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Abstract—The prevalent model for the photoresponse non-
uniformity (PRNU) of digital cameras is (negatively) tested. The
PRNU serves as a fingerprint of the underlying device that has
proven its usefulness in image and video forensics. When such
model is applied to derive analytical expressions characterizing
the PRNU detection statistic, the predictions do not conform
with reality. However, those expressions are thoroughly validated
here through extensive experimentation using synthetic signals
with parameters taken from real images. As a consequence, the
current multiplicative PRNU model must be revised. This opens
new venues for performance improvements in both the extraction
and detection of device fingerprints.

I. INTRODUCTION

The photoresponse non-uniformity, or PRNU for short, is
an intrinsic property of digital imaging sensors due to imper-
fections in the manufacturing process and different sensitivity
to light of individual detectors. Thanks to its random nature,
the PRNU acts as a fingerprint of the underlying device that
has proven its usefulness in image and video forensics. The
PRNU can be used for source attribution, i.e., deciding which
camera among a group has taken a certain picture; fingerprint
detection, i.e., deciding whether a given image was captured
by a certain device; image clustering, i.e., grouping images
taken with the same devices; and tampering detection, i.e.,
deciding whether an image was manipulated by looking for
inconsistencies in its PRNU.

Being a very weak signal, reliable extraction of the PRNU
from a set of images has paramount importance, but this can
only be done with a proper model of the residuals left by a
denoising process aimed at reducing the interference of the
image that contains the fingerprint. The simplified multiplica-
tive model, prevalent in all the recent literature (e.g., [1]–[3]),
was settled in [4], [5], and leads to nearly optimal PRNU
estimators and detectors. Minor variations [6] of the model
only produce very similar detection and estimation statistics.
Surprisingly, mathematical analyses of performance are very
scarce, and mostly focus on the null hypothesis (i.e. testing
against the wrong source). In [4], [5], the null hypothesis
(denoted by H0) is modeled by a generalized Gaussian distri-
bution whose parameters are estimated by correlating a set of
images with the fingerprints extracted from different cameras.
When the normalized crosscorrelation detection statistic for
H0 is considered, a zero-mean Gaussian distribution with
variance inversely proportional to the number of pixels is
proposed in [7]. In [8], all possible shifts excluding a small

neighborhood surrounding the aligned position are used to
individually estimate the variance of H0 for each test image;
resulting in the Peak to Correlation Energy (PCE) as a better
detection statistic than the normalized correlation, as shown
in [9].

On the other hand, the statistical modeling of the alternative
(i.e., H1) hypothesis (i.e., testing an image against a matching
camera) is more complex. The analysis made in [4], [5] tries to
infer the expected value of the normalized correlation for each
test image, based on the image intensity, texture and flattening,
but it needs to be built in advance from a set of training
images. In [10], for the problem of matching two extracted
fingerprints, H1 is modeled by a Gaussian with theoretical
values for its mean and variance; unfortunately, this analysis
cannot be directly extended to the more common fingerprint
detection problem.

Recent investigations [11] have been able to produce ana-
lytical expressions for the two hypotheses of the fingerprint
detection problem. These analytical expressions allow one to
compute theoretically the probabilities of detection and false
alarm and assess the expected performance for a given test
image. Paradoxically, these expressions do not conform with
reality with the accuracy that would be expected if the model
were correct. Thus, in this paper we take a reverse approach
towards validation of the PRNU model: we generate synthetic
PRNUs with the assumed characteristics and “plant” them
on both synthetic and real images. We increase the level
of complexity of the synthetic signals to account for cross-
dependencies and local correlations. We find that, while the
theory accurately matches the experimental results obtained
with synthetic PRNUs, such is not the case when dealing with
real images. This indicates that the long-standing model for
the PRNU falls short of holding in practice, and calls for a
revision.

Notation: Vectors are represented in boldface. The ith
component of the vector x is represented by x[i]. I, 1 and
0 denote the identity matrix, the all-ones and the all-zeros
vectors, respectively. The sample-wise (Hadamard) product
between x and y is denoted by x◦y, while the scalar product is
〈x,y〉. Any other operations among vectors or matrices, such
as addition, ratio, or raising to a power, are element-wise.

The rest of the paper is organized as follows: Sect. II
summarizes the existing model and the test statistic; Sect. III
presents the main theoretical findings in [11]; Sect. IV des-



cribes the experimental setup followed to produce the results
given in Sect. V. Finally, Sect. VI discusses the potential
consequences of our work.

II. MATHEMATICAL BACKGROUND ON THE PRNU MODEL

We start by adopting the sensor output model proposed in
[12] which has served as the basis for most of the subsequent
literature

y = gγ [(1 + k0) ◦ x0 + r]γ + nq, (1)

where y is the output of the imaging sensor rearranged in one-
dimensional form, x0 is the incident light intensity, k0 is the
PRNU term, g and γ are the color channel gain and the gamma
correction respectively, r accounts for other noise sources
including dark currents, and nq represents the quantization
noise. This model can be expanded in Taylor series around
k0 = 0, and the constants g and γ absorbed as x = (gx0)γ

and k = γk0, to write

y = (1 + k) ◦ x + n, (2)

where n
.
= γ(gx0)γr/x0 + nq collects the remaining noise

sources.
In practice, it is necessary to obtain an estimate x̂ of the

signal x by applying an image denoising algorithm to y. The
denoising residue for a single image is defined as w .

= y − x̂.
In this work, the denoising algorithm described in [13] is
considered without loss of generality.

A. PRNU fingerprint estimation

The PRNU term of any camera device can be estimated
from a set {yl}Ll=1 of images taken with the same device.
After obtaining the residue wl = yl − x̂l, and assuming i.i.d.
Gaussian noise, the maximum likelihood estimator (MLE)
k̂ = (

∑L
l=1 w

l ◦ x̂l)/(
∑L
l=1 x̂

l ◦ x̂l) derived in [6] can be
used. Next, following Chen et al. [4], mean subtraction and
Wiener filtering in the Discrete Fourier Transform (DFT)
domain are applied to k̂, in order to remove different artifacts
that are not the PRNU itself. The MLE of the PRNU implicitly
assumes the model

k̂ = k + ne, (3)

where the samples of the extraction noise ne are i.i.d. Gaussian
with zero-mean and variance σ2

e .

B. PRNU detection problem formulation

Let yt be a test image of size Nt ×Nt taken with a target
camera device of native resolution N × N (Nt ≤ N ), and
wt = yt − x̂t the corresponding residue after denoising. In
order to attribute yt to one specific target camera device, the
following hypothesis testing problem is formulated:

H0 : wt and k̂ correspond to different PRNUs;
H1 : wt and k̂ correspond to the same PRNU;

where yt is attributed to the target camera if H1 holds.
From (2), we can write

wt = k ◦ xt + nt, (4)

where nt is the estimation error with variance σ2
t .

When test images may have been cropped, it is not advisable
to use the detector based on the statistic 〈wt, k̂ ◦ x̂t〉 due
to computational reasons [8]. Thus, we consider instead the
cross-correlation test proposed in [8]:

r
.
= 〈wt, k̂〉

H1
>
<
H0

λ, (5)

for a fixed threshold λ, which is usually chosen to bound the
false alarm probability.

In practice one should take the maximum of the cross-
correlation for every possible lag when alignment is unknown.
The formal analysis of such statistic is a bit more complicated,
but once the probabilities of false positive and misdetection
are correctly predicted for every single lag, the corresponding
probabilities for the maximum will also match the empirical
ones. Thus, for simplicity, here we will assume perfect align-
ment between wt and k̂.

III. STATISTICAL MODELING OF THE TEST STATISTIC

Finding the distribution of r under H0 and H1 is crucial
not only for establishing some design parameters (prominently,
threshold λ), but also to assess the expected performance of
the detector. Unsurprisingly, the desired distributions strongly
depend on the underlying statistical assumptions for all the
signals involved in the models above. We illustrate this next
by considering the cases of white and non-white signals.

A. White signals

If the samples of the signals nt, k, and ne are mutually
uncorrelated, zero-mean i.i.d. (i.e., white), and N2

t is large, it
can be shown [11] that r under H0 is N (0, σ2

u,0) where

σ2
u,0 =N2

t

[
σ4
k(µ2

x+σ2
x)+σ2

k

(
σ2
e(µ2

x+σ2
x)+σ2

t

)
+σ2

eσ
2
t

]
, (6)

with µx
.
= 1

N2
t

∑N2
t

i=1 x[i] and σ2
x
.
= 1

N2
t −1

∑N2
t

i=1(x[i]− µx)2.
When H1 holds, the distribution of r can be also modeled

as a normal random variable, with mean and variance:

µH1

.
= E(r|H1) = N2

t σ
2
kµx, (7)

σ2
u,1 =N2

t

[
σ4
k(2µ2

x+3σ2
x)+σ2

k

(
σ2
e(µ2

x+σ2
x)+σ2

t

)
+σ2

eσ
2
t

]
.

(8)

B. Non-white signals

The i.i.d. assumption is not entirely realistic, because signals
may exhibit dependencies between neighboring pixels due
to imaging sensor operations, demosaicing, compression, and
denoising. Even though signals are not even stationary, the
long averages implicit in (5) justify the use for analysis
purposes of stationary signals with average first and second-
order moments. In particular, we can improve the i.i.d. model
by allowing for the existence of local autocorrelations in
k,nt, k̂,ne. The autocorrelation sequence of k will be denoted
by Rk[i], with a direct extension to the autocorrelations of the
remaining signals. Notice that if u,v are uncorrelated, and
s = u ◦ v, then Rs[i] = Ru[i] ·Rv[i], which becomes useful
when deriving the pdf of r for this case.



From (6) and (8), the expressions for σ2
u,0 and σ2

u,1 for
colored signals can be shown to be [11]

σ2
u,0 =N2

t

(µ2
x+σ2

x)
∑
∆q

R2
k+(µ2

x+σ2
x)
∑
∆q

Rk◦Rne

+
∑
∆q

Rk◦Rnt
+
∑
∆q

Rne
◦Rnt

, (9)

σ2
u,1 =N2

t

(2µ2
x+3σ2

x)
∑
∆q

R2
k+(µ2

x+σ2
x)
∑
∆q

Rk◦Rne

+
∑
∆q

Rk◦Rnt +
∑
∆q

Rne ◦Rnt

, (10)

where ∆q denotes a square neighborhood of radius q, i.e.,
(2 · q + 1)2 pixels around (0, 0).

To use these formulas in practice, one must estimate the
autocorrelation matrices from the available images. Rnt can be
estimated for the target image by assuming that nt ≈ yt− x̂t
(due to the weakness of the PRNU) as its sample autocorrela-
tion. Rk̂ can be estimated also from the sample autocorrelation
of k̂. The estimation of Rk is more difficult, because even
for a large number of images, k will be eclipsed by ne. We
propose the following method to mitigate this influence: split
the available images from the target camera into two disjoint
sets, and estimate the PRNU for each set, say k̂1 and k̂2, as
in Sect. II-A. Then, Rk can be estimated as the sample cross-
correlation between k̂1 and k̂2, where we benefit from the fact
that ne1 (resp. ne2 ) does not contain traces of k̂2 (resp. k̂1)
and both estimation errors are uncorrelated. Finally, Rne is
estimated as Rk̂−Rk, hence assuming uncorrelation between
ne and k, which is reasonable if a moderate number of images
is used in the estimation of the PRNU.

After rearranging the signals in their original imaging
sensor two-dimensional form, the empirical two-dimensional
autocorrelations of k, ne and nt are shown in Figs. 1a-1c.
Notice that the signals k, ne and nt are not white in general.

C. Cross-correlations

As stated above k and ne can be safely considered mutually
uncorrelated, as it is also the case with ne and nt. However,
due to imperfect denoising, nt will in general contain traces
of k (see Fig. 1d). If such cross-correlation is to be accounted
for, then the mean of r for H1 must be corrected as follows:

E(r|H1) = N2
t σ

2
kµx + 〈k,nt〉, (11)

Unfortunately, in a real scenario this correction cannot be
directly applied, because the last term is unknown.

IV. EXPERIMENTAL SET-UP

In principle, the formulas in Sect. III should serve to predict
the performance of the cross-correlation detector; after all,
they are derived directly from the PRNU model in Sect. II
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Fig. 1: Two-dimensional auto- and cross-correlations from
images of the Nikon D60 device: (a) Rk, (b) Rne

, (c) Rnt
; 97

images to obtain k̂1 and k̂2; L = 50 images to obtain k̂; Rnt

obtained by averaging over 147 images of the Nikon D60;
(d) average cross-correlation between k and nt over 197
images. All plots are normalized by their value at the origin.

by making assumptions of increasing complexity (i.e., from
white, uncorrelated to non-white, correlated signals). How-
ever, as we will later confirm, these theoretical predictions
ostensibly fail with real signals. In order to cast some light on
the reasons why this happens, we have conducted a series of
experiments with synthetic and real images. These experiments
validate our derivations to the extent that it is the PRNU model
itself what should be questioned.

One of the advantages of using synthetic signals is that
the denoising process, which is hard to model accurately, can
be bypassed. This is carried out by directly sythesizing the
denoising residuals; for instance, the signals k and nt in (4)
can be synthesized as samples of the corresponding random
variables, either assuming whiteness and uncorrelatedness
or complicating the model to account for auto- and cross-
correlations. Some of the parameters/values (e.g. variances)
needed in the synthetic experiments are estimated from real
images. The image database used is a collection of pictures
from different camera devices containing TIFF images taken
with our own cameras, from the Dresden image database [14],
and from the RAISE database [15] (see Table I). The same
database is also used to perform the experiments on real
images. Next, we describe how each experiment was set up.
Experiment E1. Signals k,nt,ne and xt are synthesized as
white and mutually uncorrelated. k̂ and wt are generated
according to (3) and (4), respectively.
Experiment E2. Synthetic signals are colored by filtering
a white signal through a filter with frequency response√
|DFT(Ra)|, where Ra is the desired autocorrelation. The

images from the database are used to estimate the autocorrela-



TABLE I: Database of real images from different cameras.

Camera Model Sensor Native
resolution

Devices Number of
images

Database

Canon 600D 22.3x14.9mm CMOS 5184x3456 1 241 Own
Canon1100D 23.2x14.7mm CMOS 4272x2848 3 316/122/216 Own
Nikon D60 23.6x15.8mm CCD 3872x2592 1 197 Own
Nikon D70 23.7x15.6mm CCD 3008x2000 2 43/43 Dresden

Nikon D70S 23.7x15.6mm CCD 3008x2000 2 43/47 Dresden
Nikon D90 23.6x15.8mm CMOS 4288x2848 1 250 RAISE
Nikon D200 23.6x15.8mm CCD 3872x2592 2 48/43 Dresden

Nikon D3000 23.6x15.8mm CCD 3872x2592 1 230 Own
Nikon D3200 23.2x15.4mm CMOS 6016x4000 1 250 Own
Nikon D5100 23.6x15.6mm CMOS 4928x3264 1 250 Own
Nikon D7000 23.6x15.6mm CMOS 4928x3264 1 250 RAISE

tions Rxt
and Rnt

.1 Autocorrelations Rk and Rne
are esti-

mated as described in Sect. III-B, with Rk̂ the autocorrelation
of k̂ averaged over L = 50 images. k̂ and wt are constructed
as in E1.
Experiment E3. The images from the database are sequentially
used as yt, from which x̂t are obtained after denoising them
with the filter in [13]. nt is simply yt − x̂t. All other
signals are synthesized as in E2. This experiment aims at
determining whether denoising artifacts not captured by the
autocorrelations may influence the results.
Experiment E4. A synthetic PRNU ks ∼ N (0, σ2

kI) is embed-
ded in database images y using yt = y ◦ (1 + ks). Thus, the
test images yt contain a known PRNU following the model in
(1). This signal is denoised to produce the residual wt, and
k̂s is generated following (3), where ne is synthesized as in
E2.
Experiment E5. Same as E4, but now ks is an actual PRNU
extracted from real images.
Experiment E6. Database images are subjected to the estima-
tion and detection procedures described in Sects.II-A and II-B.

V. EXPERIMENTS

In all synthetic experiments reported in this section, the
following values are considered: N = 4096, Nt = 2048,
σ2
e = 10−6, σ2

k = 10−7. For the experiments on real images,
σ2
k is estimated following the procedure that splits the available

images into two disjoint sets (see Sect. III-B) as σ2
k = Rk[0, 0].

Then, σ̂2
k ≈ 10−7 for all cameras except for Canon 600D,

where σ̂2
k ≈ 10−6. Images taken with the reflex camera Nikon

D60 are used for the H1 hypothesis; while the other cameras
of Table I are used to evaluate the H0 hypothesis. Moreover,
q = 10 in (9) and (10). The results are reported as histograms
for the H0 hypothesis, and as plots of the experimental samples
of r|H1 vs. the theoretical values µH1

.

A. Synthetic signals

Figures 2a and 2c show the distributions for Experiment
E1. The theoretical ones are obtained through (6)-(8). As we
can see, for both hypotheses the theory matches perfectly the
empirical results.2 Figures 2b and 2d show the corresponding
distributions for Experiment E2, while Fig. 2e depicts the

1We assume that Rnt ≈ Rwt , since k ◦ xt � nt.
2Most of the samples ofH1 lie in the theoretical band [µH1−2σu,1, µH1+

2σu,1], which encloses ∼95% of the values of a Gaussian distribution.

distribution of H1 for Experiment E3. Here, (9) and (10) are
used to evaluate the theoretical variances σ2

u,0 and σ2
u,1. Again,

the matching between the theoretical and the empirical results
is remarkable.

For the remaining experiments, we only report the results
on H1, since hypothesis H0 does not show any mismodeling
even for real images.

Experiments E4 and E5 embed a known PRNU ks into the
images in order to measure the extent to which incomplete
knowledge of the PRNU affects the results in a real detection
scenario. In E4, a synthetic PRNU is used; Figure 3a shows
that the values of r|H1 are lower than predicted by (7). In
Experiment E5, the PRNU is extracted using L = 100 images
of the cloudy sky taken with the same Nikon D60 that is used
for hypothesis H1. Figure 3b now shows values of r|H1 that
are higher than expected. This is likely due to the fact that
we are embedding a similar PRNU than is already contained
in the images used for H1. This is overcame by embedding a
PRNU extracted from a different camera. Figure 3c shows the
result, where a very similar behavior to Fig. 3a is evident.

The discrepancies observed in Figs. 3a and 3c are ex-
plained by the inability of the denoising process to remove
all of the embedded PRNU. This leaves some correlation
between ks and nt which can be corrected as in (11) with
nt = yt − x̂t − y ◦ ks (see Fig. 1d and Experiment E4). Fig-
ure 3d shows the result after applying the correction in (11)
when a synthetic PRNU is embedded, while Fig. 3e reports
the performance of the correction when the embedded PRNU
comes from a different camera. With this correction, the
theoretical predictions match again the empirical results.

B. Real images

Figure 4 shows the empirical vs. the theoretical values of the
detector in (5) when images from a target camera are directly
used as H1 hypothesis (L = 50 images are used to estimate
k̂, and the remaining as test images yt). Although not shown
here, the results for H0 are well fit by the theory; in contrast,
for H1 hypothesis (see Fig. 4) they fall considerably out of
the theoretical confidence band for all cameras tested (the plots
correspond to four of them).

VI. DISCUSSION

Our step-by-step generation of synthetic signals, entailing
increasing levels of complexity, and the mirroring theoretical
analyses, carried out systematically, point to one root cause:
the PRNU model. Intriguinly enough, this model has remained
unchallenged across practically all the research in PRNU-
based forensics during the past decade. Validating the preva-
lent model is far from trivial, because the signals involved
are extremely weak. However, we have already taken some
steps in this direction which show promising results: it may
well be that an improved model will yield better detection
rates or, equivalently, reduce the size of areas under test when
constructing tampering detectors that use the PRNU. Thus,
although this paper reports “negative results”, we expect it to
open new venues of future “positive” research.
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Fig. 2: Empirical and theoretical distributions. H0 hypothesis: (a) white signals, (b) colored signals. H1 hypothesis for synthetic
signals: (c) white, (d) colored, (e) colored with xt and nt directly extracted from real images.
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Fig. 3: Empirical vs. theoretical values of H1 when a PRNU ks is embedded (target camera: Nikon D60) with the following
features: (a) Synthetic white Gaussian; (b) extracted from cloudy sky images taken with Nikon D60; (c) extracted from Nikon
D90 images. Considering the correction in (11): (d) synthetic white Gaussian; (e) extracted from Nikon D90 images.
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Fig. 4: Empirical vs. theoretical detection values on H1 for
real images from different camera devices.
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