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Abstract—In this paper, the Ziv-Zakai Bound (ZZB) is applied
to analyze the Direction of Arrival (DoA) estimation problem
with hybrid arrays. Two signal models are considered: in the
first one, the signal is constant and known, while in the second
one, the signal varies over time and follows a Complex Gaussian
distribution. The bounds are used as benchmarks for the MAP
estimator, and through these bounds, the effect of the number of
RF chains as well as the number of snapshots on the estimation
problem is analyzed. Simulations demonstrate the bounds predict
the Mean Squared Error (MSE) of MAP through the SNR.

Index Terms—Direction of arrival estimation, array signal
processing, maximum a posteriori estimation.

I. INTRODUCTION

ESTIMATING the Direction of Arrival (DoA) is a major
problem in array signal processing with importance in

many field including radar, sonar or medical imaging [1]. Em-
ploying lower bounds in the minimum square error (MSE) is a
usual approach to assessing the performance of the estimators.
The so-called “local” bounds are widely used, and among them
the most popular is the Cramer-Rao Bound (CRB), with handy
expressions in some relevant problems, and which provides
useful insights about the estimation performance. However, in
the case of DoA estimation, a non-linear problem, the CRB is
a useful benchmark only in the asymptotic region, i.e., under
high SNR and/or high observation time [2]. To overcome
this drawback, we can resort to the family of Bayesian
bounds which provides a tighter alternative to the CRB. Some
members of this family are the Bayesian Cramer Rao Bound
(BCRB) [3, p. 84], the Weiss-Weinstein bound (WWB) [4], the
Bayesian Bhattacharyya Bound (BBB) [5] or the Ziv-Zakai
Bound (ZZB) [2]. This family assumes the parameters are
random variables with known a priori distribution and the
MSE is averaged over the distribution. A good compilation
of results about local and non-local bounds can be found in
[6]. In this work, our focus will be on the ZZB, which has
been successfully applied to DoA estimation in [2], [7], and
more recently in [8], extending the bound to multisource DoA
estimation.

In the case of fully digital (FD) arrays, the estimation
problem has been widely studied [9], [10]. Nevertheless, with
the advent of massive multiple-input multiple-output (MIMO)
systems, hybrid analog-digital arrays (HAD) employing fewer
RF-chains than antennas have gained attention in recent years
to reduce the hardware complexity and power consumption of
FD arrays [11], [12]. Despite this, the study of lower bounds

for DoA estimation with HAD arrays is not fully developed
yet, in particular in the case of ZZB. In [1, p. 1073], we can
find the expression of the CRB for Gaussian signals, referred
to as “beamspace CRB” therein. In [13], the authors derived a
closed form expression of CRB for impinging Gaussian signals
using sub-connected HAD arrays and, in [14], an in-depth
analysis of the CRB for deterministic signals was presented.
Regarding Bayesian bounds, [8] provided an extension of the
ZZB for FD arrays in multisource scenarios.

This work addresses the extension of the ZZB to DoA with
HAD arrays. The role of the beamforming matrix, number of
RF-chains, and the probability density function (pdf) of the
angle of arrival will be discussed, along with the derivation
of the Maximum a Posteriori Estimator (MAP) for HAD
architectures.

II. SYSTEM MODEL

We assume an HAD array with N elements and NRF RF-
chains. A set of K, possibly different, beamforming matrices
{Vt} is used across K different time snapshots. An incoming
signal from angle θ yields the following sets of samples:

yt = V H
t (a(u)st + nt) t = 1, . . . ,K (1)

where u ≜ sin θ is the random directional sine with pdf p(u),
and a(u) is the array manifold or steering vector defined as:

a(u) =
(
1 . . . ej2π∆(N−1)u

)T
. (2)

The beamforming matrix Vt ∈ CN×NRF in (1) is assumed to
be semiunitary V H

t Vt = INRF . the noise nt is white complex
Gaussian with zero mean and covariance σ2

nIN , and the signal
st adopts two different formats: (i) constant and known st =√
σ2
s , (ii) complex random following a Gaussian distribution

st ∼ CN (0, σ2
s). The signal to noise ratio is defined as snr ≜

σ2
s

σ2
n

.
If we put together all the received samples as Y ≜

(y1, . . . ,yK)T , then the ZZB expression used in this paper
reads as [2]:

EY ,u

[
(û(Y )− u)

2
]

(3)

≥
∫ ∞

0

V
{∫ ∞

−∞
min(p(u), p(u+ h))Pmin(u, u+ h)du

}
hdh

where V{·} is the valley-filling function and Pmin(u, u + h)
is the minimum probability of error in the binary detection
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problem of deciding between u and u + h. If Pmin(u, u + h)
depends only on h, Eq. (3) admits the simplification

EY ,u

[
(û(Y )− u)

2
]
≥

∫ ∞

0

V{A(h)Pmin(h)}hdh (4)

A(h) =

∫ ∞

−∞
min(p(u), p(u+ h))du. (5)

III. ZZB FOR CONSTANT SIGNALS

For known st =
√

σ2
s ∀t, the expectation and covariance

of yt are µt(u) =
√
σ2
sV

H
t a(u) and Σt(u) = σ2

nINRF ,
respectively, so the pdf of Y given u boils down to

p(Y |u) = (πσ2
n)

−KNRFe
− 1

σ2
n

∑K
t=1 ||yt−

√
σ2
sV

H
t a(u)||22 . (6)

The minimum probability of error is attained with the Log
Likelihood Ratio Test (LLRT)

ℓ(Y ) = ln p(Y |u+ h)− ln p(Y |u)
H1

≷
H0

0 (7)

which, after substituting (6) in (7), results in the statistic

ℓ(Y ) =

K∑
t=1

Re
[
(µt(u+ h)− µt(u))

Hyt

] H1

≷
H0

γ (8)

where γ = 1
2

∑K
t=1

{
||µt(u + h)||22 − ||µt(u)||22

}
. With this,

the minimum probability of error reduces to

Pmin(u,u+ h) =

0.5
[
P (ℓ(Y |u) ≥ γ) + P (ℓ(Y |u+ h) < γ). (9)

Given that ℓ(Y ) in (8) is the real part of a linear transformation
of a complex Gaussian vector, ℓ(Y |u) and ℓ(Y |u + h) will
be real Gaussian random variables, so we can resort to the
Gaussian Q(·) function to obtain Pmin(u, u+h). Letting µℓ|u ≜
E [ℓ(Y |u)], the expectations of ℓ(Y |u) and ℓ(Y |u+ h) are

µℓ|u =

K∑
t=1

Re
[
(µt(u+ h)− µt(u))

Hµt(u)
]

(10)

µℓ|u+h =

K∑
t=1

Re
[
(µt(u+ h)− µt(u))

Hµt(u+ h)
]

(11)

with the same variance in both cases:

σ2
ℓ =

σ2
n

2

K∑
t=1

||µt(u+ h)− µt(u)||22. (12)

Finally, using (10)-(12), Eq. (9) reads Pmin(u, u+ h) =

0.5
[
Q
(
γ − µℓ|u

σl

)
+ 1−Q

(
γ − µℓ|u+h

σl

)]
. (13)

In order to apply the simplified ZZB expression (4), we
identify the beamforming matrices such that the Fisher In-
formation Matrix (FIM) is independent on u. From (47) in
Appendix-A, a sufficient condition is the following identity
resolution:

K∑
t=1

VtV
H
t =

KNRF

N
IN . (14)

Note that the constant NRF
N follows from the semiunitary

property of Vt. With this, it can be readily seen that
K∑
t=1

||µt(u)||22 = σ2
s

K∑
t=1

aH(u)VtV
H
t a(u) = Kσ2

sNRF (15)

K∑
t=1

µH
t (u)µt(u+ h) = Kσ2

sNRFG(h) (16)

where G(h) ≜ 1
N aH(u)a(u + h). If (15) is applied in the

LLRT (8), the threshold reduces to γ = 0. Besides, Eqs. (10)
and (11) become

µℓ|u = −µℓ|u+h = KNRFσ
2
s(Re [G(h)]− 1) (17)

and the variance reads

σ2
l = Kσ2

nσ
2
sNRF(1− Re [G(h)]). (18)

Finally, substituting (10) and (11) in (13), the minimum
probability of error is written as

P (h) = Q
(√

K ·NRF · snr · (1− Re [G(h)])
)
. (19)

IV. ZZB FOR GAUSSIAN SIGNALS

If st ∼ CN (0, σ2
s), the received signal yt is characterized

as a complex Gaussian distribution with zero mean and
covariance

Σt(u) = σ2
sV

H
t a(u)a(u)HVt + σ2

nINRF . (20)

The pdf of Y given u is expressed as

p(Y |u) = π−KNRF

K∏
t=1

|Σt(u)|−1
e−

∑K
t=1 yH

t Σ−1
t (u)yt (21)

and the inverse covariance

Σ−1
t (u) =

1

σ2
n

(
INRF −

snr · V H
t a(u)a(u)HVt

1 + ||V H
t a(u)||22 · snr

)
. (22)

In contrast to the constant model, the statistic of the LLRT
for the Gaussian model follows a Generalized Chi-Square
(GCS) distribution [3], where Pmin(u, u+ h) does not admit,
in general, a closed form expression. Hence, we will employ
the lower bound developed in [3, p. 125]:

Pmin(u, u+ h) ≥ P (u, h) (23)

=
1

2
exp

{
µ(x∗) +

(x∗)2

2
µ̈(x∗)

}
Q
(
x∗

√
µ̈(x∗)

)
+

1

2
exp

{
µ(x∗) +

(1− x∗)2

2
µ̈(x∗)

}
Q
(
(1− x∗)

√
µ̈(x∗)

)
where µ(x, h) is the semi-invariant moment generating func-
tion defined as

µ(x, h) = ln

∫ ∞

−∞
p(Y |u+ h)xp(Y |u)1−xdY . (24)

Substituting the pdf (21) into (24) reduces to [7]

µ(x, h) =

K∑
t=1

{
x ln |Σt(u)|+ (1− x) ln |Σt(u+ h)|

− ln |xΣt(u)− (1− x)Σt(u+ h)|}. (25)
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Determinants are evaluated as [15]

|Σt(u)| = (1 + snr · xNu
t )(σ

2
n)

NRF (26)

|xΣt(u) + (1− x)Σt(u+ h)| = (σ2
n)

NRF
[(
1 + snr · xNu

t

)
·
(
1 + snr · xNu+h

t

)
− x(1− x)snr2 ·Nuh

t

]
(27)

where we are using the following definitions:

Nu
t ≜ ||V H

t a(u)||22 (28)

Nuh
t ≜ |aH(u)VtV

H
t a(u+ h)|2 (29)

By means of (26) and (27), µ(x, h) reduces to

µ(x, h) =

K∑
t=1

{
x ln

(
1 + snr ·Nu

t

)
+ (1− x) ln

(
1 + snr ·Nu+h

t

)
(30)

− ln
((

1 + snr · xNu
t

)(
1 + snr · (1− x)Nu+h

t

)
− snr2 · x(1− x)Nuh

t

)}
with first derivative equal to

µ̇(x) =

K∑
t=1

{
ln

(
1 + snr ·Nu

t

)
− ln

(
1 + snr ·Nu+h

t

)
+

snr2 · (1− 2x)(Nuh
t −Nu

t Nu+h
t ) + snr · (Nu+h

t −Nu
t )

(1 + snr · xNu
t )(1 + snr · (1− x)Nu+h

t )− snr2 · x(1− x)Nuh
t

}
(31)

and the second one reads

µ̈(x) = (32)
K∑
t=1

{
snr2 · 2(Nu

t Nu+h
t −Nuh

t )

(1 + snr · xNu
t )(1 + snr · (1− x)Nu+h

t )− snr2 · x(1− x)Nuh
t

+
(snr2 · (1− 2x)(Nuh

t −Nu
t Nu+h

t ) + snr · (Nu+h
t −Nu

t ))2

((1 + snr · xNu
t )(1 + snr · (1− x)Nu+h

t )− snr2 · x(1− x)Nuh
t )2

}
.

As opposed to the constant signal case described in the pre-
vious section, FIM independence of u cannot be guaranteed. In
this regard, from the expression of FIM derived in Appendix
-B, a sufficient condition would be

VtV
H
t =

NRF

N
IN (33)

which cannot be enforced unless NRF = N . Therefore, unlike
the constant signal case, the ZZB for the signal must be
calculated without using the simplification (4).

V. DESCRIPTION OF PERFORMANCE REGIONS

The performance of DoA estimators can be described ac-
cording to three different regions: low-SNR, high-SNR, and
a transition region in between. For low SNR, the error is
dominated by the a priori distribution of u, whereas for high
SNR the error converges to local bounds like CRB. In [7],
the authors noted that if the CRB is independent of u, the
ZZB converges to the CRB, and used it to locate the boundary
points: from low-SNR to transition and from transition to high-
SNR. For space reasons, we do not delve further into this, and
refer the interested readers to [7] for additional details.

For notation convenience we introduce the definition A ≜∫∞
0

A(h)hdh, and hz such that G(hz) = 0. For low SNR,
the ZZB is upper bounded by 0.5A [7], which only depends
on p(u). The evaluation of A for uniformly distributed u
was presented in [7], and it is extended here in Appendix-C

for uniform θ. Following [7] for the constant signal model,
we seek the SNR where the ZZB gets 3dB below the upper
bound in low SNR, Pmin(hz) = 0.5, obtained as the rightmost
solution of A · Pmin(hz) = J−1. For high SNR, the FIM for
the constant model reads

JC = 2K(2π∆)2snr ·NRF
Sn2

N
(34)

where Sn2 =
∑N−1

n=0 n2. The impact of the number of
snapshots can be illustrated by comparing the bounds for two
architectures with K1 and K2 snapshots. For the constant
signal case, we have

CRBC,1

CRBC,2
=

JC,2

JC,1
=

K2

K1
. (35)

As stated in Section IV, the ZZB in the Gaussian case can not
be simplified, therefore the transition points between regions
are hard to identify. To obtain some insights, we focus our
interest on the case where the beamforming matrix is random
[V ]n,m = 1√

N
ejϕn,m with ϕn,m ∼ U [0, 2π). At high SNR,

the CRB (51) can be approximated, for high NRF and K, as

JG ≈ 2K(2π∆)2snr
(NRF

N
S2
n −

E
[
|aDVtV

H
t a|2

]
E
[
||V H

t a||22
] )

. (36)

when NRF is high and K increases. Once the expectations are
computed, the FIM reads as

JG ≈ 2K(2π∆)2snr
NRF

N

(N − 1

N
Sn2 − S2

n

N

)
. (37)

VI. MAXIMUM A POSTERIORI (MAP)

In this work we use the ZZB for benchmarking purposes of
the maximum a posteriori (MAP) estimator ûMAP:

ûMAP = arg max
u

p(u|Y ) = arg max
u

p(Y |u)p(u), (38)

or, for convenience, expressed as

ûMAP = arg max
u

[ln p(Y |u) + ln p(u)]. (39)

The corresponding MAP estimators for the constant and
Gaussian models will be labeled as ûC and ûG, respectively1.
Starting with the constant model, the pdf (6) is substituted in
(39) and MAP reduces to

ûC = arg max
u

[
−KNRF lnπ

−
K∑
t=1

||yt −
√
σ2
sV

H
t a(u)||22 + ln p(u)

]
, (40)

or, alternatively,

ûC = arg max
u

[ K∑
t=1

{
2
√

σ2
sRe

[
yH
t V H

t a(u)
]

− σ2
sa(u)VtV

H
t a(u)

}
+ ln p(u)

]
. (41)

1Note that for a priori uniformly distributed u, MAP coincides with the
maximum likelihood estimator.
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Similarly for the Gaussian signal model, after substituting the
pdf (21) in (39), the estimator is given by maximising

−KNRF lnπ −
K∑
t=1

{
ln |Σt(u)|+ yH

t Σ−1
t (u)yt

}
+ ln p(u)

which can be conveniently simplified to yield

ûG = arg max
u

[
K∑
t=1

{
||yH

t V H
t a(u)||22

σ2
n(1 + snrNu

t )

− ln(1 + snrNu
t )

}
+ ln p(u)

]
. (42)

As a remark, note that this work applies to DoA estimation
based on independent snapshots. For those schemes which
make use of Bayesian Learning [16], [17], and choose Vt

adaptively as a function of the observations, bounds such as
CRB or ZZB do not apply.

VII. SIMULATIONS

Fig. 1a depicts the ZZB curves along with performance
of MAP for 5 · 103 realizations, obtained for the con-
stant signal model using DFT beamforming, [Vt]n,m =
1√
N
ej2π∆num n = 0, . . . , N−1, where um denotes the center

of the m-th beamforming vector, spaced by steps 2
N . Since

the beamforming satisfies the identity resolution condition, we
know that the CRB bound is independent of the direction,
and therefore, ZZB converges to CRB at high SNR. At low
SNR, the bound is dominated by the effect of the prior
distribution of u, with a threshold of 1

3 when u is uniform
and 1

4 when θ is uniform. Fig. 1a showcases different number
of snapshots, K = {20, 40, 80}, which, according to our
theoretical derivations, results in a constant separation between
bounds by a factor of two at high SNR.

Fig. 1b shows the simulation of ZZB and MAP with 5 ·103
realizations for the Gaussian model using random beamform-
ing [V ]n,m = 1√

N
ejϕn,m , with ϕ ∼ U [0, 2π). The straight

line is the approximation for the CRB in high SNR, whereas
the horizontal lines correspond to the thresholds for low SNR.
Similarly to the constant signal case, at low SNR, the bound
is dominated by the a priori distribution of u; as the SNR
increases, the bound tends towards the CRB because random
beamforming asymptotically makes the CRB independent of
the DoA. Finally, it is worth noting that, for high SNR, there
is an inverse dependence between the number of RF chains
NRF and the MSE, as anticipated by expression (37).

VIII. CONCLUSIONS

The Ziv-Zakai Bound (ZZB) for DoA with hybrid arrays
has been developed for the constant and known signal model.
It has been shown that the satisfaction of the so-called identity
resolution condition by the beamforming matrices allows for a
simplified evaluation of the bound, including the identification
of the transition between regions and its asymptotic expression
for high SNR. For the Gaussian signal model, if random
beamforming is applied, a convenient high SNR expression
has been derived, which allows to understand the role of the
number of snapshots, antennas and RF chains.

(a)

(b)

Fig. 1. (a) Constant signal model. N = 32, NRF = 8, ∆ = 1
2

(b) Gaussian
signal model. N = 120, ∆ = 7

16
, K = 50.

APPENDIX

A. Derivation of FIM for the constant signal model

For complex Gaussian data with mean µY (u) and covari-
ance matrix ΣY independent of u, the FIM is given by [1]:

J(u) = 2Re
[
∂µH

Y (u)

∂u
Σ−1

Y (u)
∂µY (u)

∂u

]
. (43)

In the constant signal model the mean of the data vector is
µY (u) = (sV H

1 a(u), . . . , sV H
K a(u))T and the covariance is

ΣY = σ2
nIKNRF , so the FIM, denoted by JC, reduces to

JC(u) =
2

σ2
n

K∑
t=1

Re
[
∂µH

t (u)

∂u

∂µt(u)

∂u

]
. (44)



5

Let the derivative of the steering vector with respect to u be

ȧ(u) ≜
∂a(u)

∂u
= j2π∆Da(u) (45)

with D = diag(0, . . . , N − 1), from which the derivatives in
(44) follow:

∂µt(u)

∂u
= j

√
σ2
s2π∆V H

t Da(u) (46)

and the FIM reads as

JC(u) = 2(2π∆)2snr · aH(u)D

K∑
t=1

VtV
H
t Da(u). (47)

B. Derivation of FIM for the Gaussian signal model

For the Gaussian model presented in Section IV the vector
of data Y is Gaussian with zero mean and the covariance
matrix is block diagonal where each block is given by (20).
Therefore, the FIM (43), denoted as JG(u), reduces to

JG(u) =

K∑
t=1

trace
[
Σ−1

t (u)
∂Σt(u)

∂u
Σ−1

t (u)
∂Σt(u)

∂u

]
. (48)

The derivative of the covariance matrix with respect to u is

∂Σt(u)

∂u
= σ2

sV
H
t (ȧH(u)a(u) + aH(u)ȧ(u))Vt. (49)

For the sake of notation, we will drop the term u in the
following equations. By plugging (49) into (48), JG simplifies
to

JG = 2(2π∆)2
K∑
t=1

{
snr2Nu

t

1 + snrNu
t

||V H
t Da||22 −

snr2Re
[
aHDVtV H

t a
]2

1 + snrNu
t

−
snr2(snrNu

t − 1)Im
[
aHDVtV H

t a
]2

(1 + snrNu
t )2

}
(50)

which, for high SNR, can be approximated by

JG = 2(2π∆)2snr
K∑
t=1

{
||V H

t Da||22 −
|aDVtV

H
t a|2

||V H
t a||22

}
.

(51)
It should be noted that the first term in (51) is the FIM of the
constant case.

C. Evaluation of A(h)

In this Appendix we present the evaluation of A ≜∫∞
0

A(h)hdh =
∫∞
0

∫∞
−∞ min(p(u), p(u + h))duhdh when θ

is uniformly distributed as θ ∼ U(−θc, θc) with θc > 0, and
u follows an arcsin distribution:

p(u) =
1

2θc

1√
1− u2

u ∈ (−uc, uc). (52)

with uc = sin θc. As the function min(p(u), p(u + h)) is
piecewise and can be splitted as

min [p(u), p(u+ h)] =


p(u+ h) −uc < u ≤ −h

2

p(u) −h
2 < u < uc − h

0 other

then A(h) reads

A(h) =

∫ ∞

−∞
min [p(u), p(u+ h)] du

=
2

π
(arcsin(h2 )− arcsin(h− uc)) h ∈ [0, 2uc]. (53)

Now, the integral
∫ 2uc

0
A(h)hdh can be readily obtained. For

example, for θc = π
2 , we have

A =

∫ 2

0

A(h)hdh =
1

2
. (54)
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