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ABSTRACT
The field of genomic research has considerably grown in
the recent years due to the unprecedented advances brought
about by Next Generation Sequencing (NGS) and the need
and increasing widespread use of outsourced processing. But
this rapid increase also poses severe privacy risks due to the
inherently sensitive nature of genomic information. In this
work, we address privacy-preserving genetic susceptibility
tests outsourced to an untrustworthy party, enhancing previ-
ous approaches in terms of computation and communication
efficiency by leveraging the use of somewhat homomorphic
lattice encryption and relinearization operations to achieve
more efficient constructions. Additionally, we also propose a
more general construction which deals with several different
medical units (such as pharmaceutical companies or hospi-
tals), managing patients’ consent to the disclosure of test
results for each of these units, which may dynamically join
the system. Our scheme features an attribute-based homo-
morphic cryptosystem which enables enforcing the patient’s
access policy referred to the different medical units.
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1. INTRODUCTION
The advent of Next Generation Sequencing enables an in-

creasing use of genomic data in various domains such as
health care, biomedical research, disease susceptibility tests,
and forensics criminal investigations [10]. Nowadays, ge-
nomic data can be inexpensively sequenced and stored in a
digital format, becoming widely available for the aforemen-
tioned applications, and rapidly surpassing the computation
capacity of in-house infrastructures in medical centers and
laboratories. Hence, outsourcing genomic processing arises
as a necessity to cope with the volume of sequenced data.
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The benefits of a widespread use and study of genomic
data in advancing medicine research are unquestionable, but
the inherently sensitive and identifiable nature of the genome
entails severe privacy risks. Whenever a patient reveals her
sequenced genomic data to a genomic center for running
some tests, she loses control over these data and over the
amount of leaked personal information: the lab has access to
more information than just the test results, therefore harm-
ing the patient’s privacy. Moreover, the genomic information
can be linked to ancestors and relatives of an individual, so
its leakage also affects their privacy. These issues are aggra-
vated when the sequences are outsourced to an untrustwor-
thy environment, like a Cloud service, for their processing.
Outsourcing genomic data exposes them to the service and
infrastructure providers and makes them vulnerable to at-
tacks and accesses violating patients’ privacy.

Consequently, the rapidly decreasing cost of DNA sequenc-
ing which pushes forward the availability of genomic test
services also evidences the need of technological means for
protecting these sequences from unauthorized access and
processing. These privacy issues have motivated recent pro-
posals of mechanisms for performing outsourced calculations
on genomic sequences in a privacy-preserving way. In this
work we focus on one of the most recent privacy-preserving
mechanisms for disease susceptibility outsourced processing
by Ayday et al. [2], and enhance it with two main con-
tributions: a) Our proposed scheme features lattice-based
somewhat homomorphic encryption in order to enable fully
outsourced processing in the service provider, with no inter-
mediate interaction needed by the medical center or the pa-
tient for running the susceptibility tests, and moves the bulk
of data processing to the outsourced environment, which has
enough computational power to operate on big data without
having access to the original DNA of the patient; b) we gen-
eralize our construction to allow for different medical centers
with variable access structures to the data, controlled and
defined by the patient, in static and dynamic configurations.

1.1 Notation and Structure
We use calligraphic L letters when referring to the par-

ticipants in the protocols. Uppercase letters denote matri-
ces and lowercase letters denote elements from a polynomial
ring; boldface letters denote vectors of polynomials; a · b
denotes a polynomial product, and a · b an scalar product
between vectors of polynomials. The subindex xEP denotes



the result of the encryption of x with the key belonging to P.
The key owner will be omitted when there is no ambiguity.

The rest of the paper is organized as follows: Section
2 introduces some recent related work. Section 3 revises
some concepts used for our proposed constructions. In Sec-
tion 4 we revise Ayday et al.’s scheme and present our en-
hancements based on somewhat homomorphic lattice en-
cryption. Section 5 sketches our proposed extended scheme,
with static and dynamic management of several medical
units. Finally, Section 6 draws some conclusions and hints
for future work.

2. RELATED WORK
The recent privacy-preserving genomic works can be clas-

sified into three main categories: The first category deals
with private string searching and comparing, initiated by
Troncoso-Pastoriza et al. [13]; within this category, Chen et
al. [6] recently proposed a private read mapping protocol,
aligning short DNA sequences to human DNA with a secure
and efficient algorithm.

The second category tackles private release of aggregated
data; Wang et al. [14] have recently proposed a secure and
privacy-preserving method to find homologous genes.

The third category, to which this work belongs, deals with
private clinical gemomics, the field that most directly im-
pacts citizens and their need for immediate privacy. Within
this category, Baldi et al. [3] proposed a medical tool for
supporting privacy preserving string comparison methods
for individual medical tests over genomic data, and Canim
et al. [5] applied hardware encryption for efficiently process-
ing biomedical data; finally, one of the most representative
and recent works has been proposed by Ayday et al. [2],
which addresses secure medical tests of certain disease sus-
ceptibility on patients’ genomic data.

For this purpose, they claim that existing secure search-
ing methods do not provide a proper framework for various
types of genomic tests to develop proper personalized med-
ical methods, and they propose to use a trusted party, who
helps in sequencing, generating and distributing secrets re-
quired for the system among the other parties. Additionally,
their solution is outsourced, featuring a storing and process-
ing unit (SPU) between the patient and the medical center,
in such a way that the calculations are shared between the
medical center and the SPU through an additive homomor-
phic encryption and a partial decryption process, relieving
the patient from most of the computations.

We advance and enhance this proposal with two main
contributions: we enable that the SPU can execute all the
heavy computations needed for operating on encrypted data,
without the need to interact with the medical center, which
only has to decrypt the results; for this purpose, we in-
troduce a lattice-based somewhat homomorphic encryption
which enables our fully secure outsourced protocol.

Furthermore, Ayday’s scheme allows neither that differ-
ent medical units can join the protocol, nor that the pa-
tient updates her consent on the tests that can be performed
on her data, therefore obliging her to re-upload the whole
sequenced data if any change occurs. Our second contri-
bution enables more than one medical unit through differ-
ent patient-defined access rights coded as attributes; to this
aim, we apply attribute-based encryption (ABE) over lat-
tices with homomorphic properties, and we also sketch a

dynamic scheme which supports new medical centers to join
the system and a dynamic modification of the access policies.

3. PRELIMINARIES AND CRYPTOSYSTEM
For the sake of completeness, we present some concepts

and background needed for later describing our proposed
schemes. We briefly revise the background on genomic se-
quences needed to implement a susceptibility test, and also
the structure of Bloom filters; finally, we present a some-
what homomorphic cryptosystem based on the Ring Learn-
ing with Errors hardness problem, and the primitives we use
for building our privacy-preserving susceptibility protocol.

3.1 Genomic Background
Every human being’s aligned genomic sequence has over

3 billion base pairs of short reads [1] sampled randomly,
comprising between 100 and 400 nucletoides each.

After being sequenced, the position of the first aligned nu-
cleotide in a short read content is denoted as the short read’s
position with respect to the reference genome, in the form
Li,j = 〈xi|yj〉, where xi ∈ [1, 23] represents the chromosome
and yj ∈ [1, 2.4 · 108] represents the position of the short
read within chromosome xi. Due to mutations, sequencing
errors and inheritance, a patient’s sequence differs from the
reference genome. A Cigar String represents these variants
as pairs of nucleotide lengths and the associated operations
(see Fig. 1). The most common and relevant variants are
called SNPs (Single Nucleotide Polymorphisms); they repre-
sent positions in the genome holding a nucleotide that varies
between individuals. SNPs are particularly suitable for run-
ning susceptibility tests of certain diseases. Weighted aver-
aging [8] or Likelihood Ratio (LR) tests [12] are commonly
used to measure the susceptibility to a given disease; we give
the formula for these tests in Section 4.

Figure 1: Short read aligned to the reference [1].

There are over 100 million different SNPs recognized in
the human population (and growing), with every individ-
ual carrying around 4 million of them. The positions of
these 4 million SNPs are different in each individual. Fol-
lowing a similar notation as in [2], we refer to these set of
SNPs as “real SNPs” and the remaining ones as “potential
SNPs”; the i-th SNP for patient P is represented as SNPP,i,
where SNPP,i = 1 if P has a real SNP at this location, and
SNPP,i = 0 otherwise1; ΓP denotes the set of positions for
real SNPs of patient P (at which SNPP,i = 1), and γP the
set of positions of potential SNPs, at which SNPP,i = 0.

3.2 Bloom Filters
The problem of calculating a susceptibility function mainly

deals with appropriately weighting the SNPs which have
some contribution in the corresponding disease, depending

1Besides the presence or absence of a SNP, the formulation
can be extended to consider the type of SNP (homozygous
or heterozygous), encoded as {0, 1, 2} instead of just {0, 1}.
We refer the interested reader to [2] for further details.



on whether they are present (or absent) in the patient. De-
termining whether they are present or not can be reduced
to a membership problem in the sets ΓP and γP .

Ayday et al. [2] propose to use Bloom Filters as efficient
data structures to support set membership queries in a set
LP of ordered elements represented as an array of n bits,
where a small probability of false positives is allowed. The
Bloom filter is built as follows: all the n bits are initially
set to 0; the generator can then define κ independent hash
functions (κ� n), H1, H2, ..., Hκ with range {0, n−1}. For
each element of the set ΓP , the κ hash functions will output
κ (possibly repeated) bit positions in {0, n−1}, which are set
to one in the Bloom Filter bit string; the filter is eventually
composed of the final n-bit string and the κ hash functions.
In order to check for membership of an element i in LP ,
anyone with the filter can run the hash functions on i; if any
of them hashes to a position where the filter bit string has
a 0, i does not belong to ΓP .

3.3 RLWE-based Homomorphic Encryption
RLWE (Ring Learning with Errors) is the hardness prob-

lem in which the most recent lattice-based cryptosystems
are based; it is an efficient algebraic variation of Learning
With Errors (LWE) introduced by Lyubaskevsky et al. [9]
as an indistinguishability problem between two pairs of val-
ues: for a security parameter λ, let f(x) = xd + 1 where
d = d(λ) is a power of 2. Let q = q(λ) ≥ 2 be an integer,
R = Z[x]/(f(x)) and Rq = R/qR two polynomial quotient
rings. Let χ = χ(λ) be an error distribution over R. For the
secret s ∈ Rq, the RLWE distribution produces (ai, bi) such
that ai is sampled uniformly from Rq, and bi = ai · s + ei
with ei ← χ. RLWE assumes that this distribution in indis-
tinguishable from sampling (ai, bi) uniformly in R2

q .
Some of the most recent and efficient homomorphic cryp-

tosystems are based on RLWE. We will focus here only on
leveled Somewhat Homomorphic Encryption (SHE), which
holds the necessary properties to achieve our purposes. An
SHE cryptosystem comprises four functions SHSetup, SHGen,
SHEnc, SHDec; we exemplify them with the scheme by Brak-
ersky et al. [4] adapted to non-binary plaintexts:
SHSetup(1λ) → ppSW : This function outputs the public

parameters ppSW = (d, q, χ), where q is a module, d = d(λ)
is the lattice dimension, and χ = χ(λ) is an error distribu-
tion such that RLWE is secure against attacks with at least
2λ as security parameter.
SHGen(ppSW ) → (sku,pku): It generates a public-secret

key pair for user u. For this purpose, it samples randomly
s′ ← χ, and outputs sku = s = (1, s′) ∈ R2

q . In order to
generate the public key, two polynomials a← Rq and e← χ
are sampled randomly, such that pku = (b = a · s′ + te,−a)
with t ∈ Z being the allowed plaintext cardinality. It must
be noted that the public key is just an encryption of zero.
SHEnc(ppSW ,pku,m)→mE : To encrypt a message m ∈

Rt, randomly sample r ← χ and e← χ2. The encryption of
m is mE = (m, 0) + t · e + pku · r ∈ R2

q .
SHDec(ppSW , s,mE) → m: It outputs the decypted m =

[[mE · s]q]t, where [.]t is the modular reduction modulo t.
For the sake of clarity, we will omit the ppSW argument

in the encryption/decryption functions from now on. This
somewhat homomorphic cryptosystem can homomorphically
evaluate bounded polynomials of (sublinear) degree N (only
logarithmic depth), at the cost of an increase of the ci-
phertext noise after each homomorphic operation, there-

fore increasing the decryption error rate of the ciphertex
as the polynomial factor grows per operation. Addition
of plaintexts is equivalent to adding two ciphertext pairs

(m′
E = m

(1)
E + m

(2)
E )), and multiplication of two plaintexts

is homomorphic to the tensor product between the two ci-

phertexts (m′
E = m

(1)
E � m

(2)
E ), which becomes a three-

dimensional ciphertext that can be decrypted with the se-
cret key s′′ = (1, s′, s′ · s′) (for further details, we refer the
reader to [4]).

A homomorphic multiplication increases the dimension
of the ciphertext, so Brakerski et al. introduced modulus
switching and key switching techniques working in a lev-
eled chain of keys {s0, s1, . . . , sN} to tackle the problem.
Without going into details which are out of the scope of this
paper, the combined techniques allow for a reduction of an
expanded three-dimensional ciphertext back into a regular
two-dimensional ciphertext, with the help of a relineariza-
tion matrix B which holds encryptions of pieces of s′′ under
the destination key s2.

While this process is originally intended as a dimension
reduction to allow for the homomorphic evaluation of higher
degree polynomials, the relinearization step can be used in
a more general way, as a proxy re-encryption, in order to
change a ciphertext between a key su1 to another ciphertext
under key su2 by using a relinearization matrix Bu1,u2 .
KSwitch(mEu1

,pkEu1
,Bu1,u2) →mEu2

: outputs an en-
cryption ofm under the key su2 ; Bu1,u2 is the relinearization
matrix between keys su1 and su2 produced by user u1.

As the degree of the evaluated polynomials defining the
susceptibility functions is known beforehand, we do not need
a Fully Homomorphic Encryption (FHE), and we can get a
much more efficient solution by running an SHE adjusted to
the needed polynomial degree. Furthermore, we leverage the
relinearization function as a proxy re-encryption primitive to
enable the proposed dynamic system.

4. PRIVACY-PRESERVING GENOMIC SUS-
CEPTIBILITY TESTING

This section revises the recently proposed privacy preserv-
ing protocol by Ayday et al. [2] and presents our enhanced
version. Table 1 summarizes the notation for this section.

ΓP Set of positions of real SNPs of patient P
γP Set of positions of potential SNPs of patient P
SNPP,i i-th SNP for patient P. SNPP,i equals 0 when it belongs to γP , and 1

when the patient presents a variant (it belongs to ΓP )
Ωx Set of positions of SNPs which are related to disease x.

prx,ib Pr(x|SNPP,i = b), with b ∈ 0, 1. Probability of developing disease x
conditioned on the value of the i-th SNP

cx,i Contribution (likelihood) of the i-th SNP SNPP,i to the susceptibility
to disease x

SP,x Predicted susceptibility of patient P to disease x

Table 1: Used Notation

There are several ways to calculate the genetic suscepti-
bility to a given disease, but we exemplify here the weighted
average method, generalizing the descriptions given in [1, 2].
Due to prior studies on a given population, a medical center
MC knows that disease x is related to SNPs in a set Ωx,
in such a way that their presence or absence contributes by
increasing or decreasing the susceptibility by a determined
value (see Table 1). For this set of SNPs, the susceptibility
of a patient for developing a disease x can be calculated as:



SP,x =
1∑

i∈Ωx
cx,i
×
{

Σi∈Ωxc
x,i{ pr

x,i
0

0− 1
[SNPP,i − 1]+

prx,i1

1− 0
[SNPP,i − 0]}

}
. (1)

It is possible to calculate the susceptibility by computing
the Likelihood Ratio, which we omit here due to lack of
space, but it is analogous to the case of Eq. (1).

4.1 Overview of Ayday et al.’s Scheme
Ayday et al. [2] propose several mechanisms with differ-

ent levels of privacy to compute Eq (1) in an untrustworthy
Storage and Processing Unit (SPU), being the highest level
the one using Paillier encryptions [11] to conceal the values
and positions of the patient’s SNPs, and a partial decryption
step (which they denote proxy encryption) to interactively
perform part of the process between the medical centerMC
and the SPU . All parties are assumed semi-honest and fol-
low the established protocols.

Patient P owns a biological sample and a pair of Paillier
keys. The MC has the knowledge of the parameters for
calculating the susceptibility to disease x. Additionally, [2]
introduces a trusted certificate institute CI, which performs
the sequencing and encryption of the patient’s DNA from
her sample; it also generates the Paillier keys and shares a
(regular non-homomorphic) symmetric encryption key with
patient P. The target of a privacy-preserving protocol in
this scenario is to securely calculate Eq. (1) while concealing
the patient DNA from both theMC and SPU , outsourcing
most of the processing load to the SPU .

Prior to the protocol execution, the CI obtains the Paillier
and symmetric encryption parameters pp = (ppSE , ppPa)
and generates and distributes the corresponding key pairs
(skP , pkP ) for the patients. It also distributes the symmetric
keys for the patient k = (skP,CI).

Sequencing and generation of input encryptions
After P sends her biological sample to CI for sequencing,
CI obtains the positions of SNPs in sets ΓP and γP , en-
coded as SNPP,i. With the values of these positions, CI
builds the Bloom Filter BF representing the positions in-
cluded in ΓP , encrypts these positions li and an arbitrary
value l0 (different from all the real or potential SNP indices)
representing the 0 location with the patient’s symmetric key,
obtaining {li,EP,CI} and l0,EP,CI ; it also encrypts the values

of SNPP,i using the patient’s Paillier key pkP . Then, CI
sends the BF and l0,EP,CI to the patient, and the pairs of
encrypted positions and encrypted SNPs to the SPU ; the
SPU can therefore index the encrypted SNPs with the en-
crypted position, without knowing neither the value of the
SNP nor its actual position.
Susceptibility test
Step 1: In order to run the analysis, MC marks the

location of those SNPs in Ωx it needs to run the test and
sends these positions to patient P.

Step 2: P runs the BF for these positions; for those
in the BF (present variants), P encrypts the corresponding
location li,EP,CI and sends it to SPU . For those not in BF ,
P sends the encryption l0,EP,CI . Additionally, she sends one
half of her secret key, skP (1) to the SPU and the other half
skP (2) to MC to perform a partial (proxy) decryption.

Step 3: The SPU re-randomizes the corresponding SNP

encryptions SNPP,iEP
for the indices li,EP,CI and sends the

results to MC.
Step 4: TheMC computes the susceptibility test Eq. (1)

on the patient’s encrypted SNPs by using the homomorphic
properties of Paillier encryption scheme, knowing the values
of prx,i and cx,i, and sends the encrypted results to the SPU .
Step 5: The SPU , by using its half of P secret key skP (1),

partially decrypts the result and sends it back to the MC.
Step 6: TheMC uses skp(2) to decrypt the message and

recover the required test result, SP,x.
The security of this scheme is based on the one wayness

and semantic security of the underlying Paillier encryption
scheme.

4.2 Proposed Scheme
Ayday’s scheme presents a series of limitations and draw-

backs: firstly, it employs Paillier, an additively homomor-
phic scheme which translates clear-text additions into mul-
tiplications of ciphertexts and clear-text products by known
values into exponentiations under encryption. Therefore, in
order to keep the susceptibility parameters hidden from the
SPU , the protocol must incur in two additional communica-
tion rounds between theMC and the SPU (steps 2, 3 and 4),
and it must move the bulk of the computation to theMC in-
stead of the SPU . These two facts go against the initial tar-
gets of a privacy-preserving outsourced scheme; we overcome
them by relying on a somewhat homomorphic lattice-based
encryption (see Section 3.3) instead of Paillier. Secondly,
they use a partial decryption in order to transfer the values
between the MC and the SPU , in such a way that the pa-
tient is required to send part of her key to these two parties;
instead, we leverage the relinearization (key switching) pro-
cess of leveled cryptosystems to provide proxy re-encryption
functionalities and produce the test results encrypted under
the key of the MC.

We develop our modified protocol in the same scenario,
with the same parties P, a CI, oneMC and one SPU . The
setup step in the CI is essentially unaffected: it runs the set
up and key generation algorithms (in our case, for a lattice-
based SHE scheme, see Section 3.3) and distributes them
among the parties. It also sequences the DNA sample of the
patient, builds a Bloom Filter and sends the corresponding
encryptions of the real and potential SNPs to the SPU . The
main difference lies in the encrypted execution of Eq. (1)
for which our protocol is able to run the whole function
homomorphically with both patient data and susceptibility
parameters encrypted, sending the results directly to the
MC under its own key. Regarding the attained privacy, we
achieve that the SPU does not get to know any data about
the patient or about the susceptibility parameters.

The complete instantiation of our proposed privacy-preserving
susceptibility test based on SHE is depicted in Fig. 2, and
described as follows:

Step s1: Setup(1λ) → pp: The CI runs the setup algo-
rithms for the SHE SHESetup(1λ) → ppSW = (n, q, χ), and
the symmetric encryptions SESetup(1k) → ppSE , obtaining
pp = (ppSE , ppSW ).

Step s2: Gen(pp) → k: CI runs SHGen → (sku,pku) to
obtain the keys of the SHE scheme for the patients, medical
center and SPU . It also runs SEGen→ skP,CI to generate
symmetric keys between P and MC.

Sequencing and generation of input encryptions
Step e1: P sends her biological sample to the CI.



Figure 2: Proposed Privacy Preserving Scheme

Step e2: The CI sequences the sample, builds the pa-
tient’s Bloom filter BF and symmetrically encrypts the po-
sitions {li,EP,CI} and l0,EP,CI as in the previous scheme.

Moreover, it encrypts the values of SNPP,i using the pa-
tient’s SHE public key pkP . Then, the CI sends the BF
and l0,EP,CI to P, and the pairs of encrypted positions and
SNPs to the SPU . Finally, either MC or P generates the
relinearization matrix BP,MC which enables the proxy re-
encryption between the patient’s SHE key skP and theMC
key through a KSwitch operation, and sends it to the SPU .

Encrypted susceptibility test
Step 1: The MC marks the location of SNPs in Ωx and

sends them to P. Additionally, it sends the contributions of
these SNPs to the disease x encrypted under P’s SHE key
to SPU : {prx,iEP

, cx,iEP
}i∈Ωx .

Step 2: P runs the BF for these positions; for those
in the BF (present variants), P encrypts the corresponding
location li,EP,CI and sends it to SPU , for those not in BF ,
P sends the encryption l0,EP,CI .
Step 3: The SPU computes the susceptibility test Eq. (1)

on patient’s encrypted SNPs and MC’s encrypted suscepti-
bility parameters for x by using the homomorphic properties
of the SHE scheme, obtaining the encrypted value of SP,xEP

under P’s key.
Step 4: The SPU runs KSwitch(SP,xEP

,pkP ,BP,MC) →
SP,xEMC

as a proxy re-encryption to get the result encrypted
under the medical center’s key, and sends it to MC.

Step 5: The MC decrypts the clear-text test result SP,x

of patient P for the disease x using its own SHE secret key.

4.3 Discussion and implementation details
The first enhancement of our modified scheme resides in

replacing additively homomorphic Paillier encryptions by a
lattice-based somewhat homomorphic encryption based on
RLWE; this allows to perform the whole computation of the
encrypted susceptibility function at the SPU , removing step
3 in the original protocol and moving the computation in the
original step 4 to the SPU instead of the MC.

We achieve this goal by taking advantage of working with
both SNPs and susceptibility parameters encrypted at the
same time by means of the proposed SHE scheme, hence
preserving both the privacy of P’s genomic data and the
confidentiality of the MC’s test from the SPU . Therefore,
we are complying with the requirement of a truly outsourced
secure computation, and the SPU is not only a helper party
as in [2], but it can be instantiated by an untrustworthy com-
puting infrastructure like a Cloud service, while minimizing

the computation requirements on the side of the MC and
patient P, whose involvement in our protocol are reduced to
only encrypting inputs and decrypting outputs.

Secondly, we use key switching as a proxy re-encryption,
so that the patient does not need to intervene in the last
step of the protocol, therefore substituting steps 5 and 6
of the original scheme, and removing the need for partial
decryption keys to allow theMC to decrypt the final result.

Another consideration has to do with the efficiency of the
computation outsourced to the SPU . While the encryptions
for the SHE-based scheme are bigger than Paillier’s, they
do not involve any costly exponentiation, as they translate
clear-text additions into encrypted additions and clear-text
multiplications into encrypted polynomial multiplications,
so their performance is not far away from Paillier’s. Addi-
tionally, the chosen SHE scheme allows for batching SIMD
(Single Instruction Multiple Data) operations, by taking ad-
vantage of encoding the inputs in a transform domain, in
such a way that one encryption can hold a vector of SNP po-
sitions or susceptibility parameters, and all the scalar prod-
ucts can be performed “in parallel” just as one encrypted
polynomial product. This technique greatly enhances the
performance of the encrypted operations and allows to re-
duce also the cipher expansion of the encryptions, as we will
show in an extended version of this short paper.

As a final remark, we could define an alternative proto-
col by restricting that all input values from the MC are
encrypted with its own key, i.e., MC encrypts the suscepti-
bility parameters prP,xEMC

and cP,xEMC
under its key; then, the

SPU would proxy re-encrypt the input SNPs from the pa-
tient to theMC’s key with KSwitch operations before step 3,
and perform the calculation of SP,xEMC

underMC’s key. This
modification increases the computation load on the server,
but it avoids that the MC give away its confidential val-
ues under another party’s key, in case this is a restriction
imposed in a practical scenario.

5. DYNAMIC PRIVACY-PRESERVING SCHEME
An additional limitation of Ayday’s scheme deals with

permissions and access control, in such a way that once the
CI sends the encrypted values to the SPU , the access con-
trol is hardwired to the used keys; and the patient provides
the MC with part of P’s key; in case a new MC joins the
system, the patient has to send it the partial key; if it leaves
the system, the distributed key allows the MC to retrieve
and decrypt any partial result output by the SPU .

Hence, it is not possible to update this access control if
newMCs join or to revoke access to results if they leave the
system. These operations can be managed with the aid of
the proposed proxy re-encryption, relying on the KSwitch

primitive of the SHE, but we also sketch here a more ad-
vanced modification with a more fine-grained control over
the patient consent to a set of medical centers or some
susceptibility tests. For this purpose, we propose to use
Attribute-Based Somewhat Homomorphic Encryption.

5.1 Attribute-Based SHE
While there are not many proposals of Attribute Based

Somewhat Homomorphic Encryption (ABSHE) in the liter-
ature, a lattice-based ABSHE can be constructed by apply-
ing Gentry’s homomorphic compiler [7] to a regular attribute
based encryption (ABE) scheme, resulting in a cryptosystem
with both properties. In order to use the ABSHE, a trusted



party (our CI) would run a setup algorithm to produce a
master secret-public key pair, and a key generation algo-
rithm to generate each of the secret keys for the patients
and theMCs. By relying on attributes, we allow to directly
retrieve the public keys of the involved parties, and we also
let the patient define which subset of attributes must be
fulfilled by a medical center to obtain the test results.

Therefore, instead of relying on proxy re-encryption, the
patient can define an access policy as a set of attributes, and
the CI will encrypt the SNPs with the key corresponding to
the allowed attribute subset instead of the patient’s key. If
a new MC joins the system, it will declare and authorize a
set of attributes, and if they fulfill the patient’s policy, the
new MC can get authorization to run the tests without the
intervention of the patient or the CI. It must be noted that
attributes can define not only the identity of the MC but
also the tests, in such a way that different keys would be
used for different centers and different susceptibility tests.

The most important feature of an ABSHE scheme is the
ability to dynamically deal with more than one medical cen-
ter which might be responsible for various tasks or tests,
based on their access structure defined as a function of the
medical center’s attribute set. The achievable privacy levels
regarding the protection against the SPU are the same as
for the proposed scheme in Section 4.2, as all the homomor-
phic operations involved in step 3 of our protocol would be
preserved by the ABSHE construction. An additional ad-
vantage is that it is not necessary to manage re-encryption
keys, the patient does not have to generate them, and the
encryptions do not have to be resent after a party joins or
leaves the system.

6. CONCLUSIONS
We improved on previous privacy-preserving genetic sus-

ceptibility testing protocols by relying on a somewhat homo-
morphic lattice-based encryption, and using key-switching
algorithms as a proxy re-encryption primitives. We allow for
truly outsourced secure testing by leveraging a Ring Learn-
ing with Errors-based encryption, by achieving the same pri-
vacy and confidentiality levels as prior schemes with a better
communication and round efficiency; furthermore, we move
most of the computational load to an outsourced untrust-
worthy party, reducing the computational needs of the pa-
tients and medical centers to just encrypting the inputs and
decrypting the results.

Additionally, we sketch a method with Attribute-Based
Somewhat Homomorphic Encryption, which allows for a
fine-grained dynamic access control by mapping the patient
consent to an attribute-based policy defining the centers and
the susceptibility tests that can be carried on her DNA sam-
ples. Implementation results and performance figures will be
provided in an extended version of this short paper.
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