixed neural network parameters $m{ heta}$

Simulated System Parameters

$\bullet\,$ SM 2 \times 2 with QPSK constellation and 9 coding rate options

Paramter	Value
Transmit and receive antennas	$N_t = 2, N_r = 2$
Constellation	QPSK $(M = 4)$
Channel coding	DVB-S2 codes (BCH + LDPC)
Coding rate options	1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 5/6, 9/10
Target BER	$p_0 = 10^{-4}$
Channel matrices	1000 Rayleigh ditributed
SNR range	-5 to 15 dB (0.5 dB steps)

- Neural network configuration
 - Three hidden layers: 20+15+10 neurons
 - Activation function: tangent hyperbolic
 - Output layer: linear

Classification Performance

Simulation Results

SM Link Adaptation

• Fixed coding rate

$$r = r_k$$
, for some fixed k. (5)

MI-based coding rate selection

$$r = Q\left(\frac{I_T - \Delta}{3}\right) = \arg\min_{r_k} \left|\frac{I_T - \Delta}{3} - r_k\right|, \quad (6)$$

DL-based coding rate selection

$$r = Q\left(\hat{y} - \Delta\right) = \arg\min_{r_k} \left|\hat{y} - \Delta - r_k\right|.$$
(7)

Spectral Efficiency and FER

Conclusions and Future Work

Conclusions

- Neural networks can be used to select the coding rate in adaptive SM systems
- The spectral efficiency is very close to the maximum achievable value

Future work

- Extension to more general scenarios: more antennas and several constellations
- Online adaptation of the neural network during the operation

Outline

1. Motivation

- 2 2. Mobile Satellite System: Field Trial Results
- 3 3. Multibeam Satellite Systems with Linear Precoding
- 4. Spatial Modulation Transmission Capacity
- 5. Mobile Satellite Systems with Dual Polarization
- 6. Spatial Modulation Systems

7. Conclusions

Conclusions

Conclusions

Thanks for your attention!

atlanTTic research center for Telecommunication Technologies

Universida_{de}Vigo

Link Adaptation Techniques for Future Terrestrial and Satellite Communications