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ABSTRACT

Detection of unknown signals with constant modulus
(CM) using multiple antennas in additive white Gaussian
noise of unknown variance is considered. The channels from
the source to each antenna are assumed frequency-flat and
unknown. This problem is of interest for spectrum sensing in
cognitive radio systems in which primary signals are known
to have the CM property. Examples include analog frequency
modulated signals such as those transmitted by wireless mi-
crophones in the TV bands and Gaussian Minimum Shift
Keying modulated signals as in the GSM cellular standard.
The proposed detector, derived from a Generalized Likeli-
hood Ratio (GLR) approach, exploits both the CM property
and the spatial independence of noise, outperforming the
GLR test for Gaussian signals as shown by simulation.

Index Terms— Cognitive radio, spectrum sensing, detec-
tion, constant modulus.

1. INTRODUCTION

Nowadays, the shortage of spectrum resources conflicts with
the widespread presence of wireless communication services.
However, the fact that significant parts of the licensed spec-
trum remain unused for long periods of time is motivating
the concept of opportunistic (unlicensed) spectrum access,
which is an important ingredient of the Cognitive Radio
paradigm [1]. Its implementation calls for powerful spec-
trum sensing algorithms in order to detect transmissions from
primary (licensed) users and avoid interference. The design
of these schemes is challenged by the fact that, in order to
overcome the hidden node problem, primary signals have
to be detected at low Signal-to-Noise Ratios (SNR) that do
not allow their decodability. Thus, primary signal features
requiring time or frequency synchronization in order to be
revealed (pilot symbols, spreading sequences, etc.) are dif-
ficult to exploit, and detection schemes able to work with
asynchronously sampled waveforms are clearly desirable.
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In some cases of practical interest, primary transmissions
take place by means of constant magnitude (CM) wave-
forms. For instance, wireless microphones operating in the
TV bands, which must be protected under the rules set forth
by the Federal Communications Commission (FCC) [3],
typically employ analog Frequency Modulation (FM). In ad-
dition, CM waveforms are desirable for portable digital radios
due to the reduced power amplifier backoff needed and con-
sequent increase in power efficiency and decrease in handset
dc power requirements and physical size; the Gaussian Min-
imum Shift Keying (GMSK) modulation employed by the
GSM cellular system is an important example. Other CM
modulation schemes include Frequency Shift Keying (FSK)
and Continuous Phase Modulation (CPM).

The CM property is a strong waveform feature that has
long been exploited in equalization [4] and array process-
ing [5]. More recently, it has been considered in [6] in a sig-
nal detection context, where a detector was developed for un-
known CM signals immersed in Gaussian noise of unknown
variance. This is relevant since many popular spectrum sens-
ing methods, such as the Energy Detector [7], are quite sensi-
tive to uncertainties about the background noise level [8]. In
addition, the CM property of a waveform is invariant to car-
rier offsets and sampling jitter, clearly an appealing feature.

Another means to combat noise uncertainty is to exploit
the spatial independence of the noise when multiple anten-
nas are available. Most multiantenna detectors in the litera-
ture adopt a Gaussian model for the signal of interest [10, 11].
Therefore, it is reasonable to ask whether the performance of
these multiantenna schemes can be improved by taking the
CM property of the signal into account. Our goal is to extend
the Generalized Likelihood Ratio (GLR) detector from [6] to
multiple antenna sensors, so that the CM signal property and
the spatial independence of the noise can be jointly exploited.

In Sec. 2 the system model is presented; the GLR detector
is derived in Secs. 3 and 4. Simulations are provided in Sec. 5,
and conclusions are drawn in Sec. 6.

2. SYSTEM MODEL

Consider a cognitive node with M antennas, in which the re-
ceived signals are downconverted to baseband and sampled.



In this way, K complex-valued samples from each antenna
are gathered in the rows of the K x M matrix Y. Assume
that the bandwidth of the signal is smaller than the coher-
ence bandwidth of the channel so that the latter can be as-
sumed frequency flat. In the presence of a constant-envelope
primary transmission, the matrix of observations is given by
Y = z(¢)h" + oW, where W is a K x M matrix of noise
samples, assumed zero-mean circular Gaussian, spatially and
temporally white with unit variance, so that E{W},, W} =
011045. The (unknown) noise variance at each antenna is o2,
The vector of channel gains is denoted by h*, and x(¢) =
[ el?1 el92 e79x )T is the CM signal vector. Simi-
larly to [6], the phases ¢y, € [0, 27) are assumed deterministic
and constitute additional unknown nuisance parameters.
Therefore, the hypothesis testing problem is stated as

Ho @ Y =0W,

Hi ¢ Y = a(¢p)hH + oW, M

with h, ¢, o2 unknown.

The observations are conditionally Gaussian under both
hypotheses. Under H,, the pdf of Y is given by
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where RO = %YH Y . On the other hand, under H, the pdf
is
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where now R, = LY — z(¢)h )Y — z(¢p)h™].

3. DERIVATION OF THE GLR TEST

The GLR test [7] can be summarized as

maxy2,nP(Y30% ¢ h|Hi) *

La(Y) =
a(Y) max,2 p(Y; 02 | Ho) o
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where ~y is a threshold whose value is usually set in order to
satisfy some false alarm rate requirement. Thus, the Maxi-
mum Likelihood (ML) estimates of the nuisance parameters
under each hypothesis must be obtained.

3.1. ML estimates under
The ML estimate of o2 under H, is given by
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and therefore,
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3.2. ML estimates under #;
Similarly to (5), the ML estimate of o2 under H, is
1 .
6% = 7 tr{R;} (7
which yields
)

Now the ML estimate of ¢ under #; is that minimizing
tr{R;}, or, equivalently,

) re . 1-MK
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¢ = arg max Re{z" (¢)Yh}. )
Partitioning Y row-wise as
yi'
ys'
Y=| . [, (10)
i

it is clear that (9) becomes

K
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so that

or =2 (yi'h). (12)
With this, one has
Re {2 (§)Yh} = [V hl|, (13)
where ||-||; denotes the £*-norm. Substituting (13) back in (8)
gives
p(Y:61.9.h|H)
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Maximizing (14) w.r.t. h returns the ML estimate h. To do
so, let us write h = « - g, where a > 0 and ||g||2 = 1. The
value of o maximizing (14) is readily found to be

1
v = —||Ygl|1. 15
6= =IIYgl (s)

After substitution of & in (14), the ML estimate of the spher-
ical component g is seen to be

g= argmjx||Yg||1 s.t. |lg|l2 = 1. (16)
Although this problem cannot be solved in closed form, in
Sec. 4 we present a computationally efficient iterative method

that generally obtains reasonably good solutions.
Finally, the likelihood function becomes:
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3.3. GLR test
Combining (6) and (17) with (4), the GLR test is obtained:
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Note that the bracketed term is an increasing function of
1Y g|2/tr{Y Y} and that tr{Y?Y} = ||Y||%, where
|| - || denotes the Frobenius norm. This allows us to rewrite
the test more compactly as

Yol %,
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where 7/ = /1 —y~ME/2_ Note that for a single antenna
(M = 1), this GLR test reduces to the one in [6].

4. ML ESTIMATION OF THE CHANNEL VECTOR

In this section we analyze in detail the constrained maximiza-
tion problem (16). The analysis will lead to an efficient iter-
ative algorithm to search for a maximum of the cost, which
can be written explicitly as

ly gl

Valuryllg. (20)

Thus we must maximize (20) subject to g/ g = 1. The corre-
sponding Lagrangian for this problem is
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Note that the gradient of the constraint is 2g, which does not
vanish on the unit sphere ||g||2 = 1. Hence all feasible points
are regular, and any local extremum of the constrained prob-
lem must satisfy the first-order necessary conditions

vgﬁ(ga A) = Oa V)\L(g, >‘) = 07 (22)
which are readily seen to yield
Vol(g)=Xg, g"g=1. (23)

The gradient of J is given by

V,J(9) ey
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where we have introduced the M x M matrix
K H
Alg) =S Yk _yHp-1g)y, 25)
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Note that A(g) is positive (semi)definite, and that the cost (20)
can be written as

J(g) =g" A(g)g. 27)
Substituting (24) into (23) yields
A(g)g=Xg, glg=1 (28)

Thus we see that at any extremum of the constrained prob-
lem, g must be a unit-norm eigenvector of A(g). The cor-
responding eigenvalue is the value of the attained cost, i.e.
J(g) = g A(g)g = M. Note that these conditions do not
reveal whether A corresponds to the largest, smallest, or an
intermediate eigenvalue of A(g). However, by examining the
high SNR case, for which Y ~ xh™ | one sees that

A(g) YD '(g)Y

~ [z D7 '(g)x]hh", (29)

i.e. a rank-1 matrix, whose eigenvector associated to the
largest eigenvalue is the true channel vector h (independently
of g). Therefore, it makes sense to consider numerical meth-
ods for the computation of the principal eigenvector of a
matrix, and then update the matrix at each iteration by using
the eigenvector estimate from the previous step. For example,
the standard power method [9] can be suitably modified in
this manner, yielding Algorithm 1.

A reasonable initializer for any numerical method of this
kind is the eigenvector associated to the largest eigenvalue
of YHY, since this is the solution to (16) if we relax the ¢*-
norm to the £2-norm in the cost function. In addition, since all
elements of x have unit magnitude, in the high SNR regime
one has D(g) ~ |h* g|I, so that

1
Alg) = Y Ty, (30)

and thus the eigenvectors of A(g) and Y*Y should lie close
to each other.

Algorithm 1 Modified Power Method
Set gy = principal eigenvector of Y 1Y’
for k = 0 to n_iter — 1 do
Vi1 = A(gr)gr
Vi+1
[Vk41l2

gk+1 =

end for
Set g = Gn_iter
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Fig. 1. ROC curves of the CM and mean/max detectors with
a constant-envelope signal for different array sizes.

5. SIMULATION RESULTS

We illustrate the performance of the proposed GLR detector
by means of Monte Carlo simulation in independent Rayleigh
fading channels. The number of iterations in Algorithm Iwas
set to 30, a value that ensured convergence in all cases tested.
In fact, no performance degradation was perceived even with
much fewer iterations. This is indicative that the proposed
initialization works quite well in practice.

The proposed detector is compared with the GLR detector
for Gaussian signals, which was derived in [10]:

M 7-L>O ~" (31)

A1 (Ro) H<1 7

where A1 (P) denotes the largest eigenvalue of P. We will

refer to (31) as the "mean/max detector”, and to the proposed
GLR test as "CM detector".

The Receiver Operating Characteristic (ROC) curves for
the two detectors are shown in Fig. 1, for different number
of antennas.The phases ¢y in the signal vector x(¢) were
independently drawn from a uniform distribution in [0, 27).
Note that the mean/max detector requires M > 1, whereas
the CM detector can be used with a single antenna. Neverthe-
less, the performance improvement obtained when additional
antennas are available is clear. The CM detector consistently
outperforms the mean/max test, although this advantage be-
comes smaller as the number of antennas is increased. This
indicates that the CM property becomes less useful for de-
tection purposes once a large number of spatial degrees of
freedom is available. This behavior can be also seen in Fig. 2,
which shows the probability of detection for both schemes as
a function of the SNR.

We also tested the performance of these detectors with
a GMSK signal generated according to the GSM cellular
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Fig. 2. Probability of detection for a fixed probability of false
alarm vs SNR for different antenna array sizes.

standard, downconverted to baseband and I/Q sampled at 2
Msamples/s. Fig. 3 shows the power spectral density (psd)
and samples in the I/Q plane of the test signal. Although
GMSK is a constant-envelope modulation, it is clear from
Fig. 3 that the CM property holds only approximately in
practice. This is due to nonlinearities introduced by the
downconversion analog stage. Despite of this effect, it is seen
in Fig. 4 that the single-antenna CM detector can still be used,
and the two-antenna version still outperforms the mean/max
scheme with this GMSK signal. Although not shown for clar-
ity, these ROC curves are almost identical to those obtained
with a synthetic, true CM signal.

For comparison, Fig. 4 also shows the ROC curves of both
detectors for a white Gaussian signal for M/ = 2 antennas.
With this signal, the CM detector can only exploit the spatial
independence of noise, and is beaten at this by the mean/max
scheme. Also note that the performance of the mean/max de-
tector is almost identical for both types of signals.

6. CONCLUSION

The GLR test for multiantenna detection of Constant Modulus
signals in white Gaussian noise of unknown variance has been
derived. The test compares favorably with the GLR detector
for Gaussian signals, which does not take into account the CM
property. Although we have focused on exploiting this CM
property together with the spatial independence of the noise,
in practice there might be more information available to the
spectrum sensor about the primary signal. For example, in the
case of the GMSK signal its psd is known (up to a scaling). As
a topic for future research, this knowledge should be exploited
in order to improve detection power.
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Fig. 4. ROC curves of the CM and mean/max detectors with
a GMSK signal and a white complex Gaussian signal.
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