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Abstract

An exhaustive analysis of the distortion-compensatecditmodulation (DC-DM) data-hiding method
with repetition coding is presented. Two decoding stra®gML lattice decoding and Euclidean distance
decoding, are discussed and some simplifications presefwtedxact performance analysis in terms of
the bit error rate (BER) is given; such an exact analysis isecily not available in the literature. Two
methods for computing the exact BER and several approxamgtand bounds, most of them in closed
form, are provided. These approximations are employed tpgee two novel improvements on the
standard DC-DM method with repetition: the use of a weighietlidean distance, with optimizable
weights, and a vector form of the distortion compensatiorapater. Both account for significant
performance improvements. DC-DM is compared with quatibramethods in the projected domain,
showing worse performance against additive noise attdmkshigher robustness to cropping attacks. A
performance analysis of DC-DM under coarse quantizatlat,¢an be specialized to JPEG compression
is also supplied. All our results are validated with nhuma&risimulations with both synthetic data and

real images.
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On Distortion-Compensated Dither Modulation

Data-Hiding with Repetition Coding

. INTRODUCTION

Research in data hiding has redoubled efforts since theéntunmoint entailed by the embracement
of the side-informed approach. The first rigorous appe&aifcside information in watermarking only
took place when Chen and Wornell [1] demonstrated that tb&tortion-Compensated Quantization
Index Modulation (DC-QIM) method embodied the same degrddbatures as a scheme for canceling
known interference introduced more than a decade beforeosyad2]. Thus, it was first shown that data
hiding with side informatioronly at the encoder —i.e., blind data hiding— was possible withgame
performance attainable when that side information was asdlable at the decoder.

The basic procedure of DC-QIM involves the quantization @iiveen host signal using a multidimen-
sional quantizer selected from a finite set by the message¢mibedded. A fundamental feature is that the
watermarked signal is obtained by adding back to the queahtitost signal the quantization error scaled
depending on an optimizable parameter. Tdifortion compensation is what makes DC-QIM equivalent
to Costa’s scheme, as a proper choice of the parameter isrktmwield the non-blind achievable rate
under additive white Gaussian distortion independent efttbst [3], [2]. Chen and Wornell also gave
the first proposal to put DC-QIM in practice with Distorti@empensated Dither Modulation (DC-DM),
a particular case in which the set of quantizers are dithéshifted) versions of a basic one. Due to the
implementation and design issues associated to multiditoeal quantizers, this basic quantizer usually
relies on the Cartesian product of scalar lattice quargiZe€-DM based on uniform scalar quantization
is straightforward to implement and more easily amenabkenialysis than other more complex settings.
A number of additional works have also aimed at building pcat methods based on Costa’s result.
Among them we have the Scalar Costa Scheme (SCS) [4] and &ledSBin Encoding (SBE) [5] —
which are completely equivalent to DC-DM with uniform saatpantizers—, the continuous periodic
functions for self-noise suppression (CP-SNS) [6], anciath

Although DC-DM with uniform scalar quantizers is a suboglnside-informed scheme, it is well
known that has an achievable rate often acceptably closdedoideal limit [3], [4]. Nevertheless,
performance analyses for the probability of decoding eofoDC-DM are scarce, and usually either

incomplete or inexact. Among previous attempts, we may fais¢ those ones devoted to determine the



decoding performance of DM, i.e., without distortion comsgation [7], [8], [9]. Also, upperbounding
strategies to DC-DM with repetition coding were studied 19][ whereas an approximation to the bit
error rate of generic DC-QIM methods is also given in [3]. hder to contribute to this research area, the
main objective of this paper is to provide a thorough analg$iDC-DM with uniform scalar quantizers
and repetition coding, presenting accurate theoreticatagimations and bounds to the bit error rate at
the decoder. Building on our analysis, we also propose ar@ments on this standard scheme, both by
means of optimizable weights on the standard Euclideaasttie lattice decoder, and by introducing a
novel vectorial structure for the distortion-compensatmarameter. Finally, we analyze the behavior of
the method under coarse quantization.
a) Notation and Framework: We will denote scalar random variables with capital lettérsy.,

X), and their outcomes with lowercase letters (exd., The same notation criterion applies to random
vectors and their outcomes, denoted in this case by bokrdefe.g.. X, x). We assume without loss of
generality that the host signal is represented by a zeroxmmadom vectoX? = (X?,---, X§)T. If
necessary, these particulars can always be achieved bwstilg any non-zero mean from the host, and
by using an arbitrary bijective transformation from thegoral arrangement of the host signal samples to a
unidimensional one. Before embedding we apply a key-dep@museudorandom permutatidig-) to X°.
The permuted hosX £ II(X°) is partitioned intoM subvectorsX; £ (X141, » Xr.(j—1)+2)"
for j = 1,---, M, and assuming for notational simplicity that= N/M is integer. Apart from the
security increase due to the uncertainty that this pernaumagirocedure causes to an attacker unaware
of the key, an important side advantage is that of facifiatine analysis. This is due to the fact that
the pseudorandom selection of the elements in each sub\ctapproximately grants their statistical
independence. This hypothesis of approximate indeperdasgally holds true for natural signals, as
long asL is not of the same order d€. Moreover, we will show in Section IV-D that the pseudoramdo
partitions above are also advantageous from a performaviogé @f view.

The watermarked sign& will be obtained from both the host sign®l and the information message
b to be conveyed. We will assume, once again without loss oéigdity, thatb = (by,--- ,by)7 is a
P-ary vector, withb; taking values uniformly in{0,--- ,P —1} for j =1,--- , M. A particular symbol
b; will be embedded using the subvec¥r to getY ;. As all the subvectors are obtained the same way,
notice that we will only need to focus our attention on oneteaty subvector for analytical purposes.
In particular, note that the average host signal power i gaatition will tend to be approximately the

same ag. increases. Denoting this value &%,, and using the intra-partition independence assumption,



we can writeD, ~ DY) — %Zg’j(j_l),mog(i, j=1,---,M, wheres%} 2 Var{X;} and pY
denotes the average host signal power in ke partition.

The imperceptibility of the differences betweXnandY has to be guaranteed by means of a perceptual
analysis of the host signal previous to the embedding oiperathis procedure is intrinsically dependent
on the type of host signal in question. Due to this fact, wd wdlnsider henceforth that the host is a
multimedia signal given in a certain domain of interest. Dy requirement is that the domain chosen
is suited to compute gerceptual mask «, taking into account human perceptual features. We assume
in the following that the maximum energy for an unnoticeafledification of the corresponding host
signal sampleX; is proportional toa?.

Before closing this section, we need some basic conceptst daitices [11]. Let| - || denote the
Euclidean norm. Given a (possibly translated) latilcen an L-dimensional Euclidean space, we associate
to it its nearest-neighbor quantizér,(-) which is defined in such a way that, for an arbitrary vector
x, it yields Qa(x) € A, such that||x — Qa(x)|| is minimum. Given a lattice\, let V(A) denote the
guantization region associated with that centroidhdbcated at the origin. Then, we will writte mod A
to denote the vectofx — Qa(x)) € V(A).

The remainder of this paper is organized as follows: Sedtipmesents the standard DC-DM method
with uniform scalar quantizers and repetition coding, aisgusses two main decoding strategies: maxi-
mum likelihood (ML) lattice decoding and Euclidean distamiecoding, with some useful approximations.
Section 1l is devoted to providing a complete analysis of terformance of the scheme in terms
of its bit error rate (BER), with several approximations amolunds. Standard DC-DM is improved
in Section IV with the proposal of weighted Euclidean diserdecoding and a vectorial distortion
compensation parameter. We show that the weighting allawsnéar-ML decoding, and we give a
geometrical interpretation of this improvement. In aduditive show that the vectorial compensation
parameter is profitable in the realistic case of varying watek-to-noise power ratio at each host signal
sample. Section V focuses on the adaptation of our thealedicalysis to coarse-quantization attacks,
mainly JPEG compression. Empirical results validating theoretical derivations and a comparison with

trellis-based embedding are presented in Section VI, anchain conclusions summarized in Section VII.

1. DC-DM wWITH UNIFORM SCALAR QUANTIZERS

We describe next the implementation of DC-DM, generaliz@tgen and Wornell's proposal [3] to
account for perceptual constraints as done in [9]. We mgitir presentation to any of thiedimensional

subvectors inside which the host signal samples can be askimtlependent, dropping the subindeix



the sequel for notational simplicity. Let us assume thatitifi@mation symbob is hidden using DC-DM

inside the hosX. Then, we denote by
E £ Qy(X) - X, 1)

the quantization error resulting from quantizidg with the quantizerQ,(-) corresponding to thé-th
symbol, which is based on a minimum Euclidean distanceriite The watermarked signa is then

obtained as
Y = X+vE=QyX)-(1-)E, (2)

The distortion-compensation parametef) < v < 1, is an optimizable variable akin to the one in Costa’s
paper. The componefit—v)E may be termed as self-noise, since it is caused by the watlirmggrocess
itself due to the distortion compensation. As we will see att®n IV-A, performance improvements
are obtained by using < 1, i.e., allowing a certain degree of self-noise.

Dither modulation means that all the quantizé€}g(-) are just shifted versions of a basic quantizer
QA (+). The offset for obtaining each one of these quantizers igheedvectorv(b) that depends on both

a secret key and the message to be sefihen, the quantize®,(-) can be put as

Qp(X) = Qa (X = v(b)) +v(b). 3)

As aforementioned, the simplest and more widespread imgnéation of DC-DM is the one by
means of uniform scalar quantizers [3], [7], [12], [4], [8h this caseQ.(-) may be defined as the
quantizer whose quantization centroids are given by thatpdn the latticeA = PA’, with A/ £
(AZ, A7, -, ArZ)". We will impose the criterion that the dither vectovgb) are such that the
distance between the closest centroids of the quantizerespmnding to any two different symbols is
maximized. This just means that, for instaneé)) = b-(Ay,--- ,Az)T +d, whered is a key-dependent
vector deterministically known to both encoder and decodlbris strategy increases the robustness of
the embedding by placing the centroids as far away as pessdgo, the resultant symmetry allows to
assume an arbitrary embedded symb&br the analysis, as we will see later.

Notice that, forL > 1, this particular choice of the dither vectors amounts tongisa repetition
code. It is well known that, even though it is useful in mangpqtical situations (e.g., see [7], [12],
[8]), this channel coding strategy is not the optimal onds Ipertinent to note that an empirical study
on the concatenation of repetition coding for SCS (DC-DMjhwiear-optimal turbo codes was given
in [4]. From the results in that work, it is possible to cordduthat the concatenation of turbo codes and

repetition is quite close to the capacity limit for Gauss@rannels at low embedding rates. Then, the



appeal of this scheme lies in the fact that it presents eviddmwantages from the complexity point of
view yet keeping quite a good performance. This result addmresting practical perspective to the
analysis of DC-DM with repetition coding. In Section VI wellaprovide additional empirical evidence

on the usefulness of the concatenation of this scheme withuéer turbo code, using a channel model
resulting from our analysis.

In order to keep the exposition simple we will only study tlaseP = 2 (i.e., binary), but the approach
we will follow can be extended for arbitrary alphabet sia8&. remark that, to the best of our knowledge,
a rigorous performance analysis in terms of probability iwbeis not available even for this relatively
simple case. For the binary case, the quantization cestford)),(-) will be given by the shifted lattice
Ap=2N +b-(Ay,--- AT +d, for b € {0,1}.

The use of scalar lattices inherently introduces an ang#iiimited embedding distortion. Since we
can write (1) a¥ = (v(b) —X) mod A, it follows thatE will be uniformly distributed oved’(A) when
v(b) is a deterministic vector if and only K mod A satisfies the same condition (uniform condition).
For typical continuous distributions this will be the ca$esiy, > A,; for all i. Due to perceptual
constraints, for most watermarking scenarios the unifoomddion will approximately hold, and hence
we will assume hereafter thaty, > A; for all 7, and so that; ~ U(—A;, A;].

Noticing that the watermark signal is given BY = Y — X = vE, it is clear that its energy per
dimension will be EW?} = v2A?/3. According to the perceptual mask assumed in the previatose
we can achieve the maximum unnoticeable embedding dstooly choosing); to be proportional tay;.

Last, the embedding distortion in the subvector under aigmig defined aD,, = %Zle E{W?}.

A. Attack Channel

Decoding is accomplished by the receiver after the waterethsignaly has undergone an attack
channel. Throughout most of the paper —with the remarkakdeion of Section V— we will assume
that this channel is a zero-mean additive probabilisticnded independent oX and b, yielding a
received signal = Y + N. This type of channel model has been consistently used fochmarking
purposes in most relevant data hiding research. Recaliagthe elements of the-length subvectors are
pseudorandomly chosen through the permutalign, we may also assume that the sampleNirare
mutually independent, with diagonal covariance maltix diag(a]?\,l, e vUzva)- The channel distortion
D. can be then defined in a similar fashion as the embeddingriistpi.e., D. £ + 37 0% . We
would like to remark that this kind of measurement would imngiple allow to concentrate all the

attacking distortion on a single sample Wf or spread it over all the vector. This freedom to distribute



distortion hints at the poor connection existing betweertgmual issues and this kind of mean square
error (MSE) distortion measurements.

Nevertheless, we will undertake all subsequent analysieg MSE, as this criterion has been the
most employed in the literature so far for the sake of tratitatNotice, for instance, that the hypotheses
of Costa’s result are stated for this type of restriction.almy case, an attacker may try to partially
relieve the intrinsic inconveniences of MSE in order to cgmpith the usual requirement of minimal
perceptual impact of the attack. Assuming the adequacyeopérceptual mask, it is clear that one way
to meet this condition is tperceptually shape the added noise, such that its variance at each dimension is

proportional to the corresponding allowable perceptualgy Last, we will find it useful to introduce the

D’U)
D.

establishing a working point similar to the signal-to-rorsitio (SNR) in communications.

water mark-to-noise ratio as WNR£

, that relates the power of the embedding and channel dastort

B. Modulo-Lattice Equivalent Noise

Without loss of generality, and assuming hereafter thaembedded symbols are equally likely, we
will focus our analysis on any given symb&l The optimal decoding criterion that minimizes the bit
error rate is the ML decision given by

b = arg max fZ\B(Z|b)' 4)
be{0,1}
According to the preceding exposition, the sampleZ ioan be assumed to be mutually independent, so

we can expand (4) as

[SH
I

L
argmax | | fz,15(2i|b)
be{0,1} };[1 |

L

= argmaxH/ fY%‘B(Zi — 1i|b) fn, (1ri)dr;,

be{0,1} ;4

where fy, () and fy,(-) are the probability density functions (pdf) of the indepenidrandom variables
Y; and N;, respectively. The main drawback of this approach is tha¢duires prior knowledge about
the host signal pdf. Also, the ML approach to DC-DM decodiag be too costly since we have to take
into accountfy,, the sent bit and the dither in order to compf{e. Therefore, simplifications to it are
desirable. One such simplification, which we will assumetighout the remainder of the paper, is lattice
decoding. Lattice decoding rules can be seen as operatielgvaviables that are reduced modwloin
our case, the decision will be based on the statigtics %“(Z) i=1,---,L, whereQu(z;) is thei-th

component of)y(z). From the way it is constructed, it is clear thatc (—1, 1]; this leads to considering
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modulo2Z% vector reductions, for which the result belongs(tel, 1]L. Also, the normalization in the

definition of Z; is reasonable if we assume that the channel noise is pealgpshaped, as in that case
its variance will be roughly proportional td?.

b= arg max fZ

Let f(z) denote the pdf oZ. Then, the ML lattice decoder will choogeaccording to the rule
Z

z|b).
be{0,1} 50)

(5)

Erez and Zamir showed in [13] that lattice decoding (as a dessputationally demanding alternative

the Euclidean lattice decoder.

to maximum likelihood decoding) can achieve capacity urtdgtain conditions. In fact they proved this
result for both the ML lattice decoder (also termed by theharg noise-matched lattice decoder) and

As we shall see in Section Ill, performance analysis reguivedetermine the distribution of the noise
T;

in the decision statistics, which we tackle next. Let us a@eflretotal noise random variable as

A —(1 — I/)El + N;

A;

(6)
of the respective pdfs, we can write

Recalling that if X,Y are two random variables related By = «X, their pdfs satisfyfy (y)
la| =Y fx(y/a), and that the pdf of the sum of two independent random vasakd the convolution

A2

wherex denotes convolution, anfl; ~ U(—A;, A;], forall i =1,--- , L. Now, themodular total noise
random variabldJ is simply defined a¥J £ T mod 2Z%.! Consequently, the support of will be the
interval (—1,1], forall: =1,--- | L

Considering (6), the pdf of/; can be written as

fU%(ui) OZ?O_OO fTL,(ui — 2[), if U; € (—1,+1]

otherwise

2

(8)
Alternatively, f. (u;) can be written agy, (u;) = (ﬁ—iy) [, (i) ®2 f,(u; A /(1 —v))], with @, the

circular convolution ove(—1, 1], which includes the aliasing effect evident in (8). For awy tarbitrary

INote thatU is not the same aZ%, since the latter will depend on the bit sent.



pdfs fp(x) and fo(z) this operation is defined as

S oo I8y = 20) fo(z — y)dy,
R —1 <z <+1,
[B(x) ®2 fo(x) = 0 ;
otherwise

A similar technique has been used in [4] to show the indepeeelef the quantization error and the host
signal when a uniform dither is used. In [4] the role of thecgiar convolution is played by the sampling
of the characteristic function with periodl This sampling has an aliasing effect, since it is equivalen
to the convolution in the time domain with an impulse trairthyperiod2.

When the symbob is embedded, it is clear from (2) that the decision statistidl take the formz; =
Q”(”“)_(I_VK*”L'_Q“(Z*) mod 2Z = (u; +b) mod 2Z, for alli =1,--- , L, or, in short,z = (u + b1)

i

mod 2Z%, wherel is a vector ofZ ones. Equivalentlyu = (z —b1) mod 2Z". Then, the decision rule

in (5) is equivalent to deciding = 0 whenever

fu@) > fuy ((Z—1) mod 2Z%), 9)

andb = 1 otherwise.

1) An Approximation to the ML Lattice Decoder: In [14] Forney et al. provided useful approximations
to the pdf of a modulo-reduced —or aliased— Gaussian pdf. Sdmae approach can be followed to
write an approximation of the pdf of thewodular total noise random variablel;, defined in (8) and
needed in (9) for ML lattice decoding.

Recall from (7) that, forV; ~ N(0, a]?\,l_), the pdf ofT; is just the convolution of a Gaussian with zero-
mean and varianoe]?\,%/A?, and a uniform pdf if—(1—v), +(1—v)]. Pursuing the sort of approximations
proposed in [14], it is possible to conclude that:

- Foror, < 1, the contributions in the summation in (8) fbg= 0 are negligible. The most significant
part of the pdf ofT; is concentrated in the interva-1, +1], so the aliasing effect can be neglected.
Thereforefy, (u;) can be well approximated by, (¢;).

- Foror, > 1, itis possible to consider thdt follows a Gaussian distribution with}, = o3, /A? +
(1 —v)?/3. Now the pdffi, (u;) becomes nearly constant due to the strong aliasing. Obgeave
since); fr,(u; — 21) in (8) is periodic if we do not restrict; to lie on (—1,+1], it makes sense to
expand it in terms of its Fourier series and then truncate this interval. Forney et al. suggested

approximating this function by keeping the low-frequeneyns of this expansion.



The computation of the Fourier series expansion of a perifdiction on a lattice can be performed
by using the dual of that lattice [11]. As in our ca&k is obtained by means of the latti®¥, the
corresponding dual lattice is simply given By2, and so the desired pdf can be expanded as [14]

fu.(u;) = %kezzexp (_71_20—%’]{2/2)6]‘27‘%}“%/27
1<y <1. (10)
The DC and fundamental frequency terms in this expansiaespond tdc = 0 andk = +1, respectively.
Keeping just these two terms in (10), we can wrfie (u;) ~ & <1 + 2el "0,/ cos(wul-)>, for —1 <
u; < 1. The usefulness of this approximation is illustrated in tlec IV-C, where a geometrical
interpretation of lattice ML decision regions is provided.

2) Euclidean and Weighted Euclidean Distance-based Lattice Decoder: Despite the complexity re-
duction from ML decoding to ML lattice decoding and the futhdiminution brought about by Forney’s
approximation, it is desirable to seek even simpler deapdirategies. In this section we discuss lattice
decoding based on the Euclidean distance.

When each dimension is normalized by its quantization $eplidean lattice decoding can be written

as
b= argmin | A" (z — Qy(2)) |, (11)
be{0,1}
where A £ diag/Ay,---,Apr). This approximation is tantamount to choosing thashose associated

shifted latticeA, yields the minimum normalized quantization error. Minimudistance decoding of DC-
DM was in fact part of the original proposal of DC-DM in [3]. ik also used in [7], [8], and in [4] for
the equivalent Scalar Costa Scheme (SCS).

To see the relationship between this decoding strategy abdalice decoding, letS = {41},
Recalling the definition of, it is clear that forb = 0, |A™Y(z — Q4(z))| = ||z/|, while for b = 1,
|A™Y(z —Qy(2))|| becomes|z —s||, wheres € S is such that|z — s|| is minimum. Putting this together,

we can rephrase the decoding rule in (11) as decidlingo if

|2 < minz - 5|, (12)

andb = 1 otherwise.

But now, the vectos minimizing the norm in the right hand side of (12) is such thatlso satisfies
(Z—s) = (z—s) mod 2Z". Thus, the parallelism between (12) and (9) is clear if onesizters that
the modulo2Z’ operation maps the sétonto vectorl, i.e., for alls € S, (z—s) mod 2ZF = (z—1)

mod 27ZL.
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In fact, the two decoding rules would be equivalent if the miad total noiseU had Gaussian
independent and identically distributed (i.i.d.) compuatse It is convenient to examine under which
conditions this latter property would hold. First, in orderneglect overlaps of the shifted versions of
fr. In the construction offy, in (8), it is required thavy, < 1 for all 7. Second, for thel; to be i.i.d.
Gaussian, a necessary and sufficient condition would bevtkat (i.e., there is no self-noise) and that
the noise componenty; are independent Gaussian, with variances proportionaldor all <. Notice
that in general these conditions will not be satisfied, solifean distance decoding will be suboptimal.

When those conditions are not met, it is useful to modify mimin distance decoding while still
retaining a relatively simple decoding approach by congoariwith ML lattice decoding. To this end,

we introduce a weighted Euclidean distance, for which theodmg rule becomes

b = argmin{(z—Qy(2))" ABA (2-Qu(2)) }
be{0,1}

(13)
where the weighting matriB is defined as

B £ diag(ﬁl,- .. ,ﬁL).

The purpose of these weights is to introduce additionalekgyof freedom to improve decoding in practice
when minimum distance decoding is just too far away fromrmality. We will show in Section IV-B
how a proper design of the parameter vegiaallows to improve decoding when additional information
about the channel noise is available. Also, it should bertalk® account that the normalization By; in
(11) does not entail any loss of generalization or loss ifdgperance, since its effect could be canceled
by 3; in any case. Whenever no optimization is attemptgd= 1 will be set for alli. In this case (13)

becomes equivalent to (11).

[1l. PERFORMANCEANALYSIS

Next, we will analyze the performance of binary repetitioG-DM in terms of the bit error rate (BER)
at the decoder output. In this section we will consider ohky tinweighted minimum Euclidean distance
approach to DC-DM decoding, i.eB = I, the identity matrix of sizel, leaving to Section IV-B
the study of the effect of the weighfs.

Costa’s framework considers i.i.d. channel noise and $iflnaur case watermark), which naturally
induces the same distortion compensation parameter all dimensions. On the other hand, perceptual

considerations motivate that in our scheme the variancd®thf the channel noise and the watermark
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be in general different for each of the dimensions. Althotighk setting suggests a vectorial distortion
compensation parameter —i.e., dimension-dependent—, for the sake of simplicity wi# only deal
with a scalarv in this section, and explore the vectorial possibility inctan IV-A.

From (13) we can see that decoding is equivalent to quaagtizinvith both the shifted lattice\g
and A; and then assigning the value of the bit that yields the ssiallem an Euclidean distance
sense) normalized quantization error. Obviously, this dspletely equivalent to quantizingA ~'z)
with (A~1Ag) U (A71A4) following also a minimum Euclidean distance criterion.

It can be readily seen that the probability of decoding edwes not depend on the actual embedded
bit. Let us assume then that= 0 is sent, sdZ = U. Hence, taking (12) into account, an error happens

whenever
2 : 2
>m - . 14
][> > min [[u —s| (14)

The minimization in (14) is equivalent to seeking the cldéssmntroid tou among the shifted lattice
corresponding td = 1. The decoding region given by (14) is a generalized octahrefit1l] whose
vertices are those vectors having only one non-zero conmamiéh value+L /2.

Therefore, a decoding error will happen if and onlyuiflies out of this generalized octahedron. Due
to the symmetry of the octahedron in all the orthants witlpeesto the origin, it is reasonable to project
the random variabl@J onto the positive one, to constrng* = |U;|,1 < i < L, and then proceed to
determine the probability of being closer to the versgxe 1 € S, than to the origin. This probability
is thus the probability of bit error, which can be written as

L
P, = PH{|UT|? > U —1|?} = Pr{z Ul > L/2} .
=1

(15)

The evaluation of this expression requires the pdi/gf, 1 <i < L, which is just

u) + fu.(—un)], fo<u<1
fo(U;_) é [qu,( 7 ) qu,( 7 )] — 1 — ,
' 0, otherwise
1<i<L. (16)
Therefore, if we define the variable
L

RE> U, (17)

=1

then from (15), the computation @f. is equivalent to integrating the tail of the pdf &ffrom L/2 to L.
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Even though formula (15) allows us to determine &xact probability of bit error, its computation is
very expensive for largé.. This motivates the proposal of two numerical approachegdccalculation,
which are discussed in Sections IlI-A and 11I-B. On the othend, neither formula (15) nor these practical
methods provide closed-form expressions, making it diffit extract conclusions of theoretical value.
For this reason, Sections IlI-C and IlI-D are devoted to using analytical approximations and bounds

respectively.

A. Beaulieu's Approach

In this section, we adapt a technique proposed by Beauli&uffit computing the tail probability of
the summation of. i.i.d. random variables, as it occurs in (15). This techeiguas already used in [9] to
upperbound the bit error probability of DM. Let £ 27”1 for any positive integet, with T" a large enough
real number, and lef;+ (w) be the characteristic function of", given by Fy+ (w) = fol ef‘”“fo (u)du.

Then, the computation aP. is made, following [15], as

0o L w in L (w0
Ly 2 5 il snGo o)) .

where ¢;(w) is defined asp;(w) = arg{Fy,+(w)} — w/2, with arg(-) denoting the four-quadrant phase.
The main drawback of this method is that it is rather compotally demanding, apart from the fact
that it may present numerical problems due to the large satu@t could be involved in the summation
of a truncated version of the series in (18). In the apperttixexpressions of the functions required for

computing (18) for a Gaussian channel noise are derived.

B. DFT Method

Since ther in (17) are independent random variables, the pdiois just the convolution of the
pdfs of U;", 1 < i < L. This computation can be efficiently done in the DiscreterieouTransform
(DFT) domain. To that end, Iedbw 2 DFT;x (K-ij(k/K)> be the L x K-point DFT of the
sequence obtained by sampli[fgj(r) att = % with £ = 0,--- , K — 1. Using this definition it is
straightforward to writePg[m] =[], ®;+[m], m =0,---, LK — 1. Finally, the discretized pdf of
R is obtained using the Inverse Discrete Fourier Transfold¥{l) as fr = IDFT.x(®Pg), and (15) is

computed as
LK—1

P ~ Z fR[k]’

k= |'L(K;1)+1‘|
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where the limits of this summation stand f& = L/2 and R = L in the corresponding integral. The
accuracy of the computation can be increased by using arleafee of K, i.e., by sampling more finely
the pdfs involved in the calculation.

This technique resembles Beaulieu’s approach in that bbtthem work in a transform domain.
Nevertheless, the DFT method presents a much lower conmqmahtost, without any of the numerical
problems shown by Beaulieu’s approach. This fact makes #E method an enticing approach to assess

the performance to any degree of accuracy required.

C. Central Limit Theorem-based Approximation

A third option consists in taking advantage of the indepedeof the random variable(gjr in the
summation (17) to invoke the Central Limit Theorem (CLT).iSThesult states that the distribution &f

will tend to a Gaussian as — oo, in which case we may approximate the probability of error as

L
Pe ~ Q % — Zi:1 E{Uer}

\ ZiL:lvar{U;r} ’

(19)

where Q(z) £ % e e~ 5 dr.

The main advantage of CLT-based approximation is that #ga closed expression fét, which can
be exploited for analytical purposes (see Section IV-Bthéligh this method to compute. is much
simpler than the previous ones, some remarks are due.féirstnall values ofL it could entail problems
in the convergence aR to a Gaussian. One factor that speeds up convergence istiiargy between
the distributions of the summands. Also, and as discussgddfhy note that the process of building
the one-sided distributionﬁﬁ (uj) may produce highly skewed pdfs whose convolution convevges
slowly to a Gaussian distribution. If this is the case, thei$s8an approximation t&, may underestimate
the importance of the tails ofz(r).

Last, although analytical expressions of(E"} and Va{U,"} are available in closed form wheN;
follows a uniform distribution, in general the explicit cpoitation of these statistics may require numerical
integration. Therefore, it is recommended to use the DFThotefor obtaining numerical results, as it

gives a higher degree of accuracy.

D. Bounds on P,

In this section we discuss several other known bounds onitherdor probability.
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1) Erez and Zamir’s Bound: Erez and Zamir have recently proposed a method that can lmmacc
modated to upperbound the probability of error of binary DE-when performing Euclidean lattice
decoding —i.e., minimum distance decoding— under Additiveite Gaussian Noise (AWGN) channel
distortion [13]. Letw =V ({2Z%} U {2Z" + 1}) denote the region associated to a right decision, i.e.,
P. =Pr{U ¢ W}. Then, it is possible to write®. < Pr{T ¢ W}. Erez and Zamir's procedure may be
used to construct an upper bound on the latter probabilay depends orD.,, D., A and L. In turn,
this obviously upperboundB.. Unfortunately, the bound turns out to be rather loose far marticular
problem (see Section VI); for this reason, we will omit theails of its implementation.

2) Union Bound and Nearest Neighbor Approximation: The classicalinion bound (UB) is based on
adding the pairwise probability of mistaking the transedticentroid with each of its nearest neighbors
corresponding to a wrong decision. The possible overlapletrror regions associated to each of these
error events are disregarded in this computation, and shiise reason why it produces an upper bound.
When the WNR is increased these overlaps diminish, and sddbied gets closer to the true value.
As in our implementation of DC-DM we are using uniform scajaantizers, there ar2” nearest error
neighbors. Thus, assuming that the pdf of the channel timtois symmetric, the union bound may be

computed as

Fe

IN

L
= ob. Pr{z U; > L/Q},

i=1
where the last probability can be obtained by means of anyhefmiethods in Sections IlI-A-III-C,

similarly to what is done with (15). Alternatively, fdt large enough, we can compute an approximation
applying the Central Limit Theorem. To this end, we just needompute the variance of the zero-mean
random variable whose pdf is the circular convolution of ¢hannel noise and the self-noise. Note that
due to the approximation implicit in the CLT, we can no longesure that the result is a bound, but an
approximation to the bound, which will be asymptoticallyogoasZ — oo. This approximation is given
by

L

24/ ZiLzl Var{U;}

In contrast to Section IlI-C, ifV; is symmetric about the origin the involved pdfs (i.e., tho$g. (u;))

P.~2. 0 (20)

are also symmetric, so their convolution will converge mquéckly to a Gaussian distribution.
Following the previous guidelines for the union bound we rakp approximate the bit error probability

using the nearest neighbor distance sketched in [3]. THma&st therein assumes Quantization Index
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Modulation without distortion compensation and additivlite Gaussian noise. This result may be
improved by replacing the real Gaussian pdf with a Gaussitimwariance the sum of those corresponding
. - . . L
to the channel noise and the self-noise, what yidhls- Q (—2\/%)
Following the discussion in [16] on the validity of the CLT,i$ necessary to check against empirical
results all the CLT-based approximations and bounds thahave given in Sections III-C and 11I-D.2.

This task is undertaken in Section VI-A.

IV. IMPROVEMENTS ONSTANDARD DC-DM

In this section we introduce some improvements in the perémce of the DC-DM scheme studied so
far. Specifically, we will deal with the distortion competisa parameter as well as with the decoding

weights.

A. Sudy of the Distortion Compensation Parameter

The distortion compensation parametemay be used in two equivalent ways. Namely, it may reduce
the embedding power by a factof for a fixed lattice, or, alternatively, it may afford an exgam of
the lattice by a facto% when the power of the watermark is kept constant. Intergistiit can be shown
that both lead to the same bit error probability for a given RViNhen the power spectral density of the
noise sequence is fixed, save for a multiplicative constmrefore, although throughout this paper we
are using a fixed lattice, we should be aware that, when thedstanditions are met, this is equivalent
to the expansion of that lattice for a fixdd,,.

The determination of the distortion compensation paranmeéy be tackled under a number of different
optimization criteria. Obviously, these criteria will iregeral lead to different values of Probably the
simplest, but also one of the most used, is the minimum meaarscerror (MMSE) criterion (see [17]).
This criterion was for instance used in [13]. We may alsoktofh optimizing this parameter depending
on the bit error rate. The problem in this case is the lack ofefl-form expressions that would allow
to face the optimization problem in an analytical way. Reilog MMSE, the initial intention would be
to minimize ZleaZUi; however, due to the aliasing effect, this becomes an ursumtable problem.
Considering that for large WNRs and large valuesvothe modulo operation can be neglected, it is
reasonable to address instead the minimization of

L L (o2 , 1 —v)?
L
- Z{”if“ + (1_3”)2}, (21)

=1

(1>

p(v)
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for a fixed&; £ o}, /E{W?}, i = 1,--- ,N. Note that¢; can be regarded to asrmise to watermark
ratio for the i-th dimension. Functiop(r) above can be easily seen to be minimized at
_ 1
1+ It &
Alternatively, one may also consider using a different eatf v for each dimension. This yields a

*

vector of distortion compensation parameter§: (v, --- ,vz), so (21) takes now the shape

Lo(,2¢ — )2
QD(V) — Z{ 13£z+(1 . z) }’ (22)

i=1
where, as above, the noise to watermark ratio in dle coefficient,;, is kept fixed. The vector of

distortion compensation parameters that minimizes (22)visn now by

1
1+&’

forall i = 1,---, L. Clearly, o(v*) < ¢(v*), since the first minimization is a particular case of the

x A
r A

second constrained to a vector with equal components.

It is possible to regard the distortion compensation eftdédhe vector case as a Wiener filtering with
matrix A* £ diag(v*). This is so because all the self-noise elements corresponaithe components of
v* are mutually independent, what implies a diagonal filteffalet, similar solutions have been proposed
by Yu et al. in [18] from an information-theoretic point ofewv.

Finally, we would like to make some remarks. The performainggrovement achieved by replacing
v with v is compatible with the gain due to using the decoding weigh{d3). Whereass modifies the
pdfs independently at each dimension, we will see in the segtion thai3 modifies the weighting of

the dimensions when they are considered together. Thisviidie duly shown in the next Section VI-B.

B. Derivation of the Improved Decoding Weights

We turn next our attention to the problem of optimizing theighés introduced in (13). Recall that
the objective of this approach is to improve the performaotéhe minimum distance decoder using
additional knowledge about the channel distortion evdhyt@available at the decoder.

Adapting the method followed in Section Il to the decoder(1), it turns out that nowP, can be

written as
L 1 L
— Ut~ = A
P, = Pf{EW > 3 ;@},
which obviously reduces to (15) fg8 = 1. Taking into account that any analytical optimization of

the weights requires the availability of a closed-form apgmation to P., we will discuss here the



17

minimization of (19) and (20) when weights are introduceidrttrg with the CLT-based approximation,
which we will see that it is very accurate for low values of WNiRSection VI, and under the same

assumptions as in Section 1lI-C, it is possible to write
PP, - o2 B N BE(US)
VL, BVar{U; )

Recalling that theQ(-) function is monotonically decreasing, it follows th&, is minimized when

(23)

its argument is maximized. Then, the improved decoding hisigan be found by differentiating the

argument ofQ(-) in (23) with respect tg3;, 1 < i < L. Then, the decoding weights minimizing,, are

o G-EUTY :
ﬁi - K : Val’{U;r} 9 1 S ? S La (24)

where K is an irrelevant positive real constant, since the weiglgstor can be scaled without any
impact on performance. Also, it is very interesting to ndtattsome of the3” may be negative. This
will happen when EU;"} > 1/2, which may occur for large distortions. The effect of a nagatveight
can be interpreted as a swapping of the centroids assignealcto symbol.

As it can be inferred from (24), in order to compute the imgewecoding weights, knowledge of
E{U;"} and Va{U;"} is required. Note that due to the aliasing and truncatioectdfthat show up in the
construction ofU™, this information is not directly derivable from the firstdasecond order moments
of the total noise random variable.

a) High WNR: As we will see in Section VI (Figure 6), the CLT-based appnaxiion moves away
from the empirical results as the WNR increases. In this wasean consider to use the union bound (20)
to compute the improved decoding weights, since it is a bef@roximation to theP, in the present

scenario. Accordingly, the function that we have to minienipw is

L .
P.~P, =20 2iz1 B , (25)
2\/SL, B2Var{U;)

which can be shown to be equivalent to the minimizatioy 9ff | 32Var{U;} constrained 6"~ | 3; =

G, for some arbitraryG. Applying Lagrange multipliers we may write the optimizati functional as
w(B) = Zle BZVar{U;} — (Zle G — G). Differentiating it with respect t@; and equating to zero

it is straightforward to see that the minimum of (25) is obé&al for

Kk 1
pi = var{U;}’
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for 1 < i < L and any positive constatf. Interestingly, it is possible to show analytically that farge
WNRs 3* will be nearly proportional tg3**, which justifies the use gB* also for large WNRs in spite
of the looser approximation employed for its computation.

Notice that, after the optimal weights for the CLT-basedragimations have been obtained, it is
possible to resort to a more accurate computatiorPofsuch as the Beaulieu’s method or the DFT
approach) by slightly modifying it to take the weights intecaunt. The improvements afforded |8y

and 3** will be empirically shown in Section VI-B.

C. A Geometric Interpretation of the Decoding Strategies

Here we provide a geometric interpretation of the variousoding strategies we have discussed, which
will help to understand the role of the decoding weights arel goodness of Forney’s approximation.
For pictorial reasons, the cage= 2 is considered here. First of all, we derive the ML decisionrary
based on Forney’s approach whefﬁ is large. Noticing that from (9) the true ML lattice decoding
boundary is the locus of the pointsy,us)” for which fr(u1,us) = fu((ur — 1) mod 2Z, (uy — 1)
mod 2Z), and making use of the approximation in Section II-B.1, wa canclude that in the positive

guadrant this boundary is approximately given by

¢ = {(ul,UQ)T €[0,1] x [0,1] :

(1 + g ™R /2 cos(wu1)> : (1 + 267/ cos(ﬂug))

— (1 _9e™oh /2 cos(ﬂul)) :

(1 _ g ™ 0h,/2 cos(m)> } (26)

with straightforward extensions to all other quadrants.

Figure 1 shows for the positive quadrant the true ML lattieeatler decision region fob = 0
(shaded area) and the approximate decision boundary giygR2@). The parameters of this plot are:
on, /A1 = 0.4113, on,/A2 = 0.2530 andv = 0.5, so o, = 0.5025 and o, = 0.3838. As it can be
perceived, Forney’s approximation gives a very good esénod the real boundary. Figure 1 also plots
the decision boundaries that result using (13) vdtk- 1, and3 = 3*, which with the above parameters
becomes3} = 1.5936 and 35 = 3.9005. Observe how the use ¢f' leads to a linear approximation of
the true lattice ML decision boundary. Note however, that titimate purpose of the weigh®' is not
to yield the best linear approximation of this boundary loutrtinimize an approximation of the bit error

probability.
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Fig. 1. Comparison of the decision regions for DC-DM+£ 2) obtained using Forney’s approximation, the ML lattice @léer,
and the Euclidean distance decoder withand3 = 1.

D. Discussion about the Pseudorandom Choice of the Partitions

Throughout this paper we have been assuming that the saowpigsrising thej-th host subvectoK;
were pseudorandomly chosen. Starting from our CLT-basedoapnations, and using the law of large
numbers, it is possible to theoretically justify the use wéls pseudorandom assignment. Due to the lack
of space, here we will only provide an empirical justificatio

With this aim, we will consider the particular case of apptyiDC-DM watermarking to an image
on the mid-frequencies of it8 x 8-block DCT, the transform used in the JPEG standard. Moreove
we will let the channel noise variance be proportional to sheared JPEG quantization step (quality
factor QF =80) in each dimension, being this noise uniform. This qualagtdr is a scalar ranging
from 0 (poor quality) to100 (high quality) used by some implementations of the JPEG ceggion
algorithm to indicate the quantization table. We have chdhés attack because it is assumed to have a
perceptually-based power distribution (as JPEG quaitizateps stem from perceptual considerations),
although it does not follow the same power allocation as theemmark. We will consider two cases for
defining the subvectorX;: global pseudorandom partitions (i.e., all available fioiits in the same
pool), and frequency-dependent pseudorandom partitioms €éach pool consists of those coefficients

with the same frequency indices that come from differentkdd.
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Fig. 2. Empirical and theoretical performance obtainechwgliobal vs. frequency-dependent pseudorandom partjtissiag
DC-DM on the DCT domain with optimally weighted Euclideastdince decodingl = 20, v = 0.4, uniform noise, host image
Lena256 x 256, payload =1126 bits.

This last strategy resembles the one used by Ramkumar andsika [19] as well as the parallel
channels studied by Moulin [20] applied to the DCT domaintha former work, the data hiding capacity
of compressed images is analyzed by decomposing an imamé/ntubbands using transform blocks,
thus giving rise toM parallel subchannels. Then, each symbol is only transdnitteough a specific
subchannel. With that strategy, all the coefficients delvtteconveying a certain symbol can be assumed
to have the same noise statistics, differently to what happgien the indices are chosen pseudorandomly.

In Fig. 2 the improvement due to the use of global pseudonarnalrtitions is shown, choosing the mid-
frequencies as in [21] and using the same perceptual masattuk as in Section VI-B. The theoretical
results were obtained using the DFT method. It is importamidver to note that a fixed subvector length
has been assumed in this comparison, which clearly putsehjadéncy-dependent scheme at disadvantage,
because each subchannel will have different host and niaissties and, thus, different SNR’s. A solution
to this is to use subvector lengths that are also frequerpgdent, at the price of needing additional
knowledge about the channel at both embedder and decodeeftsiag that is not required when global
partitions are used. Additionally, global pseudorandomiifi@ns increase the entropy of the watermark

and hence the security of the system.
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E. Comparison with STDM

Although Spread Transform-Dither Modulation (STDM) [3]pr®ad Transform-Scalar Costa Scheme
(ST-SCS) [4], and Quantized Projection (QP) [9] technigdesot constitute at all the main issue of this
paper, a comparison with DC-DM with repetition coding istjmemt here for the sake of completeness. As
shown in [4] and later confirmed by the authors in [9], STDkelimethods show superior performance
than DC-DM in AWGN channels as the repetitidn(and, equivalently, the spreading factor) increases.
This is experimentally confirmed in Fig. 3(a) using real ima@s host data. The watermark is embedded
in the mid-frequency coefficients of the x 8 block-DCT domain [21] with a fixed Peak Signal to
Noise Ratio (PSNR) ofl0 dB, and uniform noise is added with standard deviation priigaal to the
corresponding JPEG quantization step in each dimensiaaifgdactor QF=80). The figure also shows
theoretical results, obtained using the CLT method in $adiil-C for DC-DM and [9] for STDM. We
observe a large gap between both methods for high PSNR'$t isuhecessary to take into account that
v = 0.4 used in the plot is not the optimal one when the PSNR of thelathsignal is close td0 dB
(large WNR). The optimal projection parametgts for STDM in Fig 3(a) are the ones derived in [22],
even though other optimization strategies are availalde {sr instance [23]). A further advantage of

STDM-like strategies, pointed out by an anonymous revieigethat they are quite independent of the

look Gaussian (see [23], [9]). Moreover, it is more feasilolalesign attacks which render the attacked
samples close to the decision boundary for DC-DM than for BTD

This said, there are other simple attacks which can be muck detrimental for STDM-like methods
than for DC-DM, as for instance cropping. Whereas for DC-Ihd tropping attack is simply equivalent
to decreasing the repetition factbr which implies a smooth performance degradation, for STDbAN
be seen as adding noise with variance equivalent to thateofémoved samples. As this variance is
usually much larger than the watermark variance, STDM perémce is severely degraded by cropging
The effect of cropping may be seen in Fig. 3(b), that comptregerformance of both methods after
removing ams-pixels-wide outer frame. These results suggest that a c@tibn of DC-DM and STDM

is a good choice towards a truly robust moderate-rate scheme

The influence of the cropping in the BER could be reduced byntaklock-wise partitions. Nevertheless, this would

significantly reduce the security of the system.
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Fig. 3. Performance of DC-DMi(= 0.4) vs. STDM, watermarking the DCT domain of real images; rssaleraged over
twenty-two 256 x 256 images, withL = 20 (payload= 1126 bits). (a): Empirical and theoretical results with additimiform

noise. (b): Experimental results with additive uniform seiafter cropping an extern&ipixels-wide frame.

F. Performance under Unforeseen Attacks

An interesting problem is posed by the performance analysBC-DM when the attack is different
than the one expected by both the embedder and the decodeenifed that the available information
about the attack is exploited by them to compute, respdgtitiee optimal distortion compensation
parameter and the optimal decoding weights. The generélgroshould be addressed from a game-

theoretic approach, trying to find the optimal attack anddp@mal encoding/decoding strategies, using
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Fig. 4. Experimental performance of DC-DM in the spatial endiniform additive noise applied in the spatial and DCT
domain, withry = 0.4, L = 20 and optimal decoding weight computed taking into accoustrnbise in the spatial domain

(payload= 1126 bits); results averaged over twenty-ta66 x 256 images.

a bit error rate payoff in our case. Unfortunately, we havebeen able to obtain a solution due to the
cumbersome expressions for tie.

In any case, it is interesting to observe the performanceadagion when there is a mismatch between
the actual attack and the one considered when optimizingntod. In Fig. 4 experimental results for
this case are shown for a particular case in which DC-DM idiagdo the Lena image in the spatial
domain, and the embedder and decoder expect uniform noifeigame domain. However, the noise
is added in the DCT domain in both cases. In order to set teatisnditions, the uniform noise in
the DCT domain has, at each coefficient, variances propatito a squared perceptual mask computed
following Watson [24]. Although it can be verified that theeegy distribution of the corresponding
inverse transformed noise in the spatial domain differssimarably from the spatial perceptual mask,
we may see that there is only a small performance differeimcéa¢t a gain) with respect to the ideal

case where the noise follows the expected distribution.

V. DC-DM PERFORMANCE UNDERCOARSE QUANTIZATION

In this section we will analyze the performance of DC-DM witkea watermarked signal undergoes
coarse quantization, which is quite a common unintentiaialck. Notice that we cannot deal with this

particular attack using the generic methods presented tiiggoint, as in this case we cannot assume
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the independence of the channel noise (actually the coaimetigation error). Furthermore, our analysis
will serve to show how to improve the performance of DC-DM enthis particular attack.

We assume next that a coarse quantizer with centroids giyeheblatticed;Z is applied toy; for all
1 <4 < L. The computation of the probability of decoding error rela knowing the probability mass
function (pmf) of Z;. Notice that this pmf will not only depend on the pdf of the himsage, but also
on that of the watermark, which in turn depends on the trattechbit b and on the dithetl;. In order
to obtain the desired probability we need the upper and ldwets of the k-th coarse-quantization bin,
which will be denoted by;" £ kd; +6;/2 andd; £ ké; —6;/2, respectively. So, the probability thay

is equal to thek-th coarse-quantization centroid conditioned to the traasion ofb is

P{Z; = ké; | b} = PHY; € (0;,0;]]b}
07,
= | fr(yilb)dyi. (27)

'k

We are interested in reformulating this integral in termsXgf what requires a change of variable
affecting the integration limits of the expression. Thisaobe of variable is not evident, but it can be
obtained in a straightforward manner. First, notice that@C-DM centroid corresponding to the symbol
b and closest to the upper Iirrﬁtj; of the integral (27) is jusz(H;‘;), with Q;(-) defined in (3). Then,

considering the offset, (6;",b) £ 0;" —Q4(6;"), it can be shown that the corresponding offset with respect
N min{max[py(ﬁa 0),—(1—v)A;],(1-v)A}
= =)

the upper limit when the integral in (27) is evaluated usfikg(z;) is just~;" (b) £ Qu(6;") + po (6}, b).

1

. Therefore,

to Qu(6;") from the point of view ofX; is p,(6;",b)

The lower limit~; can be obtained similarly, and then the desired probatsbty be put as

Vi, (b)
i, (0)

This pmf plays a similar role as the pgf- (-) in (8). Hence, the probability of decoding error under
coarse quantization can be obtained by applying to this ppméame modular strategy used in Section lll.
Unfortunately, the resulting expression is quite involaed it has to be computed numerically in practice.
Notice that the probability of error thus obtained will be general dependent oin A side-effect
of this dependence is that the weights optimization in ®eacki/-B is not valid for coarse quantization
in general. Actually, the improved decoding weighits will only be valid for symmetric settings. In
section VI-D we will compare the performance under coarsntjgation using two kinds of dithers. For
the first one we choosé, € {£A,;/2}, foralli=1,--- , L. Due to symmetry, in this case the statistics
for each dimension are independent of the embedded bit, lengrocedure to compute the decoding

weights can still be used. For the second afies {0,A;} for all i = 1,---, L, which does not give
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a symmetric setting. With this choice, the statistics inheditnension do depend on the embedded bit,
thus making it impossible to derive the aforementioned Wwsig

1) JPEG Compression: We may particularize the expression (28) for a real coargentigation case
such as the one induced by the popular JPEG standard for iooaggression. Accordingly, let us assume
throughout this subsection that the host signal is givehég 8 block-DCT domain where JPEG works.
As discussed in [21] the AC coefficients of the DCT can be reably modeled by zero-mean generalized

Gaussian pdfs, given by the expression
fx(z) = Ae ", (29)

The parametersi andn can be expressed as a function of the shape parametad the standard
deviationox. We refer the reader to [21] for the details on how to tacklgiiactice the issue of their
estimation. Taking into account the model (29), and assgithiat its parameters are estimated adaptively
for each dimension, we may rewrite (28) ag Br= kd; | b} = PH{X,; < ﬁ;(b)} - Pr{X; <, (0)},
with

T(1/¢;, |miT|“), if 7<0

n?éir(l/czs mer|e),  ifr>0

A
PrX; <7)={ ™
1—

whereT'(-,-) is the incomplete Gamma functiin

V1. EMPIRICAL RESULTS

In this section we will check the validity of our theoreticd¢velopments, comparing the analytical
results with empirical ones. First, we retake the discussidSection Il about the optimal channel coding
for DC-DM with uniform scalar quantizers. In Figure 5 the feemance of two coding settings using
DC-DM is depicted. The concatenation of DC-DM with repetiticoding {. = 6) with a simple outer
turbo code raté /3 —to yield an overall raté /18— is compared to a rate/17 turbo code over DC-DM.
We observe that, for these similar rates, the concatenatihnloses about dB with respect to a turbo
code with a much more complex decoding. Notice that the oblamodel used to decode the turbo code
concatenated with repetition is the CLT approximation desd in Section 1lI-C, which is detrimental
for the concatenation for such a loix This plot is in agreement with the results shown in [4] foisth

type of concatenation, and it supports the practical ytoit repetition coding for DC-DM.

T(a,2) £ I t*~le tdt.
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Fig. 5. Performance comparison of DC-DM with a turbo cd@le= 1/17 (v = 0.30) vs. DC-DM with repetitionL. = 6

concatenated with & = 1/3 turbo code ¥ = 0.35), interleaver size 1000 symbols. Synthetic host data.

A. Comparison of the Approximations and Bounds

Figure 6 shows the approximations and bounds in Sectioreldus the outcomes of i.i.d. Montecarlo
simulations. In this plot channel noise is additive zeraamé&aussian, the components Xfand N
are i.i.d.,L = 10 and v is optimized following Costa’s formula, i.ey; = v. = D, /(Dy + D.). We
may verify that the accuracy of the approximations given éct®ns IlI-A and IlI-B is remarkable. The
CLT-based approximation is excellent for low values of th&lR/ but, as the WNR is increased, it gets
away from the true probability of error. As it was explain@dSection IlI-C, this is due to the support
of ij(uj) being only positive, to the small value df used in the experiment, and to the increase
in the skew-effect of the resulting pdf for large values of WNR. Since this approach underrates the
importance of the tails of z(r), the approximation produces overly optimistic results.

On the other hand, the union bound gets closer to the emipigsalts when the WNR increases. This
is a consequence of the reduction of the probability coordmg to the overlapped decision regions
when the WNR grows. We also plotted the results of applyirgg @L.T to compute the probability of
error with only one neighbor and then using the union bousddescribed in Section IlI-D.2. In this
case the pdf involved in the computation is symmetric abbetdrigin, so convergence to the Gaussian
distribution is unaffected when the WNR is increased. Nbét both bounds approach the true probability
of bit error asymptotically as the WNR increases. The valueslicted by the approximation of Chen

and Wornell are obviously parallel to those obtained wheth lloe union bound and the CLT are used
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Fig. 6. Comparison of the empirical BER vs. the differentlgiieal and numerical approximations and bounds for DC-DM

under Gaussian noisé. = 10, v = v.. Synthetic host data.

(see Section 11I-D.2). As it should be expected, those \&ahre clearly lower than the empirical results,
since only the probability of mistaking two neighbors isgakinto account.

Finally, the bound by Erez and Zamir is not shown in Figure 6abse its value is arouri?. It is
pertinent to remark here that even though this bound is ¥atidny pair of nested lattices, it was designed
to show the capacity-achieving property of lattice decgdMevertheless, for that purpose, it is necessary
that the pair of nested lattices verify certain propertigsciv fall short of being true for the lattices used
by DC-DM. This explains why such large values arise and destnates how information-theoretic results

cannot always be effortlessly extrapolated to practichkbstes.

B. Optimized Distortion Compensation Parameter and Improved Decoding Weights

The next set of experiments were carried out by watermarlisgmagel.ena 256 x 256 in the DCT
domain, using a perceptual mask proportional to the pemeéphresholds proposed in [24] and [25].
The attack is uniformly distributed with amplitude proponal in each dimension to the corresponding
JPEG quantization step for QB&:

Figure 7(a) shows the performance improvements due to teeofithe weights3* and 8** in the
Euclidean distance decoder. The plot depicts the WNR netedachieveP, = 0.01 with L ranging from
5 to 100, and clearly shows the improvement obtained wi3éns used. The performance gain is already

large atL = 100, but the gap keeps increasing with Nevertheless, the improvement is not so large
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Fig. 7. DC-DM watermarking of the Len@56 x 256 host signal in the DCT domain with uniformly distributed &oe
attack. (a): WNR needed to achiey® = 0.01 vs. L for v = 0.7, with different weightings on the Euclidean distance decod
(b): Comparison of the empirical BER obtained whehor v* are used in conjunction wit = 1, 8*, and 3**. L = 10,
payload= 2252 bits.

when 8** is used. In order to explain this effect, consider that the RéNstudied are rather negative,

and therefore that the CLT-based approximation used foconeputation of3* is clearly better than the

union bound plus CLT expression used for the computatiofi*6f(see Section IlI-D.2 and cf. Figure 6).
Figure 7(b) shows the results obtained whenand v* are used in conjunction witlB = 1 (i.e.,

no weighting),3* and 8**, for the casel. = 10. A considerable gain is achieved by using a vectorial

distortion compensation parameigr instead of a scalar one;. The improvement due to using" and
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Fig. 8. Performance of DC-DM using ML lattice decoding vsngsEuclidean distance decoding using the optimal weigtits
Gaussian noise with variance proportional to the squar&BJguantization step (QF = 80),= 0.5, L = 10, payload= 2252
bits, host image Lenas6 x 256.

B3** compared to no weighting is also apparent. Note also thaivikighting strategy3* yields the best
results for the whole range considered in this case. Finalywe have pointed out in Section IV-A,
the use of a distortion compensation vector is compatibté wie improved decoding weights, so the
combination offers improvements of about 2 dB over the siash@mbedding/decoding strategy.

In Figure 8 we compare ML lattice decoding versus Euclideatadce decoding weighted hy*.
The theoretical results fg8* in that figure were computed employing the DFT method. This glearly
shows the near-optimality of performing Euclidean diseadecoding with our optimal weighting strategy,
since the results obtained are virtually the same than tbbtsened with ML lattice decoding. This result
can be explained (at least for small values of WNR, where &gdsrapproximation is valid) in view of the
resemblance between the decision regions used by theseetwdlers (see Section IV-C). It is interesting
to remark that, as the variance of the host signal is muchetatigan that of the watermark, adjacent

DC-DM centroids have similar probabilities, and then MLtits# decoding approaches ML decoding.

C. Comparison with Miller et al!s Trellis-based Embedding

We compare next DC-DM to the side-informed algorithm bagsettellis quantization presented in [26].
In order to undertake the comparison, we encoded DC-DM usiagascade of an outer code, given by
two serially-concatenated codes [27] with global rafd, with an innerl/3 repetition code, obtaining

the same overall coding ratg12 used in [26]. The use of channel coding is necessary in ocderake
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a fair comparison, since the method in [26] inherently idelsi an involved (source) code. Admittedly,
the comparison will be dependent on the particular coded imseach case, but we may get in this way
an acceptable perspective of the relative performance tf imethods.

In order to set the same test conditions, DC-DM embeddingeifopmed with the same image and
using the same DCT coefficients as in [26], and hence the pdyi®alsol380 bits. Similarly, the same
Watson-based perceptual constraints [24] are taken intoust, and the Watson measure due to the
DC-DM watermark is fixed t®7.20 as in [26]. Our experiments show thBt ~ 10~3 for DC-DM when
the standard deviation of the additive noisesis, marking the region of the turbo-cliff in the iteratively
decoded DC-DM scheme. For the same noise power, Miller strakthod yieldsP, ~ 3.3 x 1073,
Thus, both techniques exhibit similar performance undisr\bry specific scenario. Testing under other

circumstances is left open for future research.

D. Coarse Quantization: JPEG Compression

We compare next in Fig. 9 the performance of DC-DM under thars® quantization attack given
by JPEG compression, using the symmetric and asymmetherdidiscussed in Section V. In the plot,
the probability of bit error is plotted versus the qualitctiar QF used to compress the watermarked
signalLena using JPEG. Embedding takes place in & 8 block-DCT domain. In order to obtain the
theoretical results we have used the CLT-based approximaiid assumed a Laplacian distribution for
the host signal, which correspondsde- 1 in (29). This approximation explains the small discrepasci
between the theoretical and empirical results, which areenswident for3* as the convergence of the
decision statistic to a Gaussian is slower with weighting. iAcan be seen, the use of an asymmetric
dither yields superior performance, even considering ithnatnot possible to use the optimal weights in

this case.

VIlI. CONCLUSIONS

Quantization-based methods have opened the gate to higlitata-hiding and watermarking applica-
tions. Distortion-Compensated Dither Modulation with fonin scalar quantizers and repetition coding
is probably the simplest algorithm for robust informed eddiag. For this reason, it is likely to become
an increasingly popular method in the near future. Morecasrwe have shown, repetition coding is a
reasonable choice for concatenation with more powerfulrgpdchemes, such as turbo codes.

This paper comes to fill an existing gap in the theory of DC-DNMhwepetition coding. Firstly, we

have shown how to modify the basic method to take into accpenteptual shaping. Secondly, we
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Fig. 9. Empirical and theoretical performance wheena is watermarked with DC-DM in the DCT domain and JPEG-
compressed with quality factor QF, for symmetric and asymmeithers. L = 10, payload= 2252 bits, v = 0.5.

have provided a complete discussion of the several decadiamatives, including ML lattice decoding
and Euclidean distance decoding. A thorough analysis ofbiheerror rate has been also presented.
This analysis, based on the key idea of projecting all theloem variables onto the positive orthant,
includes two procedures for thexact computation of the BER as well as several approximations and
bounds with theoretical value. Furthermore, we have pregdsvo important enhancements: the use
of decoding weights, which can be approximately optimizeainks to our novel theoretical analysis,
and the application of a vectorial distortion compensaparameter. Together, they produce significant
improvements as it has been shown both analytically and razally. A comparison with STDM-like
methods revealed that, even though the latter perform rbatider additive noise, DC-DM is much
more robust against cropping attacks. Finally, we haveneddd our methodology to the case of coarse-
guantization attacks such as JPEG, and discussed the agegarbrought about by asymmetric dither
vectors. Results averaging error probabilities over resges have been reported as well, showing the
accuracy of our theoretical analyses. A comparison witHdvligt al.’s trellis-based embedding has been
carried out, evidencing that DC-DM with repetition and amesturbo code achieves similar performance.
Some of the proposals made in this paper, such as the emphyhdecoding weights and varying
distortion compensation parameters, can be easily extetal®ther quantization-based methods with
perceptual constraints. Nevertheless, in order to avaal}caumerical optimizations, it is of paramount

importance to have good analytical approximations to trerelé performance measures. We expect that
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the guidelines here proposed be extended to more sophestitattices and/or coding schemes.

APPENDIX

We derive next the characteristic functidf+ (u;") required for computing®. in front of Gaussian

noise following Beaulieu’s method. Lety, = "AN% be the standard deviation of the Gaussian attack after

the normalization by\;. Taking into account (7), (8) and (16), the pdf (dﬁ can be written as

N
for () = —Q(M)] if0<uf <1, .

oG,

0, otherwise

L

with p; £ 1=£. For the sake of simplicity we defink/; £ U—+ whose characteristic function is
N Uci Uci

[e.e]
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with §; £ % It is straightforward to see thd{,;+ (w) = Fi, (w-0g,). The erf-) function is defined as

2 z 2 22,’ 1 3
flz) = —= R = M (2,2, =22
erf(z) ﬁ/o © VT <2’2’ Z>’
with z € C, (31)



33

with M (-,-,-) the Kummer confluent hypergeometric function of the firstdkifhe evaluation of (30)

presents numerical problems due to the evaluation of (3kiciwis computed as

2

erflx +iy) ~ erf(x) + eT[(l — cos(2zy) + isin(2zy)]

2mx
2 - s e’”2/4 i
+ e ;m[fn(%y) + ign(,y)],
where
fu(z,y) = 22— 2xcosh(ny) cos(2zy) + nsinh(ny) sin(2zy),
gn(z,y) = 2xcosh(ny)sin(2zxy) + nsinh(ny) cos(2zy).
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