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ABSTRACT

In this work Weber’s law is followed for designing a perceptually-
shaped side-informed data hiding scheme. The resulting method is
a generalized version of a logarithmic quantization algorithm pre-
viously proposed by the authors. Closed formulas for analyzing the
embedding power and decoding error probability of this new method
are provided, and experimental results showing its good behavior
against severe attacks are reported.

Index Terms— Data hiding, Logarithmic watermarking, Per-
ceptually shaped watermarks, Weber’s law

1. INTRODUCTION

Although a lot of attention has been typically paid to the perfor-
mance of data hiding methods in terms of capacity, probability of de-
coding error, probability of detection, robustness, detectability (from
a steganographic point of view), and more recently to their security,
it is clear that the perceptual impact of the watermark embedding
has been usually undervalued. In this work we will exploit one of
the most extensively used criteria when dealing with perceptual con-
siderations, the so-calledWeber’s law. This law establishes that the
modification a signal must undergo in order to produce the smallest
noticeable difference is proportional to the magnitude of the signal
itself. It has been used for characterizing the perceptual distortion
over different kinds of contents (e.g. audio, image); depending on
the nature of the content, several peculiarities should be taken into
account when considering Weber’s law (e.g., if it is applied in the
time or spatial domain, or in a particular frequency domain). Al-
though the Human Visual System is well-known to present other
characteristics (e.g., contrast sensitivity and masking), in this work
we have preferred to focus on Weber’s law for the sake of simplicity.

Weber’s law is usually explicitly or implicitly taken into account
in the data hiding literature for justifying the perceptual advantage of
Multiplicative Spread-Spectrum (Mult-SS) in comparison with Ad-
ditive Spread-Spectrum (for example, see [1]). Nevertheless, these
methods are currently recognized to be outperformed (at least when
additive attacks are considered) by the methods following the side-
informed data hiding paradigm (e.g., [2]). Therefore, one may won-
der if the perceptual advantages of the multiplicative data hiding
schemes could be also exploited by side-informed techniques. In this
work Weber’s law is followed for designing such an algorithm, ob-
taining a generalized version of the logarithmic embedding scheme
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originally proposed in [3]; furthermore, additional degrees of free-
dom with respect to that work are sought in the current paper, allow-
ing to modify the quantization regions used both at the embedder
and the decoder sides. This is not just a formal addendum, but in
fact it allows to encompass several meaningful design alternatives to
the logarithmic Dither Modulation (DM) in a unified framework.

2. METHOD DESCRIPTION

2.1. Notation and Framework

We will denote scalar random variables with capital letters (e.g.X)
and their outcomes with lowercase letters (e.g.x). The same nota-
tion criterion applies to random vectors and their outcomes, denoted
in this case by bold letters (e.g.X, x). Theith component of a vec-
tor X is denoted asXi. In this way, the data hiding problem can
be summarized as follows: the embedder wants to transmit a sym-
bol b, which we assume to be binary (b ∈ {0, 1}), to the decoder
by adding the watermarkw to the original host vectorx, both of
them of lengthL. Merely for analytical purposes, we will model
these signals as realizations of random vectorsW, andX, respec-
tively, being their components i.i.d.. LetQ∆(·) be the base uniform
scalar quantizer, with quantization step∆, andD denote the dither-
ing vector,D ∼ U [−∆/2,∆/2]L. The power of the original host
signal will be denoted byσ2

X , E{X2
i }, whereas that of the wa-

termark byσ2
W , E{W 2

i }, being valid in both cases for anyi, as
the components of the considered vectors are i.i.d.. The resulting
watermarked signal can be written asy = x + w. On the other
hand, the decoder receives the signalz = y + n, wheren is a noise
vector (which can be seen as realization of the random i.i.d. vector
N, with σ2

N , E{N2
i }), and estimates the embedded symbol with

a suitable decoding function. In order to compare the power of the
host signal and the watermark, we use the Document to Watermark
Ratio (DWR), defined as DWR= σ2

X/σ2
W .

2.2. Required properties of the proposed methods

We will first focus on the characteristics that make Mult-SS a good
perceptually-shaped method, and then on those that provide side-
informed schemes with their high capacity. This will allow us
to compile the properties that a perceptual side-informed scheme
should verify, and use them to derive the structure of our scheme.

Concerning Mult-SS, the ratio between the watermark signal
and the host is given bywi

xi
= (−1)biηsi, wheres is the so-called

spreading sequence, an i.i.d. random vector independent ofx andn,
andη controls the watermark strength. This ratio is independent of
the value of the host signal; indeed, the watermark can be seen to be
bounded by|wi| ≤ η|xi| · |si|. It is worth noting the relationship
between this ratio and Weber’s law.



On the other hand, our study of side-informed data hiding meth-
ods based on quantization will focus on binary Dither Modulation
(DM) [2] using uniform scalar quantizers,1 where the embedding
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We will denote byU0
i the codebook used in theith dimension for

embedding the bitbi = 0, i.e. U0
i , {k∆+ di, ∀k ∈ Z}, defined

as the set of the codewordsuk,0
i , k∆+ di, wherek ∈ Z. One can

similarly defineU1
i as the set of codewordsuk,1

i , k∆ + ∆
2
+ di,

wherek ∈ Z. If the hidden bit isbi, thenyi ∈ Ubi
i . It is easy

to see thatWi can only take values in(−∆/2,∆/2], so the DM
watermark will not verify the perceptually shaped host-proportional
characteristic of the Mult-SS watermark.

Therefore, in order to simultaneously accomplish the advantages
of Mult-SS and DM, our proposed scheme will be required to verify:

• η1xi < wi ≤ η2xi, with η1 < 0 andη2 > 0.

• The embedding is based on quantizing the host signal accord-
ing to quantization intervals that depend on the hidden bit.

• The centroids density is required to be minimum.

• The total codebook, i.e.Ui = U0
i

⋃U1
i , can be completely

determined by knowing any of its codewords (even not know-
ing the symbol that codeword is related to), withU0

i 6= U1
i .

The first requirement is a generalization of the constraint of pro-
portionality to the host amplitude used by Mult-SS, where the neg-
ative and positive bounds of the distortion introduced by the water-
mark are not required to be the same, enabling the description of
different embedding strategies (some of them already proposed in
the literature). Concerning the third and fourth conditions, they are
motivated by robustness rules of thumb. A lower centroids density
will provide better performance in presence of noise, as it will be (in
general) more difficult to confuse the used centroid. On the other
hand, the symmetry of the total codebook ensured by the fourth re-
quirement is intuitively desirable in order to provide good distance
properties between centroids of the two considered codebooks.

2.3. Derivation of the proposed methods

For the sake of simplicity in the subsequent derivation we will fo-
cus on the case wherexi > 0. This requirement will be dropped
later for a more general result. Taking into account the first and
third conditions introduced above, it is straightforward to see that the
thresholdxthr,k

i between thekth and(k + 1)th quantization inter-
vals will verify uk,bi

i − xthr,k
i = η1x

thr,k
i , anduk+1,bi

i − xthr,k
i =

η2x
thr,k
i , so two consecutive centroids of the used quantizer will

follow
u
k+1,bi
i

u
k,bi
i

= 1+η2
1+η1

, γ, yielding 1 ≤ 1 + η2 ≤ γ and

1 ≥ 1 + η1 ≥ 1
γ

. Therefore, for an arbitrary host valuexi, and em-

bedded bitbi, one can find an integerk such thatxi ∈ [uk,bi
i /(1 +

η2), u
k,bi
i /(1 + η1)), or equivalentlyγk ≤ xi(1+η2)

u
0,bi
i

< γk+1. Con-

sequently,k can be obtained ask =

⌊

log
(

xi/u
0,bi
i

)

log γ
+ log(1+η2)

log γ

⌋

,

1The presented results can be generalized to scenarios wheremultidimen-
sional quantizers, multisymbol (instead of binary) hidden message alphabets,
and distortion-compensation are used.
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Fig. 1. Encoder block diagram of Generalized Logarithmic DM.

where we have used the natural (and no other base) logarithm with-
out loss of generality.2

Finally, it is clear thatU0
i = {u0,0

i γk1} andU1
i = {u0,1

i γk2},

where bothk1 andk2 can take any integer value. Definingν ,
u
0,1
i

u
0,0
i

,

the last set can be written asU1
i = {νu0,0

i γk2 , k2 ∈ Z}. As U0
i 6=

U1
i , it is straightforward to see thatν 6= γk, for any integerk. Since

from the fourth requirement, one must be able to derive the total
codebook from just an arbitrary codeword, without knowing the bit
it is related to,ν should verify: a) for anyuk,0

i , νuk,0
i ∈ U1

i , b) for
anyuk,1

i , νuk,1
i ∈ U0

i , yielding thatν = γ1/2.
Therefore, we conclude that any embedding technique simulta-

neously verifying those four properties will be described by

log(|yi|) = Q∆

(

log(|xi|)−
bi∆

2
− di + c− ∆

2

)

+
bi∆

2
+ di, (2)

andyi = sign(xi) ·elog(|yi|), where∆ = log γ, di = log(u0,0
i ), and

c = log(1 + η2). Note thatdi is nothing but the dither determining
the shift of the considered codebooks, andc establishes the quanti-
zation region boundaries related to the centroidk∆ + bi∆/2 + di,
where, due to the previously introduced bounds onη2, 0 ≤ c ≤ ∆.
Additionally, the described embedding scheme is valid regardless of
the sign ofxi. An illustrative block-diagram of the embedder for
the proposed method, and its relation withclassicalDM is shown
in Fig. 1. Due to the presence of the boundary shifting valuec, the
resulting algorithm will be namedGeneralized Logarithmic DM.

Now, one just needs to set the values ofη1 andη2, i.e. the lower
and upper boundaries, respectively, of the quantization region corre-
sponding to a given centroid. Several cases can be considered:

• η1 = −η2 ⇒ η2 = γ−1
γ+1

: the quantization interval boundary
is located at the middle of the corresponding centroids. This
particular case is related to Mult-SS, due to the symmetry of
the allowed distortion with respect toxi, so we will refer to it
asMultiplicative DM.

• 1 + η1 = 1
1+η2

⇒ η2 =
√
γ − 1: the centroid is located

at the geometric mean value of the quantization interval, or
from a dual point of view, the two thresholds of the quantiza-
tion region corresponding to a given centroid are at the same
distance (in a logarithmic domain) from that centroid. There-
fore, we will refer to this method asLogarithmic DM.

• η2 = −γη1 ⇒ η2 = γ−1
2

: the centroid is located at the arith-
metic mean value of the quantization interval, or from a dual
point of view, the two thresholds of the quantization region
corresponding to a given centroid are at the same distance (in
the original domain) to that centroid.

Nevertheless, wheneverγ → 1, i.e. in the low-distortion regime,
calculating the Taylor’s series aroundγ = 1 for the previous ex-
pressions ofη2, one can see that in all cases the result is given by

2Throughout the remainder of the paper we will assume that natural loga-
rithms are used. The choice of other logarithm bases simply leads to a factor
multiplying all the involved signals.
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Fig. 2. Detail of the location of the centroids (◦) in the natural do-
main whenγ = 2, b = 0 andd = 0. The quantization region
boundaries obtained usingη1 = −η2 are represented by red lines,
those corresponding to1 + η1 = 1

1+η2
by green lines, and those to

η2 = −γη1, by blue ones.

γ−1
2

+ O([γ − 1]2), asymptotically converging all of them to the
same method. In any case, the differences in the chosen centroid
due to the use of any of those methods can be considered as being
produced by the use of a shifted version of the same quantization
regions in (2), or equivalently, by the multiplication of the original
host signal by aec−∆/2 factor. Fig. 2 illustrates the different cases.

Concerning decoding, a similar rule to that in (2) could be de-
fined for determining the received bit (as it is typically done when
using DM) just by replacingzi anddi in (1) by log(|zi|) anddi−c′,
respectively, where0 ≤ c′ ≤ ∆/2. Be aware that the choice of
the strategy determiningc at the embedder could be different of that
used for choosingc′ at the decoder; for instance, in [4], the authors
implicitly use the second strategy proposed in the current paper for
embedding, but the first one (i.e., minimum distance) for decoding.

3. PERFORMANCE ANALYSIS

3.1. Power Analysis

Given that the components of the involved vectors are i.i.d., the em-
bedding power is given by

1

∆

∫ ∆/2

−∆/2

(

∞
∑

m=−∞

∫ em∆+∆+τ−c

em∆+τ−c

(|x| − em∆+τ )2f|X|(|x|)dx
)

dτ.

Following an analysis similar to that in [3], it can be shown that if
the host signal follows a zero-mean Gaussian distribution, thenσ2

W

is proportional toσ2
X . On the other hand, for the case of arbitrary

host signal distribution and∆ << 1,

σ2
W ≈ σ2

X
1

3∆

[

c3 + (∆− c)3
]

, (3)

being a symmetric function ofc around∆/2, with a global minimum
at c = ∆/2, i.e. when Logarithmic DM is used. On the other hand,
in the∆ << 1 scenario the maximum embedding power will be
achieved whenc = 0 andc = ∆/2.

Concerning the case∆ >> 1, it can be shown thatσ2
W ≈

σ2
Xe2c

2∆
; this result can be interpreted as an increase in the embedding

power produced by the increase in theeffectivehost power when a
largerc is used. Specifically, from (2),xi can be seen to be mul-
tiplied by ec−∆/2; therefore, larger values ofc will inflate the host
in the quantization stage. Although the∆ >> 1 case is a some-
what non-realistic scenario, it is also analyzed here as it provides
valuable information about the trend ofσ2

W when it deviates from
the∆ << 1 approximation. Fig. 3 shows the accurateness of the
proposed approximations for different values ofc.

3.2. Probability of decoding error

It is straightforward to show that the probability of decoding er-
ror when the minimum distance decoder is used is given byPe =
Pr
{
∣

∣mod
(

log(|Zi|)−Di + c′ − ∆
4
,∆
)
∣

∣ ≥ ∆/4
}

, where we have
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Fig. 3. Comparison of the empirical DWR (solid lines) and its theo-
retical approximations (dashed lines for the∆ << 1 approximation
and dashdot lines for the∆ >> 1 one) as a function of∆ for sev-
eral values ofc. The theoretical values for∆ << 1 corresponding
to c = 0.1∆ andc = 0.9∆ on the one hand, andc = 0.3∆ and
c = 0.7∆ on the other hand, are overlapped.
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Fig. 4. Empirical (symbols) and theoretical (lines) decoding error
probabilities as a function of∆. σX = 100 andσN = 1. Concern-
ing c, circles are used forc = 0.1∆, squares forc = 0.5∆, and
diamonds forc = 0.9∆. Results forc′ = 0.05∆, andc′ = 0.45∆
are overlapped.

assumed, without loss of generality, thatb = 0. Following an analy-
sis similar to that made in [3], it can be shown that

Pe ≈ 2σNe∆/2−c

∆σX sin
(

2πc′

∆

) .

Be aware that wheneverc′ = 0 or c′ = ∆/2 the last formula will be
ill-defined, as we have thatσX/σN >> 1, but also the sinusoidal
function in the denominator will go to0. In any case, following this
approximation the probability of decoding error will be minimized
whenc → ∆ andc′ = ∆/4. Indeed, it is straightforward to see
that even if the embedding power approximation for∆ << 1 holds,
one has to face a trade-off between the probability of decoding error
and the embedding power when choosing thec value, although in
that particular case the best choice ofc will obviously lie on the
interval[∆/2,∆]. This situation is even more complicated when the
embedding power approximation∆ << 1 does not longer hold, as
in that case one should consider the full interval[0,∆]. Fig. 4 shows
the good fit of the proposed approximation.
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Fig. 5. Empirical BER vs. JPEG Quality Factor for DM and Loga-
rithmic DM. Watermark introduced in the8×8 block-DCT domain.
Repetition Rate= 1/100. ∆DM = 30, ∆Log. DM = 30

4. EMPIRICAL RESULTS

In this section the performance of Logarithmic DM, in terms of the
probability of decoding error, will be compared with DM results.
In order to provide a fair comparison, a state-of-the-art perceptual
assessment measure is used to quantify the impact of the embed-
ding for both methods: the Structural Similarity Index (SSIM) [5].
Grayscale versions of the LIVE Image Quality Assessment Database
Release 2 [6] images were used for conveying the information; the
watermark is embedded in the AC coefficients of the8 × 8-block
DCT, using a repetition rate of1/100 and a pseudorandom permu-
tation of all the AC image coefficients. Be aware that Weber’s law
is usually taken into account in the perceptual distortion literature
by considering those coefficients (e.g. [7]), or linear combinations
of those coefficients and the corresponding DC ones (e.g. [5]). For
the sake of simplicity, and although not being the optimal criterion,
minimum Euclidean distance decoding will be applied.

Whenever Logarithmic DM is considered, in those coefficients
with smaller values ofx the watermark will be prone to attacks, due
to the smaller size of the quantization region. Due to this, not all the
components ofx will be considered for decoding each information
bit, but just those5 components with the largest amplitude.

Fig. 5 shows the obtained Bit Error Rate (BER) as a function of
the JPEG Quality Factor applied to the watermarked signal; on the
other hand, Fig. 6 shows the BER as a function of the Peak Signal to
Noise Ratio (PSNR) between the watermarked and the received sig-
nals when AWGN is added to the former.3 In both cases∆ = 2.6 for
Logarithmic DM, and∆ = 30 for DM. These values were chosen in
order to provide similar perceptual distortions; specifically, the ob-
tained average SSIM between the original host and the watermarked
signal is0.921 for Logarithmic DM and0.905 for DM.

From these plots one can conclude that Logarithmic DM seems
to be a better choice whenever the watermarked signal is expected to
undergo very severe attacks; this is a reasonable result, considering
that the few centroids used for Logarithmic DM decoding will be
very distant, and hence highly robust. On the other hand, when the
expected attack is not so strong, DM could be a better choice, prob-
ably due to its better behavior for small values of the host signal.

3The PSNR is defined as PSNR(y, z) = 10 log10[||y−z||2/(L·2552)].
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Fig. 6. Empirical BER vs. PSNR for DM and Logarithmic DM
attacked with AWGN. Watermark introduced in the8×8 block-DCT
domain. Repetition Rate= 1/100. ∆DM = 30, ∆Log. DM = 30

5. CONCLUSIONS

In this work we propose to follow Weber’s law to produce percep-
tually shaped side-informed watermarking systems. Although this
principle was already followed for justifying Mult-SS, to the best of
our knowledge it had not been previously applied to side-informed
methods. This approach yields a generalized version of a logarith-
mic DM method formerly introduced by the authors, in the context of
watermarking schemes robust against scaling. Formulas accurately
quantifying the performance of the proposed generalized scheme,
in terms of embedding power and probability of decoding error, are
provided. Furthermore, experimental results show the good behavior
of the proposed scheme against severe attacks.
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