

Universida_{de}Vigo

Rate-Splitting and Space Communications, a Robust Alliance

Carlos Mosquera, University of Vigo

IEEE ComSoc WTC SIG on Rate Splitting Multiple Access (RSMA)
December 14th, 2021

Outline

- Overlay Cognitive Radio over Broadcast Networks
- 2. MISO Broadcast Channel with Magnitude CSIT
- 3. Beam free approaches

Joint works with:

- Alberto Rico (Qualcomm)
- Tomás Ramírez (University of Vigo)
- Nele Noels (University of Ghent)
- Marius Caus, Adriano Pastore (CTTC)
- Nader Alagha (European Space Agency)

Overlay Cognitive Radio over Broadcast Networks

Capacity of secondary link?

 Secondary Tx (ST) knows the transmit primary message

• ST cannot use DPC to cancel the interference (unknown channel)

Relevant metric: coverage area

Design parameters

message splitting

- Power splitting at secondary Tx: $P_s = P_s^{pr} + P_s^{sec}$
- Required SINR at primary Rx: $\Upsilon_0 = 2^{R_p} 1$
- Power margin of most restrictive primary Rx: \mathcal{M}
- Preservation of primary coverage: $P_s^{pr} \geq P_s^{sec} \Upsilon_0 \mathcal{M}$

Coding/decoding strategies

- Regimes:
 - Treat primary interference as noise:

$$\frac{|h_{p,s}|^2 P_p + |h_{s,s}|^2 P_s^{pr}}{\sigma^2} < \Upsilon_0$$

$$(\mathcal{N})$$

Strong interference (primary is decodable)

$$\frac{|h_{p,s}|^2 P_p + |h_{s,s}|^2 P_s^{pr}}{\sigma^2 + P_s^{sec} |h_{s,s}|^2} \ge \Upsilon_0$$

$$(\mathcal{S})$$

Single secondary receiver

Treat as noise: linear fractional program

$$egin{array}{c|c} P_s & P_s^{sec} \ \hline P_s & P_s^{sec} \ \hline \end{array}$$

$$\max. \quad f(P_s^{pr}, P_s^{sec}) \triangleq \frac{P_s^{sec} |h_{s,s}|^2}{\sigma^2 + P_s^{pr} |h_{s,s}|^2 + P_p |h_{p,s}|^2}$$

$$\text{s.t.} \quad P_s^{pr} + P_s^{sec} \leq P_s$$

$$P_s^{pr} \geq P_s^{sec} \Upsilon_0 - \mathcal{M}$$

$$P_s^{pr}, P_s^{sec} \geq 0$$

Strong interference: LP

$$\max . P_s^{sec} |h_{s,r}|^2$$
s.t.
$$P_s^{pr} + P_s^{sec} \le P_s$$

$$P_s^{pr} \ge P_s^{sec} \Upsilon_0 - \mathcal{M}$$

$$P_s^{pr} \ge P_s^{sec} \Upsilon_0 - \mathcal{M}^s$$

$$P_s^{pr}, P_s^{sec} \ge 0$$

The coverage area of the primary system is extended!

Channel capacity for a single SR

Free space propagation model

Multiple Receivers

- Unicast: orthogonal allocation, and consideration of one SR at a time
- Multicast/Broadcast with several SRs
- Goal: given N_s receivers, maximize the common rate R_s such that no PR is compromised

Design variables:

Power allocation weights:

$$(P_s^{pr}, P_s^{sec})$$

Vector of decoding strategies:

$$oldsymbol{\mathcal{D}} = (\mathcal{D}_1, \dots, \mathcal{D}_{N_s}) \in \{\mathcal{N}, \mathcal{S}\}^{N_s}$$

Optimization problem

Channel capacity at k receiver

Generalized linear fractional program

We can go down from 2^{N_s} to $N_s + 1$ decoding strategies:

$$\mathcal{D}^{(0)} = (\mathcal{N}, \mathcal{N}, \dots, \mathcal{N})$$

$$\mathcal{D}^{(1)} = (\mathcal{S}, \mathcal{N}, \dots, \mathcal{N})$$

$$\mathcal{D}^{(2)} = (\mathcal{S}, \mathcal{S}, \dots, \mathcal{N})$$

•

$$oldsymbol{\mathcal{D}}^{(N_s)} = (\mathcal{S}, \mathcal{S}, \dots, \mathcal{S})$$

$$\max \min_{k=1,\dots,N_s} \left\{ C_k^{\mathcal{D}_k}(P_s^{pr}, P_s^{sec}) \right\}$$
s.t.
$$P_s^{pr} + P_s^{sec} \le P_s$$

$$P_s^{pr} \ge P_s^{sec} \Upsilon_0 - \mathcal{M}$$

$$P_s^{pr} \ge P_s^{sec} \Upsilon_0 - \mathcal{M}_{r_k}^s, k = 1, \dots, N_s$$

$$P_s^{pr}, P_s^{sec} \ge 0$$

and solve $N_s + 1$ quasiconvex optimization problems.

If
$$\mathcal{D}_k = \mathcal{S}$$

Gray space

• Decoding strategy (all receivers):

(S)

Extension of initial coverage

 $P_{s} = 10$

Decoding strategy (all receivers):

(S)

White Space

• Decoding strategy (all receivers):

 (\mathcal{N})

Rate Splitting for the MISO Broadcast Channel with Magnitude CSIT

Motivation

Block-fading channel:

$$y_1 = h_{1,1}x_1 + h_{1,2}x_2 + w_1,$$

$$y_2 = h_{2,1}x_1 + h_{2,2}x_2 + w_2.$$

No phase information available at the transmitter, only the channel quality of the links:

$$\gamma_{j,k} = \frac{P}{2} |h_{j,k}|^2.$$

- Per-antenna power constraint
- Perfect CSIR

- - - → Interference

Some seminal works

- Interference channel: no antenna cooperation (MISO-IC)
- Han-Kobayashi achievable rate, based on rate-splitting
- For the Gaussian case, additive superposition

Some seminal works

- MISO-BC with vector-magnitude CSIT
- Superposition coding and successive decoding. Capacity region achieved with:

$$\mathbf{x} = [x_1, x_2] = \mathbf{u}_1 + \mathbf{u}_2$$

 u_1 and u_2 independent Gaussian vectors

Space-Time RS

Space-Time RS

$$x_{1}[k] = \sqrt{\frac{P}{2}(1-\lambda_{1})} x_{1,c}[k] + \sqrt{\frac{P}{2}\lambda_{1}} x_{1,p}[k],$$

$$x_{2}[k] = \sqrt{\frac{P}{2}(1-\lambda_{2})} x_{2,c}[k] + \sqrt{\frac{P}{2}\lambda_{2}} x_{2,p}[k]$$

Link adaptation: achievable rates do not depend on the channel phase

$$R_1 = R_{1,p} + \alpha \cdot R_c$$

$$R_2 = R_{2,p} + (1 - \alpha) \cdot R_c$$

With Gaussian codebooks:

$$R_{1,p} = \log_2 \left(1 + \frac{\lambda_1 \gamma_{1,1}}{1 + \lambda_2 \gamma_{1,2}} \right),$$

$$R_{2,p} = \log_2 \left(1 + \frac{\lambda_2 \gamma_{2,2}}{1 + \lambda_1 \gamma_{2,1}} \right),$$

$$R_c = \min_{j \in \{1,2\}} \log_2 \left(1 + \frac{(1 - \lambda_1) \gamma_{j,1} + (1 - \lambda_2) \gamma_{j,2}}{1 + \lambda_1 \gamma_{j,1} + \lambda_2 \gamma_{j,2}} \right)$$

Multicast: Alamouti → simple decoding of common message

Achievable Sum-Rate Maximization

$$(\lambda_1, \lambda_2) = \arg\max\{R_{1,p} + R_{2,p} + R_c\}, \ 0 \le \lambda_1 \le 1, \ 0 \le \lambda_2 \le 1,$$

Generalized Degrees of Freedom

- STRS achieves the sum-GDoF of the 2-user MISO BC under finite precision CSIT.
- Our main driver is the performance in the finite SNR regime

$$GDoF_{sum} = \lim_{P \to \infty} \frac{C_{sum}(P)}{\log_2 P}$$

STRS: Numerical Results, Symmetric Case

STRS: Numerical Results, Symmetric Case

Symmetric case, 2 users, snr = 15 dB

Sum-rate and GDoF

Weighting factor

STRS: Numerical results

Two users. Channel coefficients: random phases

pac: per-antenna power constraint

ENH: A. Gholami Davoodi and S. A. Jafar, "*Transmitter cooperation under finite precision CSIT:* A GDoF perspective," IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 6020–6030, Sep. 2017.

Satellite scenario: system level design

Extension to n>2 users

- Traffic non-uniformly distributed
- Hot-spot case
- Sectorization:

$$n = 7 = (6+1)$$

Analysis: we assume symmetry

Central beam

$$x_1 = \sqrt{(1-\lambda_1)\frac{P}{n}}x_{1,c} + \sqrt{\lambda_1\frac{P}{n}}x_{1,p}$$

Outer beams

$$x_j = \sqrt{(1-\lambda_2)\frac{P}{n}}x_{j,c} + \sqrt{\lambda_2\frac{P}{n}}x_{j,p}, j = 2,\dots, n$$

Optimal solution close to NOMA:

$$\lambda_1 = 0, \lambda_2 = 1$$

$$\gamma_{11} > \gamma_{22} = \dots = \gamma_{nn}$$

$$\gamma_{12} = \gamma_{13} = \dots = \gamma_{1n}$$

$$\gamma_{21} = \gamma_{31} = \dots = \gamma_{n1}$$

$$\gamma_{ij} = \frac{P}{n} |h_{ij}|^2$$

$$x_1 = \sqrt{\frac{P}{n}} x_{1,c}$$

$$x_j = \sqrt{\frac{P}{n}} x_{j,p}, j = 2, \dots, n$$

Precoding (full CSIT)

• MMSE precoder (closed form): $\mathbf{F} = \sqrt{\nu} \mathbf{H}^{\mathrm{H}} \left(\mathbf{H} \mathbf{H}^{\mathrm{H}} + \frac{n}{P} \sigma^2 \mathbf{I} \right)^{-1}$

Performance precoder (numerical solution):

$$F_{\text{opt}} = \underset{F}{\operatorname{argmax}} \quad \sum_{m=1}^{n} R_{m}$$
s.t.
$$||F_{i}||^{2} \leq \frac{P}{n}$$

$$R_{m} = W \log_{2} \left(1 + \frac{|H_{m}f_{m}|^{2}}{\sigma^{2} + \sum_{l \neq m} |H_{l}f_{i}|^{2}}\right)$$

Numerical comparison

Achievable spectral efficiency

Fairness (Jain index)

Beam-free approach

NOMA and SNR unbalance

ORTHOGONAL MULTIPLE ACCESS (OMA)

NON-ORTHOGONAL MULTIPLE ACCESS (NOMA)

More efficient rate allocation

SNR1= 20 dB (Strong user) SNR2= 10 dB (Weak user)

SNR unbalance: beam radiation pattern **Beam center**

Optimization process

Resource allocation

(user pairing)

Rate optimization: closed form

 $\max_{\alpha} w_k r_k(t) + w_p r_p(t)$

expression for the optimum power

allocation to maximize the Weighted

Sum Rate

Proportional Fair Scheduling (PFS) policy

$$F(t) = \sum_{k=1}^{K} \frac{r_k(t)}{R_k(t)} = \sum_{k=1}^{K} w_k(t) r_k(t)$$

Simulations

Number of beams	16
Frequency band	20 GHz
EIRP per beam	62 dBW
Bandwidth per beam	250 MHz
Number of time slots	300
Monte-Carlo simulations	1200
Traffic distribution	Uniform

Numerical results

Sum-rate improvement with respect to Orthogonal Multiple Access

Conclusions

- Rate Splitting plays a major role also in phase-blind settings:
 - Overlay cognitive radio
 - MISO broadcast channel
 - Beam-free (cell-free approaches)
- In some specific case, its particular instance, **NOMA**, suffices
- Link adaptation can be jointly applied with the exposed techniques
- The selection of users is particularly relevant
- Drawback: users need to apply at least one stage of interference cancellation

References

- C. Mosquera, N. Noels, T. Ramírez, M. Caus and A. Pastore, "Space-Time Rate Splitting for the MISO BC With Magnitude CSIT," in IEEE Transactions on Communications, vol. 69, no. 7, pp. 4417-4432, July 2021.
- T. Ramírez and C. Mosquera, "Resource Management in the Multibeam NOMA-based Satellite Downlink," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 8812-8816.
- T. Ramírez, Mosquera, C., Caus, M., Pastore, A., Alagha, N., and Noels, N., "Adjacent Beams Resource Sharing to Serve Hot Spots: A Rate Splitting Approach", in 36th International Communications Satellite Systems Conference (ICSSC), 2018.
- Ramírez, T., Mosquera, C., Caus, M., Pastore, A., Navarro, M., and Noels, N. "Message-splitting for interference cancellation in multibeam satellite systems". In 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC), IEEE, 2018.
- Alberto Rico-Alvariño and Carlos Mosquera. "Overlay spectrum reuse in a broadcast network: covering the whole
 grayscale of spaces." IEEE International Symposium on Dynamic Spectrum Access Networks, 2012.