
Bootstrap-based Proxy Reencryption for Private
Multi-user Computing

Juan Ramón Troncoso-Pastoriza
Signal Theory and Communications Department

University of Vigo
36310 Vigo, Spain

troncoso@gts.uvigo.es

Serena Caputo
Signal Theory and Communications Department

University of Vigo
36310 Vigo, Spain

scaputo@gts.uvigo.es

Abstract—The increasingly popular paradigm of Cloud com-
puting brings about many benefits both for clients and providers,
but it also introduces privacy risks associated to outsourcing data
and processes to an untrustworthy environment. In particular, the
multi-user computing scenario is especially difficult to tackle from
a privacy-preserving point of view, seeking to protect data from
different users while allowing for flexible Cloud applications.

This work leverages Gentry’s cryptographic bootstrapping
operation as a means to endow fully homomorphic cryptosystem
with proxy reencryption functionalities, targeted at the private
multi-user and multi-key computing scenario. We provide an
example implementation based on Gentry-Halevi cryptosystem,
and a secure protocol that employs this primitive for solving the
private multi-user computing scenario with non-colluding parties.

Index Terms—Cryptographic protocols, Privacy, Multi-key,
Bootstrapping, Fully Homomorphic Encryption

I. INTRODUCTION

Cloud computing is an increasingly popular paradigm,
which has experienced a growing adoption in the last few
years. Cloud brings about many benefits both for clients
and providers, like ubiquitous access and computing, better
scalability, multi-tenancy, and reduced initial investments. The
other side of the coin comes from the privacy risks that clients
may suffer when outsourcing their data and processes to an
untrustworthy environment, as they lose control over them
once they enter the Cloud. Hence, privacy is one of the highest
barriers for Cloud adoption, and there is a need for privacy-
preserving solutions that enable secure Cloud computing appli-
cations with two aims: a) protect sensitive data while they are
processed in the Cloud, so that the cloud server cannot access
them, and b) allow for flexible Cloud applications without
hindering their functionality and usability [1].

There are several tools that can be used to achieve a privacy-
preserving outsourced processing, namely Trusted Comput-
ing (Trusted Platform Modules - TPMs), Secure Modules
(Hardware Secure Modules - HSMs), Secure Computation
(Signal Processing in the Encrypted Domain - SPED, Fully
Homomorphic Encryption - FHE, Garbled Circuits), or a com-
bination thereof. Independently of the chosen tools, privacy
preservation in outsourced applications essentially involves
the cryptographic protection of the involved sensitive data
and an access control mechanism to enforce a proper usage,
interplay, share and mix of those data. Depending on the

specific scenario, encryption and access control have different
weights. Within the possible Cloud-based privacy-preserving
scenarios where a set of clients {Ci}N−1

i=0 access a cloud server
S, van-Dijk and Juels [2] establish a relevant classification of
private cloud applications in three groups:
• Private single-client computing: they execute over the

data xi of a client Ci, and only Ci has access to the
corresponding inputs and outputs.

• Private multi-client computing: they execute over the data
{xi}N−1

i=0 of multiple clients {Ci}N−1
i=0 , not mutually trust-

ing. The information (inputs and outputs) is selectively
released.

• Stateful private multi-client computing: Similar to the
prior scenario, but with dynamic selective allowance to
data depending on their processing history.

The first scenario can be theoretically solved by using
efficient Fully Homomorphic Encryption (FHE) alone [3], by
encrypting the data of each client Ci with the corresponding
key KCi

and allowing for the needed processing on those data
alone. Conversely, multi-client scenarios need two elements:
• A proper access control mechanism (either stateful or

stateless). Furthermore, van-Dijk and Juels [2] prove the
impossibility of achieving, in general, privacy-preserving
multi-client computing by using cryptography alone, such
that further assumptions are needed; i.e., some form of
trusted computing environment must be present, either
through a hardware trusted computing element, a trusted
third party or a secure multiparty protocol involving more
than two parties.

• The possibility of operating on data that are encrypted un-
der different user keys. In general, homomorphic encryp-
tion cannot straightforwardly cope with data encrypted
under different keys.

This work addresses the second element, by focusing on
the capability of bootstrappable FHE to work with inputs en-
crypted under several different keys. To this aim, we leverage
the use of bootstrapping as a proxy reencryption mechanism
for fully-homomorphic cryptosystems.

A. Notation and Structure
Throughout the work, scalar values and polynomials will be

denoted by lowercase regular letters, while vectors (matrices)

will be denoted by lowercase (uppercase) boldface letters. [.]q
will represent the modulo-q reduction, while J.Kpk represents
the encryption (coefficient-wise encryption) of an integer (vec-
tor or matrix) under the public key pk, and d.c, the rounding
to the nearest integer.

The rest of the work is organized as follows: Section II
briefly surveys the current different approaches for multi-key
scenarios. Section III revisits the concept of cryptographic
bootstrapping introduced by Gentry. Section IV presents the
proposed system and the use of bootstrapping for proxy
reencryption. A specific implementation of the bootstrapping-
based reencryption for Gentry-Halevi cryptosystem is pre-
sented and evaluated in Section V, and Section VI draws some
conclusions.

II. PRELIMINARIES AND CONTRIBUTIONS

In recent years there have been several approaches aimed
at enabling private multi-client multi-key computing using
Homomorphic Encryption. It must be noted that we will leave
aside hardware-based solutions (TPMs and HSMs) and focus
on the underlying homomorphic encryption mechanism for
the privacy-preserving system; therefore, the existing solutions
follow one of the following three approaches:

1) Use of a trusted element in which the client delegates
encryption and decryption: Bugiel et al. [4] present an
architecture for secure computing in which the user
outsources the data to a trusted cloud. This trusted
cloud acts as an intermediary that communicates to the
commodity cloud on behalf of the client, and performs
all the encryption, decryption, reencryption and program
obfuscation. The trusted cloud has access to all the
clear text data of the client, it is always online and it
has a high-bandwidth line to the commodity cloud. It
can hence perform all the required access control and
encrypt the data with suitable keys for it to be operated
at the commodity cloud.

2) Design a secure protocol for performing reencryption:
Peter et al. [5] use a double-trapdoor additively homo-
morphic cryptosystem (BCP [6], by Bresson, Catalano
and Pointcheval). They introduce two non-colluding
semi-honest servers (C and S), such that S has the
master key able to decrypt (and hence reencrypt) any
ciphertext, while C performs the actual homomorphic
operations. Through interactive secure protocols be-
tween C and S the input data are reencrypted to a
common operation key, subsequently operated at C,
and the outputs are reencrypted for each corresponding
client.

3) Design the underlying FHE specifically for multi-key
operation: López-Alt et al. [7] introduce the notion of
on-the-fly multiparty computation, in which the cloud
can operate on data coming from a polynomial number
of N keys by using a fully homomorphic cryptosystem
denoted N -key FHE. This N -key FHE is capable of
operating on inputs encrypted under multiple, unrelated
keys, producing results which are decryptable only by

a joint interaction between all the involved clients. The
authors also prove that without such joint decryption
step it is impossible to obtain non-interactive multi-key
processing with only one server.

Under the model of private multi-client computing, we
can conceptually categorize all the three aforementioned ap-
proaches as proxy reencryption [8] alternatives, in which the
client delegates the reencryption to some trusted environment,
therefore avoiding client interaction in the processing step.
In the first approach, there is a full delegation (encryp-
tion/decryption/reencryption) to the trusted cloud. In the sec-
ond one, the delegation aims at the interactive non-colluding
combination between several individually non-trusted servers;
it must be noted though, that Peter et al. approach is also
effectively delegating decryption to server S, which is assumed
not to have access to the original input data. Finally, the
third approach allows for universal reencryption, but delegates
decryption only to the joint set of users whose keys are
involved in the reencryption step.

A. Our contribution

The main contribution of this work is the use of boot-
strapping as a proxy reencryption mechanism to seamlessly
cope with multi-key operations; we also design a protocol
to apply these mechanisms in private outsourced multi-client
computing, and implement and test a proof-of-concept version
of the devised scheme by using Gentry and Halevi [10]
cryptosystem as a basis. Gentry’s thesis [9] also presented
bootstrapping as a proxy one-way reencryption scheme, but
to the best of our knowledge, it has not been used with this
purpose in a practical scenario.

It must be noted that prior multi-key oriented works (includ-
ing López-Alt et al. [7]) use bootstrapping only as a means to
achieve a fully homomorphic cryptosystem from a somewhat
homomorphic one. To the best of our knowledge, the use of
bootstrapping as a proxy reencryption mechanism has not been
proposed so far. Furthermore, our proposal lies in-between
approaches 2) and 3) from the aforementioned categorization,
therefore substituting the need for a user collaborative joint
decryption in 3) by the use of a two-server based access
control, similarly to the way 2) does, but without the need
of inter-server collaboration during the reencryption steps.

III. CRYPTOGRAPHIC BOOTSTRAPPING

The cryptographic concept of bootstrapping was introduced
by Gentry in his seminal work [9]. Gentry’s bootstrapping
allows to construct a fully homomorphic encryption (FHE)
starting from a lattice-based somewhat homomorphic scheme
(SHE) that can evaluate a limited class of functions. In a SHE,
the set of executable functions is bounded due to the noise
growth after each performed operation. Ciphertexts are lattice
points to which some noise is added; performing operations
increases this noise, up to the possible occurrence of a decryp-
tion error when the noise gets out of the fundamental region
of the lattice. Informally, Gentry’s proposal to achieve FHE
states that whenever the cryptosystem can homomorphically

evaluate its own decryption circuit without decryption errors,
encryptions can be “boostrapped” to reduce their noise level.

More formally, a somewhat homomorphic public key cryp-
tosystem Σ of depth L is composed by four functions
KeyGenΣ, EncΣ, DecΣ and EvalΣ, where KeyGenΣ generates
a key pair (pk, sk), EncΣ takes as inputs the public key
pk and a plaintext m in order to output a ciphertext c, and
DecΣ takes a ciphertext and the secret key sk and returns
the decrypted message. The EvalΣ function takes as inputs
the public key and a function f to evaluate in the tuple of
ciphertexts (c1, . . . , cn) = (Jm1Kpk, . . . , JmnKpk), and outputs
a ciphertext c corresponding to the evaluation of f(c1, . . . , cn)

c = EvalΣ(pk, f, (c1, . . . , cn)) ≡ EncΣ(pk, f(m1, . . . ,mn)).

The output ciphertext has, in general, an increased noise, and
the equivalence is only true whenever the depth of the circuit
representing f is less than L.

For such a cryptosystem, whenever the decryption operation
can be expressed as a degree L − 1 circuit, it is possible to
homomorphically execute a decryption, taking as input the
encryption of sk, and producing a refreshed ciphertext, hence
defining the bootstrapping function as:

BstrΣ(pk, JmKpk) = EvalΣ(pk,DecΣ, JmKpk).

If the cryptosystem can execute at least one homomorphic
multiplication and a bootstrap, then it becomes fully homomor-
phic. It must be noted that the decryption function of a regular
SHE cannot normally fit as a degree-L circuit, and it must
be squashed by providing some public helper data about the
secret key. Therefore, the SHE with the squashed decryption
and the public helper data conforms the bootstrappable fully
homomorphic cryptosystem.

This is the intended application of bootstrapping, but this
primitive can be much more versatile if used as a generic
proxy reencryption. Gentry already proposed this use when
introducing the bootstrapping, but it has not been applied in
a practical scenario since then. In this work we propose a
bootstrap-based one-way reencryption that finds application in
privacy-preserving multi-key scenarios.

IV. PROPOSED SECURE SYSTEM

We first specify the scenario for which we propose a
bootstrap-based system for private multi-user computation (see
Figure 1). We envision the following parties and roles:
• Users: Each user Ci has a unique key pair, generated

by the Authoritative Party. Users outsource solely data
encrypted under their own keys to the Computing Server,
authorize determined collaborative processes when the
server asks, and receive the corresponding output data
encrypted under their own key.

• Authoritative Party (AP): This is a generic third party
in charge of key, certificate and helper data generation.
It can be actually implemented as a trusted third party
(certification authority) or as a secure (tamper-proof)
hardware module.

Fig. 1. Devised scenario for private multi-client outsourced processing.

• Computation Server (CS): This server represents the un-
trusted environment where the computation is outsourced.
In our scenario, it has no access to any secret key, and
all data that it receives or manipulates is encrypted. It
may only have access to public keys and helper data to
perform reencryption.

We assume that parties do not collude and the computation
server follows the protocol (it is honest but curious). This is a
commonly accepted assumption for multi-user environments,
as a malicious or colluding behavior by the computation server
will harm its business.

In this scenario, we will now detail the proposed bootstrap-
based reencryption primitive and the secure protocol for pri-
vate multi-client computing.

A. Bootstrapping for proxy reencryption

The original formulation of bootstrapping proposed by Gen-
try was initially intended to refresh an encryption to be reused
under the same encryption key (pk1, sk1). Nevertheless, as
Gentry points out, it is conceptually possible to extend that
concept and bootstrap the encryption under a different key
(pk2, sk2), therefore producing a refreshed cipher with low
noise norm and that reencrypts that ciphertext.

In the clear, this would involve two steps: a decryption with
the original key, and an additional encryption under the second
key. On the contrary, if we follow the same philosophy as
for the bootstrapping, in the encrypted domain it would be
possible to implement the decryption of the first key (pk1, sk1)
as a homomorphic operation under the second (pk2, sk2),
therefore joining both decryption and reencryption under one
sole homomorphic operation. More precisely, we apply a
bootstrapping for (pk2, sk2) with inputs pk2 and c = JmKpk1

,
for some plaintext m, i.e. the function

RecΣ(pk2, JmKpk1
) = EvalΣ(pk2,DecΣ(sk1), JmKpk1

). (1)

The output is a refreshed reencryption of the original plaintext
under the second key (pk2, sk2). This can be thought of as
a form of proxy reencryption in the traditional sense [8],

so we can easily confer proxy reencryption functionalities
to any bootstrappable cryptosystem. In case the decryption
function has to be squashed, Rec would need to be paired with
helper data {HDsk1→pk2} for the first secret key sk1 under
the second key (pk2, sk2). We will clarify this in a practical
example with Gentry-Halevi cryptosystem (cf. Section V).

B. Secure Protocol for Private Multi-user Computing

Thanks to the use of the Rec reencryption primitive, it
is possible to setup a secure protocol for computing with
data coming from several users encrypted with their own
keys, within the scenario depicted by Figure 1. Our proposed
protocol involves several phases, described in the following
paragraphs and graphically shown in Protocol 1.

a) Key Setup: The Authoritative Party AP issues the
keys for every user Ci in the system. During this phase, the
users may specify their access control preferences, setting
which classes of data can be shared for specific operations,
and which user groups may be involved in those operations or
receive the final results.

b) Data Upload: The user encrypts her data with her
own key pki before uploading them to the Computing Server.

c) Multi-User Computing: When the Computing Server
starts a computing process CPj involving a set of users
{Ci}inCPj and their respective inputs, and a set of users
who will receive the computation outputs {Ci}outCPj

, it
sends a request to the authoritative party including all the
information about involved parties and type of operation;
the AP checks the access control preferences and, if the
operation is granted, it generates a unique operation key pair
(CPpkj , CPskj), and delivers only the public key to the
CS. The AP must also generate the needed helper data for
reencryption from the involved user keys to the operation key
{HDski→CPpkj

}inCPj
, which are also sent to the CS. Finally,

the helper data for reencryption of the computation results
{HDCPskj→pki}outCPj can be generated and sent to the CS.

The Computing Server executes the reencryption to the
operation key on all the inputs using the corresponding helper
data, and operates on the homogenized data using the homo-
morphic properties of the cryptosystem, in order to obtain the
results encrypted under the operation key.

d) Distribution of Results: After a computation CPj ,
the CS can reencrypt the results from the operation key to
the authorized clients {Cj}outCPj

by using the helper data
provided by the AP , and send them to those clients, which
will be able to decrypt them with their own keys.

1) Security and malicious adversaries: We introduce the
Authoritative Party in our protocol as a helper server or trusted
environment that generates keys and enforces access control;
contrarily to prior approaches (Peter et al. [5]), in our protocol
this helper server never receives or processes any data from
clients (neither encrypted nor clear), and all data processing
is carried out at the Computing Server.

If the used cryptosystem is semantically secure, the con-
struction above is secure for the case of a semi-honest CS
that follows the protocol without colluding with any user. It

must be noted that the secret operation key is not given to the
CS: analogously to a regular proxy reencryption scheme, if
the CS had access to the operation secret key, it could decrypt
all the input data just by reencrypting it in the operation key.

Regarding the involved authentication and access control,
we assume that they are enforced, but we do not detail
the specific mechanisms, as they fall outside of the scope
of this work. For completeness, we can highlight that other
recent encryption-based access control systems for Cloud data
access [11] can be adapted to this case, whenever the access
control is either split between the two non-colluding servers
AP and CS, or enforced by AP as a trusted hardware
element/trusted third party.1

In case additional protection against a malicious computing
server has to be provided, then the protocol can be modified
in such a way that the AP does not release the output
reencryption helper data {HDCPskj→pki

}outCPj
to the CS,

and both servers participate in the output reencryption step.2

This modified scenario can be seen as virtually equivalent
to the one by Peter et al. [5], with the essential difference
of using a proxy reencryption scheme for preprocessing the
inputs instead of a double-trapdoor for delegating the decryp-
tion/reencryption to the helper server. Finally, this modification
is not enough to cope with a malicious CS, and it would also
require the use of zero-knowledge proofs (involving collision
resistant hash functions) of the performed operations, similarly
to the approach followed in [7].

V. EXAMPLE WITH GENTRY-HALEVI CRYPTOSYSTEM

This section presents a practical example of a bootstrap-
based reencryption, which we have described only concep-
tually so far. We will take as the base cryptosystem the
implementation by Gentry and Halevi [10], which belongs
to the family of GGH (Goldreich-Goldwasser-Halevi) lattice
cryptosystems. The somewhat homomorphic version of the
cryptosystem uses a principal-ideal lattice J generated by a
polynomial v(x) with t-bit signed random integer coefficients,
in the ring of polynomials modulo fn(x)

.
= xn + 1. The cryp-

tosystem is parameterized by a big number d (resultant of the
polynomials v(x) and fn(x)), and r (a root of fn(x) mod d),
that conform the public key (d, r). Additionally, the private key
is given by an odd coefficient w ∈ Zd of the scaled (modulo
fn(x))-inverse of v(x). For a binary plaintext b ∈ Z2, the
encryption and decryption functions are defined as

c =Enc((d, r), b) = [b+ 2

n−1∑
i=0

uir
i]d,

b̂ =Dec((d,w), c) = [c · w]d mod 2,

1Due to the impossibility of program obfuscation, cryptography alone can-
not provide the necessary access control for the private multi-user computing
scenario [2].

2For common multi-user operations, it is expected that the dimensionality
of the outputs be much lower than that of the input data, or the results
would reveal too much information about the individual inputs. Therefore,
the computation needed at the AP for the output reencryption should be
negligible compared to the computation performed at the CS.

Client Ci Authoritative Party Computing Server
Key Setup Generate user keys

(pki,ski)←−−−−−−−−−−−−−−−−−−−−−−−−−−
Data
Upload

Encrypt data
JxiKpki = EncΣ(pki, xi)

JxiKpki−−→

Computing
Process

Request operation key
Req||CPj ||{Cl}inCPj

||{Cl}outCPj←−−−−−−−−−−−−−−−−−−−−−−−−−−−
Check access, Generate op. key,

Generate helper data
(CPpkj , CPskj)||{HDskl→CPpkj

}inCPj
||

{HDCPskj→pkl
}outCPj−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Reencrypt input data
{JxlKpkCPj

= Rec(CPpkj , JxlK)}inCPj

Homomorphically operate on
homogenized data JyKCPpkj

=

Eval(CPpkj , {JxlKCPpkj
}inCPj

)

Distribution
of Results

Reencrypt output data
{JylKpkl

= Rec(pkl, JylKCPpkj
)}outCPj

Send output data to authorized
clients

JyiKpki←−−
Protocol 1: Proposed private multi-user computing protocol.

where u ∈ {−1, 0, 1}n is and a random salt vector with
independent coefficients chosen as 0 with probability q and
±1 with probability (1−q)/2 each (q is a security parameter).

As defined, this cryptosystem is somewhat homomorphic
under addition and multiplication, which are directly mapped
from the crypto-text ring (errors with respect to lattice points)
to the clear-text ring. This homomorphism is limited, as
both operations are only correctly mapped when the error
lies within the same fundamental region of the lattice after
performing each operation. Furthermore, the decryption circuit
cannot be directly translated into a low-degree circuit that
can be homomorphically executed under encryption, so, for
reaching a full homomorphism, Gentry proposes to squash the
decryption circuit so that it can be homomorphically executed
and enable bootstrapping.

We briefly describe the original squashing and bootstrapping
procedure in [10]: the secret key integer w is substituted by
an instance of the Sparse Subset-Sum-Problem (SSSP) with
parameters s and S, s� S. A matrix X of integers modulo d
and dimensions s×S is generated such that the sum modulo d
of one and only one element of each row ofX yields the secret
key w. Then, the new secret key is taken as a binary matrix
{σk,i}k,i, for k = 1, . . . , s, i = 1, . . . , S, whose rows σk,
contain exactly one non-zero element at (a random) position
ik. The matrix {σk,i}k,i is the characteristic matrix of X ,
with only one non-zero element per row, such that the sum of
the element-wise product between the two matrices gives as
a result

[∑s
k=1

∑S
i=1 xk,iσk,i

]
d

= w. With these additional

variables, the squashed decryption of a ciphertext c can be
reduced to [10]:

Dc,d(σ1, . . . ,σs) = (2)[[⌈
s∑

k=1

(
S∑

i=1

σk,izk,i

)⌋]
2

+

s∑
k=1

(
S∑

i=1

σk,i [yk,i]2

)]
2

,

where yk,i = [c · xk,i]d, and zk,i is the approximation to
p = dlog2(s+ 1)e fractional bits of yk,i. This function is now
a low degree polynomial in the elements of σ that can be ho-
momorphically executed, so the helper data for bootstrapping
is built as HDBstr(w,r) = (X, {Jσk,iK(d,r)}k,i).3

In order to produce a reencryption function from a key
(d1, w1, r1) encrypting a ciphertext c = JbK(d1,r1) to a different
key (d2, w2, r2), we can follow a similar procedure and repre-
sent the decryption function for the first secret key (d1, w1) as
a circuit realizable with encryptions under the second public
key (d2, r2). Then, we have to generate an s×S random matrix
X(1,2) with coefficients in Zd2

and a characteristic binary vec-
tor {σ(1,2)

k,i }k,i such that
[∑s

k=1

∑S
i=1 x

(1,2)
k,i σ

(1,2)
k,i

]
d2

= w1.
Then, the characteristic vector coefficients must be encrypted
with (d2, r2) and, analogously to (2), we get the bootstrap-
based reencryption function:

3Gentry and Halevi propose several mechanisms for reducing the size of
the helper data; we refer the reader to [10] for further details.

TABLE I
EVALUATION FIGURES FOR THE BOOTSTRAP-BASED REENCRYPTION

Lattice size 512 2048 8192
Size of d [kB] 23.9 95.8 384.3
S 512 512 547
R 251 251 2204

Helper data size [MB] 8.28 33.2 137.3
Max helper data size [MB] 175.6 703.2 3012.4
Average execution time [s] 0.4 1.6 9.3

Rec(c = JbK(d1,r1), d1, d2, Jσ
(1,2)
1 K(d2,r2), . . . , Jσ(1,2)

s K(d2,r2)) =[⌈ s∑
k=1

(
S∑

i=1

Jσ(1,2)
k,i K(d2,r2)zk,i

)⌋]
d2

(3)

+

s∑
k=1

(
S∑

i=1

Jσ(1,2)
k,i K](d2,r2) [yk,i]2

)]
d2

,

where yk,i =
[
c · x(1,2)

k,i

]
d2

, and zk,i is the approximation

to p = dlog2(s + 1)e fractional bits of yk,i. This function
produces now a refreshed encryption of b under (d2, r2),
therefore achieving at the same time reencryption and re-
freshing of the cipher. The associated helper data would be
HD(d1,w1)→(d2,r2) =

(
X(1,2), {Jσ(1,2)

k,i K(d2,r2)}k,i
)

.

A. Performance evaluation

We have implemented the example proposed bootstrap-
based reencryption mechanism in C++ using NTL 6.1.0
(www.shoup.net/ntl/) and GMP 6.0.0 (gmplib.org) in order to
test its execution efficiency and the size of the helper data.
All experiments were performed on an Intel Core i5 4670
computer with 20 GB of RAM running Linux. The results are
shown in Table I for several values of the lattice size, s = 15
and the default security parameters recommended in [10]. We
have applied the size reduction techniques in [10] consisting in
choosing the elements of the matrix X as a multiplicative se-
ries with a factor R (a power of 2), and coding the elements of
σ as a quadratic function, therefore reducing the storage needs
for X and σ, and efficiently generating the whole matrices
when needed. Table I shows both the full size of the helper data
(“Max helper data size”) and the reduced size (“Helper data
size”). With parameters n = 2048, S = 512, R = 251 (short
term security), it takes around 1.5 seconds to perform one
reencryption (Eq. (3)) for one ciphertext. Therefore, compared
to state-of-the art GGH-based cryptosystems, this primitive is
useful as an offline procedure for reencrypting the input data
to the server’s common operation key, and reencrypting the
output data to the receiver user key for the presented private
multi-user computing protocol.

VI. CONCLUSIONS AND FUTURE WORK

This work leverages Gentry’s bootstrapping operation as a
proxy reencryption mechanism for private multi-key environ-
ments. We have provided an example implementation of this

primitive for the Gentry-Halevi cryptosystem, and presented
the execution times and helper data sizes for several lattice
dimensions, showing that it can be a useful primitive for proxy
reencryption in current GGH-based fully homomorphic cryp-
tosystems. It must be noted that this primitive is not restricted
to the GGH family, but it is also conceptually applicable to
other lattice-based cryptosystems built upon Learning With
Errors (LWE) and related problems. In fact, as hinted by
Gentry, by applying the same philosophy the bootstrapping can
be generalized also to refreshing a cipher between different
cryptosystems or different plaintext sizes with the adequate
choice of parameters.

Additionally, we have also devised a secure protocol for the
scenario of private multi-user computing with semi-honest non
colluding adversaries, employing the bootstrap-based proxy
reencryption primitive. This protocol could be generalized to
the malicious party scenario by applying a similar approach
as López-Alt et al. [7], using zero-knowledge proofs and
collision-resistant hash functions.

ACKNOWLEDMENTS
This work was partially funded by the Spanish Government and the

ERDF under project TACTICA, by the Spanish Government under project
COMPASS (TEC2013-47020-C2-1-R), and by the Galician Regional Gov-
ernment and the ERDF under projects “Consolidation of Research Units”
(GRC2013/009), REdTEIC (R2014/037) and AtlantTIC.

REFERENCES

[1] J. R. Troncoso-Pastoriza and F. Pérez-González, “Secure signal process-
ing in the cloud: enabling technologies for privacy-preserving multime-
dia cloud processing,” IEEE Signal Processing Magazine, vol. 30, no. 2,
pp. 29–41, March 2013.

[2] M. van Dijk and A. Juels, “On the impossibility of cryptography alone
for privacy-preserving cloud computing,” in USENIX Workshop on Hot
Topics in Security, HotSec’10, Washington DC, USA, aug 2010.

[3] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey,
“Recent advances in homomorphic encryption: A possible future for
signal processing in the encrypted domain,” IEEE Signal Processing
Magazine, vol. 30, no. 2, pp. 108–117, March 2013.

[4] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and T. Schneider, “Twin
Clouds: Secure Cloud Computing with Low Latency,” in Communica-
tions and Multimedia Security, ser. LNCS, B. De Decker, J. Lapon,
V. Naessens, and A. Uhl, Eds. Springer, 2011, vol. 7025, pp. 32–44.

[5] A. Peter, E. Tews, and S. Katzenbeisser, “Efficiently Outsourcing Mul-
tiparty Computation Under Multiple Keys,” IEEE Trans. on Information
Forensics and Security, vol. 8, no. 12, pp. 2046–2058, Dec 2013.

[6] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its
applications,” in Advances in Cryptology - ASIACRYPT 2003, ser. LNCS,
C.-S. Laih, Ed. Springer Berlin Heidelberg, 2003, vol. 2894, pp. 37–54.

[7] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly Multiparty
Computation on the Cloud via Multikey Fully Homomorphic Encryp-
tion,” in Proceedings of the Forty-fourth Annual ACM Symposium on
Theory of Computing, ser. STOC ’12. ACM, 2012, pp. 1219–1234.

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved Proxy Re-
encryption Schemes with Applications to Secure Distributed Storage,”
ACM Trans. on Inform. and System Security, vol. 9, no. 1, pp. 1–30,
Feb. 2006.

[9] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

[10] C. Gentry and S. Halevi, “Implementing Gentry’s Fully-Homomorphic
Encryption Scheme,” in EUROCRYPT, ser. LNCS, vol. 6632. Springer,
2011, pp. 129–148.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
G. Pelosi, and P. Samarati, “Encryption-Based Policy Enforcement for
Cloud Storage,” in IEEE 30th International Conference on Distributed
Computing Systems Workshops (ICDCSW), June 2010, pp. 42–51.

