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Abstract

An exhaustive analysis of the distortion-compensated dither modulation (DC-DM) data-hiding method

with repetition coding is presented. Two decoding strategies, ML lattice decoding and Euclidean distance

decoding, are discussed and some simplifications presented. An exact performance analysis in terms of

the bit error rate (BER) is given; such an exact analysis is currently not available in the literature. Two

methods for computing the exact BER and several approximations and bounds, most of them in closed

form, are provided. These approximations are employed to propose two novel improvements on the

standard DC-DM method with repetition: the use of a weightedEuclidean distance, with optimizable

weights, and a vector form of the distortion compensation parameter. Both account for significant

performance improvements. DC-DM is compared with quantization methods in the projected domain,

showing worse performance against additive noise attacks,but higher robustness to cropping attacks. A

performance analysis of DC-DM under coarse quantization, that can be specialized to JPEG compression

is also supplied. All our results are validated with numerical simulations with both synthetic data and

real images.
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On Distortion-Compensated Dither Modulation

Data-Hiding with Repetition Coding

I. INTRODUCTION

Research in data hiding has redoubled efforts since the turning point entailed by the embracement

of the side-informed approach. The first rigorous appearance of side information in watermarking only

took place when Chen and Wornell [1] demonstrated that theirDistortion-Compensated Quantization

Index Modulation (DC-QIM) method embodied the same desirable features as a scheme for canceling

known interference introduced more than a decade before by Costa [2]. Thus, it was first shown that data

hiding with side informationonly at the encoder —i.e., blind data hiding— was possible with the same

performance attainable when that side information was alsoavailable at the decoder.

The basic procedure of DC-QIM involves the quantization of agiven host signal using a multidimen-

sional quantizer selected from a finite set by the message to be embedded. A fundamental feature is that the

watermarked signal is obtained by adding back to the quantized host signal the quantization error scaled

depending on an optimizable parameter. Thisdistortion compensation is what makes DC-QIM equivalent

to Costa’s scheme, as a proper choice of the parameter is known to yield the non-blind achievable rate

under additive white Gaussian distortion independent of the host [3], [2]. Chen and Wornell also gave

the first proposal to put DC-QIM in practice with Distortion-Compensated Dither Modulation (DC-DM),

a particular case in which the set of quantizers are dithered(shifted) versions of a basic one. Due to the

implementation and design issues associated to multidimensional quantizers, this basic quantizer usually

relies on the Cartesian product of scalar lattice quantizers. DC-DM based on uniform scalar quantization

is straightforward to implement and more easily amenable toanalysis than other more complex settings.

A number of additional works have also aimed at building practical methods based on Costa’s result.

Among them we have the Scalar Costa Scheme (SCS) [4] and the Scaled Bin Encoding (SBE) [5] —

which are completely equivalent to DC-DM with uniform scalar quantizers—, the continuous periodic

functions for self-noise suppression (CP-SNS) [6], and others.

Although DC-DM with uniform scalar quantizers is a suboptimal side-informed scheme, it is well

known that has an achievable rate often acceptably close to the ideal limit [3], [4]. Nevertheless,

performance analyses for the probability of decoding errorof DC-DM are scarce, and usually either

incomplete or inexact. Among previous attempts, we may citefirst those ones devoted to determine the
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decoding performance of DM, i.e., without distortion compensation [7], [8], [9]. Also, upperbounding

strategies to DC-DM with repetition coding were studied in [10], whereas an approximation to the bit

error rate of generic DC-QIM methods is also given in [3]. In order to contribute to this research area, the

main objective of this paper is to provide a thorough analysis of DC-DM with uniform scalar quantizers

and repetition coding, presenting accurate theoretical approximations and bounds to the bit error rate at

the decoder. Building on our analysis, we also propose enhancements on this standard scheme, both by

means of optimizable weights on the standard Euclidean-distance lattice decoder, and by introducing a

novel vectorial structure for the distortion-compensation parameter. Finally, we analyze the behavior of

the method under coarse quantization.

a) Notation and Framework: We will denote scalar random variables with capital letters(e.g.,

X), and their outcomes with lowercase letters (e.g.,x). The same notation criterion applies to random

vectors and their outcomes, denoted in this case by bold letters (e.g.,X, x). We assume without loss of

generality that the host signal is represented by a zero-mean random vectorXo = (Xo
1 , · · · ,Xo

N )T . If

necessary, these particulars can always be achieved by subtracting any non-zero mean from the host, and

by using an arbitrary bijective transformation from the original arrangement of the host signal samples to a

unidimensional one. Before embedding we apply a key-dependent pseudorandom permutationΠ(·) to Xo.

The permuted hostX , Π(Xo) is partitioned intoM subvectorsXj , (XL·(j−1)+1, · · · ,XL·(j−1)+L)T ,

for j = 1, · · · ,M , and assuming for notational simplicity thatL , N/M is integer. Apart from the

security increase due to the uncertainty that this permutation procedure causes to an attacker unaware

of the key, an important side advantage is that of facilitating the analysis. This is due to the fact that

the pseudorandom selection of the elements in each subvector Xj approximately grants their statistical

independence. This hypothesis of approximate independence usually holds true for natural signals, as

long asL is not of the same order asN . Moreover, we will show in Section IV-D that the pseudorandom

partitions above are also advantageous from a performance point of view.

The watermarked signalY will be obtained from both the host signalX and the information message

b to be conveyed. We will assume, once again without loss of generality, thatb = (b1, · · · , bM )T is a

P -ary vector, withbj taking values uniformly in{0, · · · , P − 1} for j = 1, · · · ,M . A particular symbol

bj will be embedded using the subvectorXj to getYj. As all the subvectors are obtained the same way,

notice that we will only need to focus our attention on one arbitrary subvector for analytical purposes.

In particular, note that the average host signal power in each partition will tend to be approximately the

same asL increases. Denoting this value asDh, and using the intra-partition independence assumption,
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we can writeDh ≈ D
(j)
h = 1

L

∑j·L
i=(j−1)·L+1 σ2

Xi
, j = 1, · · · ,M , whereσ2

Xi
, Var{Xi} and D

(j)
h

denotes the average host signal power in thej-th partition.

The imperceptibility of the differences betweenX andY has to be guaranteed by means of a perceptual

analysis of the host signal previous to the embedding operation. This procedure is intrinsically dependent

on the type of host signal in question. Due to this fact, we will consider henceforth that the host is a

multimedia signal given in a certain domain of interest. Theonly requirement is that the domain chosen

is suited to compute aperceptual mask α, taking into account human perceptual features. We assume

in the following that the maximum energy for an unnoticeablemodification of the corresponding host

signal sampleXi is proportional toα2
i .

Before closing this section, we need some basic concepts about lattices [11]. Let‖ · ‖ denote the

Euclidean norm. Given a (possibly translated) latticeΛ in anL-dimensional Euclidean space, we associate

to it its nearest-neighbor quantizerQΛ(·) which is defined in such a way that, for an arbitrary vector

x, it yields QΛ(x) ∈ Λ, such that‖x − QΛ(x)‖ is minimum. Given a latticeΛ, let V(Λ) denote the

quantization region associated with that centroid ofΛ located at the origin. Then, we will writex mod Λ

to denote the vector(x − QΛ(x)) ∈ V(Λ).

The remainder of this paper is organized as follows: SectionII presents the standard DC-DM method

with uniform scalar quantizers and repetition coding, and discusses two main decoding strategies: maxi-

mum likelihood (ML) lattice decoding and Euclidean distance decoding, with some useful approximations.

Section III is devoted to providing a complete analysis of the performance of the scheme in terms

of its bit error rate (BER), with several approximations andbounds. Standard DC-DM is improved

in Section IV with the proposal of weighted Euclidean distance decoding and a vectorial distortion

compensation parameter. We show that the weighting allows for near-ML decoding, and we give a

geometrical interpretation of this improvement. In addition we show that the vectorial compensation

parameter is profitable in the realistic case of varying watermark-to-noise power ratio at each host signal

sample. Section V focuses on the adaptation of our theoretical analysis to coarse-quantization attacks,

mainly JPEG compression. Empirical results validating ourtheoretical derivations and a comparison with

trellis-based embedding are presented in Section VI, and our main conclusions summarized in Section VII.

II. DC-DM WITH UNIFORM SCALAR QUANTIZERS

We describe next the implementation of DC-DM, generalizingChen and Wornell’s proposal [3] to

account for perceptual constraints as done in [9]. We restrict our presentation to any of theL-dimensional

subvectors inside which the host signal samples can be assumed independent, dropping the subindexj in
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the sequel for notational simplicity. Let us assume that theinformation symbolb is hidden using DC-DM

inside the hostX. Then, we denote by

E , Qb(X) − X, (1)

the quantization error resulting from quantizingX with the quantizerQb(·) corresponding to theb-th

symbol, which is based on a minimum Euclidean distance criterion. The watermarked signalY is then

obtained as

Y = X + νE = Qb(X) − (1 − ν)E, (2)

The distortion-compensation parameterν, 0 < ν ≤ 1, is an optimizable variable akin to the one in Costa’s

paper. The component(1−ν)E may be termed as self-noise, since it is caused by the watermarking process

itself due to the distortion compensation. As we will see in Section IV-A, performance improvements

are obtained by usingν < 1, i.e., allowing a certain degree of self-noise.

Dither modulation means that all the quantizersQb(·) are just shifted versions of a basic quantizer

QΛ(·). The offset for obtaining each one of these quantizers is a dither vectorv(b) that depends on both

a secret key and the message to be sentb. Then, the quantizerQb(·) can be put as

Qb(X) = QΛ (X− v(b)) + v(b). (3)

As aforementioned, the simplest and more widespread implementation of DC-DM is the one by

means of uniform scalar quantizers [3], [7], [12], [4], [8].In this caseQΛ(·) may be defined as the

quantizer whose quantization centroids are given by the points in the latticeΛ = PΛ′, with Λ′ ,

(∆1Z,∆2Z, · · · ,∆LZ)T . We will impose the criterion that the dither vectorsv(b) are such that the

distance between the closest centroids of the quantizers corresponding to any two different symbols is

maximized. This just means that, for instance,v(b) = b ·(∆1, · · · ,∆L)T +d, whered is a key-dependent

vector deterministically known to both encoder and decoder. This strategy increases the robustness of

the embedding by placing the centroids as far away as possible. Also, the resultant symmetry allows to

assume an arbitrary embedded symbolb for the analysis, as we will see later.

Notice that, forL > 1, this particular choice of the dither vectors amounts to using a repetition

code. It is well known that, even though it is useful in many practical situations (e.g., see [7], [12],

[8]), this channel coding strategy is not the optimal one. Itis pertinent to note that an empirical study

on the concatenation of repetition coding for SCS (DC-DM) with near-optimal turbo codes was given

in [4]. From the results in that work, it is possible to conclude that the concatenation of turbo codes and

repetition is quite close to the capacity limit for Gaussianchannels at low embedding rates. Then, the
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appeal of this scheme lies in the fact that it presents evident advantages from the complexity point of

view yet keeping quite a good performance. This result adds an interesting practical perspective to the

analysis of DC-DM with repetition coding. In Section VI we will provide additional empirical evidence

on the usefulness of the concatenation of this scheme with anouter turbo code, using a channel model

resulting from our analysis.

In order to keep the exposition simple we will only study the caseP = 2 (i.e., binary), but the approach

we will follow can be extended for arbitrary alphabet sizes.We remark that, to the best of our knowledge,

a rigorous performance analysis in terms of probability of error is not available even for this relatively

simple case. For the binary case, the quantization centroids for Qb(·) will be given by the shifted lattice

Λb = 2Λ′ + b · (∆1, · · · ,∆L)T + d, for b ∈ {0, 1}.

The use of scalar lattices inherently introduces an amplitude-limited embedding distortion. Since we

can write (1) asE = (v(b)−X) mod Λ, it follows thatE will be uniformly distributed overV(Λ) when

v(b) is a deterministic vector if and only ifX mod Λ satisfies the same condition (uniform condition).

For typical continuous distributions this will be the case if σXi
≫ ∆i for all i. Due to perceptual

constraints, for most watermarking scenarios the uniform condition will approximately hold, and hence

we will assume hereafter thatσXi
≫ ∆i for all i, and so thatEi ∼ U(−∆i,∆i].

Noticing that the watermark signal is given byW = Y − X = νE, it is clear that its energy per

dimension will be E{W 2
i } = ν2∆2

i /3. According to the perceptual mask assumed in the previous section,

we can achieve the maximum unnoticeable embedding distortion by choosing∆i to be proportional toαi.

Last, the embedding distortion in the subvector under analysis is defined asDw , 1
L

∑L
i=1 E{W 2

i }.

A. Attack Channel

Decoding is accomplished by the receiver after the watermarked signaly has undergone an attack

channel. Throughout most of the paper —with the remarkable exception of Section V— we will assume

that this channel is a zero-mean additive probabilistic channel independent ofX and b, yielding a

received signalZ = Y + N. This type of channel model has been consistently used for benchmarking

purposes in most relevant data hiding research. Recalling that the elements of theL-length subvectors are

pseudorandomly chosen through the permutationΠ(·), we may also assume that the samples inN are

mutually independent, with diagonal covariance matrixΓ = diag(σ2
N1

, · · · , σ2
NL

). Thechannel distortion

Dc can be then defined in a similar fashion as the embedding distortion, i.e., Dc , 1
L

∑L
i=1 σ2

Ni
. We

would like to remark that this kind of measurement would in principle allow to concentrate all the

attacking distortion on a single sample ofY or spread it over all the vector. This freedom to distribute
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distortion hints at the poor connection existing between perceptual issues and this kind of mean square

error (MSE) distortion measurements.

Nevertheless, we will undertake all subsequent analyses using MSE, as this criterion has been the

most employed in the literature so far for the sake of tractability. Notice, for instance, that the hypotheses

of Costa’s result are stated for this type of restriction. Inany case, an attacker may try to partially

relieve the intrinsic inconveniences of MSE in order to comply with the usual requirement of minimal

perceptual impact of the attack. Assuming the adequacy of the perceptual mask, it is clear that one way

to meet this condition is toperceptually shape the added noise, such that its variance at each dimension is

proportional to the corresponding allowable perceptual energy. Last, we will find it useful to introduce the

watermark-to-noise ratio as WNR, Dw

Dc
, that relates the power of the embedding and channel distortion,

establishing a working point similar to the signal-to-noise ratio (SNR) in communications.

B. Modulo-Lattice Equivalent Noise

Without loss of generality, and assuming hereafter that allembedded symbols are equally likely, we

will focus our analysis on any given symbolb. The optimal decoding criterion that minimizes the bit

error rate is the ML decision given by

b̂ = arg max
b∈{0,1}

fZ|B(z|b). (4)

According to the preceding exposition, the samples inZ can be assumed to be mutually independent, so

we can expand (4) as

b̂ = arg max
b∈{0,1}

L
∏

i=1

fZi|B(zi|b)

= arg max
b∈{0,1}

L
∏

i=1

∫ ∞

−∞
fYi|B(zi − ri|b)fNi

(ri)dri,

wherefYi
(·) andfNi

(·) are the probability density functions (pdf) of the independent random variables

Yi and Ni, respectively. The main drawback of this approach is that itrequires prior knowledge about

the host signal pdf. Also, the ML approach to DC-DM decoding can be too costly since we have to take

into accountfXi
, the sent bit and the dither in order to computefYi

. Therefore, simplifications to it are

desirable. One such simplification, which we will assume throughout the remainder of the paper, is lattice

decoding. Lattice decoding rules can be seen as operating over variables that are reduced modulo-Λ. In

our case, the decision will be based on the statisticsz̃i ,
zi−Q0(zi)

∆i
, i = 1, · · · , L, whereQ0(zi) is thei-th

component ofQ0(z). From the way it is constructed, it is clear thatz̃i ∈ (−1, 1]; this leads to considering
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modulo-2Z
L vector reductions, for which the result belongs to(−1, 1]L. Also, the normalization in the

definition of z̃i is reasonable if we assume that the channel noise is perceptually shaped, as in that case

its variance will be roughly proportional to∆2
i .

Let f ˜Z
(z̃) denote the pdf of̃Z. Then, the ML lattice decoder will choosêb according to the rule

b̂ = arg max
b∈{0,1}

f ˜Z|B(z̃|b). (5)

Erez and Zamir showed in [13] that lattice decoding (as a lesscomputationally demanding alternative

to maximum likelihood decoding) can achieve capacity undercertain conditions. In fact they proved this

result for both the ML lattice decoder (also termed by the authors noise-matched lattice decoder) and

the Euclidean lattice decoder.

As we shall see in Section III, performance analysis requires to determine the distribution of the noise

in the decision statistics, which we tackle next. Let us define thetotal noise random variable as

Ti ,
−(1 − ν)Ei + Ni

∆i
. (6)

Recalling that if X,Y are two random variables related byY = aX, their pdfs satisfyfY (y) =

|a|−1fX(y/a), and that the pdf of the sum of two independent random variables is the convolution

of the respective pdfs, we can write

fTi
(ti) =

∆2
i

(1 − ν)
[fNi

(ti∆i) ∗ fEi
(ti∆i/(1 − ν))] , (7)

where∗ denotes convolution, andEi ∼ U(−∆i,∆i], for all i = 1, · · · , L. Now, themodular total noise

random variableU is simply defined asU , T mod 2Z
L.1 Consequently, the support ofUi will be the

interval (−1, 1], for all i = 1, · · · , L.

Considering (6), the pdf ofUi can be written as

fUi
(ui) =







∑∞
l=−∞ fTi

(ui − 2l), if ui ∈ (−1,+1]

0, otherwise
.

(8)

Alternatively,fUi
(ui) can be written asfUi

(ui) = ∆2
i

(1−ν) [fNi
(ui∆i) ⊛2 fEi

(ui∆i/(1 − ν))], with ⊛2 the

circular convolution over(−1, 1], which includes the aliasing effect evident in (8). For any two arbitrary

1Note thatU is not the same as̃Z, since the latter will depend on the bit sent.
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pdfs fB(x) andfC(x) this operation is defined as

fB(x) ⊛2 fC(x) ,































∑∞
l=−∞

∫ ∞
−∞ fB(y − 2l)fC(x − y)dy,

−1 < x ≤ +1,

0,

otherwise

,

A similar technique has been used in [4] to show the independence of the quantization error and the host

signal when a uniform dither is used. In [4] the role of the circular convolution is played by the sampling

of the characteristic function with periodπ. This sampling has an aliasing effect, since it is equivalent

to the convolution in the time domain with an impulse train with period2.

When the symbolb is embedded, it is clear from (2) that the decision statistics will take the formz̃i =

Qb(xi)−(1−ν)ei+ni−Q0(zi)
∆i

mod 2Z = (ui + b) mod 2Z, for all i = 1, · · · , L, or, in short,z̃ = (u + b1)

mod 2Z
L, where1 is a vector ofL ones. Equivalently,u = (z̃− b1) mod 2Z

L. Then, the decision rule

in (5) is equivalent to decidinĝb = 0 whenever

fU(z̃) > fU
(

(z̃ − 1) mod 2Z
L
)

, (9)

and b̂ = 1 otherwise.

1) An Approximation to the ML Lattice Decoder: In [14] Forney et al. provided useful approximations

to the pdf of a modulo-reduced —or aliased— Gaussian pdf. Thesame approach can be followed to

write an approximation of the pdf of themodular total noise random variableUi, defined in (8) and

needed in (9) for ML lattice decoding.

Recall from (7) that, forNi ∼ N (0, σ2
Ni

), the pdf ofTi is just the convolution of a Gaussian with zero-

mean and varianceσ2
Ni

/∆2
i , and a uniform pdf in(−(1−ν),+(1−ν)]. Pursuing the sort of approximations

proposed in [14], it is possible to conclude that:

- For σTi
≪ 1, the contributions in the summation in (8) forl 6= 0 are negligible. The most significant

part of the pdf ofTi is concentrated in the interval(−1,+1], so the aliasing effect can be neglected.

ThereforefUi
(ui) can be well approximated byfTi

(ti).

- For σTi
≫ 1, it is possible to consider thatTi follows a Gaussian distribution withσ2

Ti
= σ2

Ni
/∆2

i +

(1 − ν)2/3. Now the pdffUi
(ui) becomes nearly constant due to the strong aliasing. Observethat

since
∑

l fTi
(ui − 2l) in (8) is periodic if we do not restrictui to lie on (−1,+1], it makes sense to

expand it in terms of its Fourier series and then truncate it to this interval. Forney et al. suggested

approximating this function by keeping the low-frequency terms of this expansion.
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The computation of the Fourier series expansion of a periodic function on a lattice can be performed

by using the dual of that lattice [11]. As in our caseUi is obtained by means of the lattice2Z, the

corresponding dual lattice is simply given byZ/2, and so the desired pdf can be expanded as [14]

fUi
(ui) =

1

2

∑

k∈Z

exp (−π2σ2
Ti

k2/2)ej2πkui/2,

−1 < ui ≤ 1. (10)

The DC and fundamental frequency terms in this expansion correspond tok = 0 andk = ±1, respectively.

Keeping just these two terms in (10), we can writefUi
(ui) ≈ 1

2

(

1 + 2e(−π2σ2
Ti

)/2 cos(πui)
)

, for −1 <

ui ≤ 1. The usefulness of this approximation is illustrated in Section IV-C, where a geometrical

interpretation of lattice ML decision regions is provided.

2) Euclidean and Weighted Euclidean Distance-based Lattice Decoder: Despite the complexity re-

duction from ML decoding to ML lattice decoding and the further diminution brought about by Forney’s

approximation, it is desirable to seek even simpler decoding strategies. In this section we discuss lattice

decoding based on the Euclidean distance.

When each dimension is normalized by its quantization step,Euclidean lattice decoding can be written

as

b̂ = arg min
b∈{0,1}

‖∆−1(z − Qb(z))‖2, (11)

where∆ , diag(∆1, · · · ,∆L). This approximation is tantamount to choosing theb whose associated

shifted latticeΛb yields the minimum normalized quantization error. Minimumdistance decoding of DC-

DM was in fact part of the original proposal of DC-DM in [3]. Itis also used in [7], [8], and in [4] for

the equivalent Scalar Costa Scheme (SCS).

To see the relationship between this decoding strategy and ML lattice decoding, letS , {±1}L.

Recalling the definition of̃z, it is clear that forb = 0, ‖∆−1(z − Qb(z))‖ = ‖z̃‖, while for b = 1,

‖∆−1(z−Qb(z))‖ becomes‖z̃−s‖, wheres ∈ S is such that‖z̃−s‖ is minimum. Putting this together,

we can rephrase the decoding rule in (11) as decidingb̂ = 0 if

‖z̃‖2 < min
s∈S

‖z̃ − s‖2, (12)

and b̂ = 1 otherwise.

But now, the vectors minimizing the norm in the right hand side of (12) is such thatit also satisfies

(z̃ − s) = (z̃ − s) mod 2Z
L. Thus, the parallelism between (12) and (9) is clear if one considers that

the modulo-2Z
L operation maps the setS onto vector1, i.e., for all s ∈ S, (z̃− s) mod 2Z

L = (z̃−1)

mod 2Z
L.
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In fact, the two decoding rules would be equivalent if the modular total noiseU had Gaussian

independent and identically distributed (i.i.d.) components. It is convenient to examine under which

conditions this latter property would hold. First, in orderto neglect overlaps of the shifted versions of

fTi
in the construction offUi

in (8), it is required thatσTi
≪ 1 for all i. Second, for theTi to be i.i.d.

Gaussian, a necessary and sufficient condition would be thatν = 1 (i.e., there is no self-noise) and that

the noise componentsNi are independent Gaussian, with variances proportional to∆2
i for all i. Notice

that in general these conditions will not be satisfied, so Euclidean distance decoding will be suboptimal.

When those conditions are not met, it is useful to modify minimum distance decoding while still

retaining a relatively simple decoding approach by comparison with ML lattice decoding. To this end,

we introduce a weighted Euclidean distance, for which the decoding rule becomes

b̂ = arg min
b∈{0,1}

{

(z − Qb(z))T
∆−1B∆−1 (z− Qb(z))

}

,

(13)

where the weighting matrixB is defined as

B , diag(β1, · · · , βL).

The purpose of these weights is to introduce additional degrees of freedom to improve decoding in practice

when minimum distance decoding is just too far away from optimality. We will show in Section IV-B

how a proper design of the parameter vectorβ allows to improve decoding when additional information

about the channel noise is available. Also, it should be taken into account that the normalization by∆i in

(11) does not entail any loss of generalization or loss in performance, since its effect could be canceled

by βi in any case. Whenever no optimization is attempted,βi = 1 will be set for all i. In this case (13)

becomes equivalent to (11).

III. PERFORMANCEANALYSIS

Next, we will analyze the performance of binary repetition DC-DM in terms of the bit error rate (BER)

at the decoder output. In this section we will consider only the unweighted minimum Euclidean distance

approach to DC-DM decoding, i.e.,B = IL×L, the identity matrix of sizeL, leaving to Section IV-B

the study of the effect of the weightsβ.

Costa’s framework considers i.i.d. channel noise and signal (in our case watermark), which naturally

induces the same distortion compensation parameterν for all dimensions. On the other hand, perceptual

considerations motivate that in our scheme the variances ofboth the channel noise and the watermark
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be in general different for each of the dimensions. Althoughthis setting suggests a vectorial distortion

compensation parameterν —i.e., dimension-dependent—, for the sake of simplicity wewill only deal

with a scalarν in this section, and explore the vectorial possibility in Section IV-A.

From (13) we can see that decoding is equivalent to quantizing z with both the shifted latticeΛ0

and Λ1 and then assigning the value of the bit that yields the smallest (in an Euclidean distance

sense) normalized quantization error. Obviously, this is completely equivalent to quantizing(∆−1z)

with (∆−1Λ0) ∪ (∆−1Λ1) following also a minimum Euclidean distance criterion.

It can be readily seen that the probability of decoding errordoes not depend on the actual embedded

bit. Let us assume then thatb = 0 is sent, sõZ = U. Hence, taking (12) into account, an error happens

whenever

||u||2 > min
s∈S

||u − s||2. (14)

The minimization in (14) is equivalent to seeking the closest centroid tou among the shifted lattice

corresponding tob = 1. The decoding region given by (14) is a generalized octahedron [11] whose

vertices are those vectors having only one non-zero component with value±L/2.

Therefore, a decoding error will happen if and only ifu lies out of this generalized octahedron. Due

to the symmetry of the octahedron in all the orthants with respect to the origin, it is reasonable to project

the random variableU onto the positive one, to constructU+
i , |Ui|, 1 ≤ i ≤ L, and then proceed to

determine the probability of being closer to the vertexs1 , 1 ∈ S, than to the origin. This probability

is thus the probability of bit error, which can be written as

Pe = Pr{‖U+‖2 > ‖U+ − 1‖2} = Pr

{

L
∑

i=1

U+
i > L/2

}

.

(15)

The evaluation of this expression requires the pdf ofU+
i , 1 ≤ i ≤ L, which is just

fU+
i
(u+

i ) ,







[

fUi
(u+

i ) + fUi
(−u+

i )
]

, if 0 ≤ u+
i ≤ 1

0, otherwise
,

1 ≤ i ≤ L. (16)

Therefore, if we define the variable

R ,

L
∑

i=1

U+
i , (17)

then from (15), the computation ofPe is equivalent to integrating the tail of the pdf ofR from L/2 to L.
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Even though formula (15) allows us to determine theexact probability of bit error, its computation is

very expensive for largeL. This motivates the proposal of two numerical approaches for its calculation,

which are discussed in Sections III-A and III-B. On the otherhand, neither formula (15) nor these practical

methods provide closed-form expressions, making it difficult to extract conclusions of theoretical value.

For this reason, Sections III-C and III-D are devoted to discussing analytical approximations and bounds

respectively.

A. Beaulieu’s Approach

In this section, we adapt a technique proposed by Beaulieu [15] for computing the tail probability of

the summation ofL i.i.d. random variables, as it occurs in (15). This technique was already used in [9] to

upperbound the bit error probability of DM. Letωl , 2πl
T for any positive integerl, with T a large enough

real number, and letFU+
i
(ω) be the characteristic function ofU+

i , given byFU+
i
(ω) =

∫ 1
0 ejωufU+

i
(u)du.

Then, the computation ofPe is made, following [15], as

Pe ≈
1

2
+

2

π

∞
∑

l=1

l odd

∏L
i=1 |FU+

i
(ωl)| sin(

∑L
i=1 φi(ωl))

l
, (18)

whereφi(ω) is defined asφi(ω) , arg{FU+
i
(ω)} − ω/2, with arg(·) denoting the four-quadrant phase.

The main drawback of this method is that it is rather computationally demanding, apart from the fact

that it may present numerical problems due to the large values that could be involved in the summation

of a truncated version of the series in (18). In the appendix the expressions of the functions required for

computing (18) for a Gaussian channel noise are derived.

B. DFT Method

Since theU+
i in (17) are independent random variables, the pdf ofR is just the convolution of the

pdfs of U+
i , 1 ≤ i ≤ L. This computation can be efficiently done in the Discrete Fourier Transform

(DFT) domain. To that end, letΦU+
i

, DFTLK

(

K · fU+
i
(k/K)

)

be theL × K-point DFT of the

sequence obtained by samplingfU+
i
(τ) at τ = k

K , with k = 0, · · · ,K − 1. Using this definition it is

straightforward to writeΦR[m] =
∏L

i=1 ΦU+
i
[m], m = 0, · · · , LK − 1. Finally, the discretized pdf of

R is obtained using the Inverse Discrete Fourier Transform (IDFT) asfR = IDFTLK(ΦR), and (15) is

computed as

Pe ≈
LK−1
∑

k=⌈L(K−1)+1

2 ⌉
fR[k],
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where the limits of this summation stand forR = L/2 andR = L in the corresponding integral. The

accuracy of the computation can be increased by using a larger value ofK, i.e., by sampling more finely

the pdfs involved in the calculation.

This technique resembles Beaulieu’s approach in that both of them work in a transform domain.

Nevertheless, the DFT method presents a much lower computational cost, without any of the numerical

problems shown by Beaulieu’s approach. This fact makes the DFT method an enticing approach to assess

the performance to any degree of accuracy required.

C. Central Limit Theorem-based Approximation

A third option consists in taking advantage of the independence of the random variablesU+
i in the

summation (17) to invoke the Central Limit Theorem (CLT). This result states that the distribution ofR

will tend to a Gaussian asL → ∞, in which case we may approximate the probability of error as

Pe ≈ Q





L
2 − ∑L

i=1 E{U+
i }

√

∑L
i=1 Var{U+

i }



 , (19)

whereQ(x) , 1√
2π

∫ ∞
x e−

τ2

2 dτ .

The main advantage of CLT-based approximation is that it gives a closed expression forPe, which can

be exploited for analytical purposes (see Section IV-B). Although this method to computePe is much

simpler than the previous ones, some remarks are due. First,for small values ofL it could entail problems

in the convergence ofR to a Gaussian. One factor that speeds up convergence is the similarity between

the distributions of the summands. Also, and as discussed in[10], note that the process of building

the one-sided distributionsfU+
i
(u+

i ) may produce highly skewed pdfs whose convolution convergesvery

slowly to a Gaussian distribution. If this is the case, the Gaussian approximation toPe may underestimate

the importance of the tails offR(r).

Last, although analytical expressions of E{U+
i } and Var{U+

i } are available in closed form whenNi

follows a uniform distribution, in general the explicit computation of these statistics may require numerical

integration. Therefore, it is recommended to use the DFT method for obtaining numerical results, as it

gives a higher degree of accuracy.

D. Bounds on Pe

In this section we discuss several other known bounds on the bit error probability.
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1) Erez and Zamir’s Bound: Erez and Zamir have recently proposed a method that can be accom-

modated to upperbound the probability of error of binary DC-DM when performing Euclidean lattice

decoding —i.e., minimum distance decoding— under AdditiveWhite Gaussian Noise (AWGN) channel

distortion [13]. LetW = V
(

{2Z
L} ∪ {2Z

L + 1}
)

denote the region associated to a right decision, i.e.,

Pe = Pr{U /∈ W}. Then, it is possible to writePe ≤ Pr{T /∈ W}. Erez and Zamir’s procedure may be

used to construct an upper bound on the latter probability that depends onDw, Dc, Λ and L. In turn,

this obviously upperboundsPe. Unfortunately, the bound turns out to be rather loose for our particular

problem (see Section VI); for this reason, we will omit the details of its implementation.

2) Union Bound and Nearest Neighbor Approximation: The classicalunion bound (UB) is based on

adding the pairwise probability of mistaking the transmitted centroid with each of its nearest neighbors

corresponding to a wrong decision. The possible overlaps ofthe error regions associated to each of these

error events are disregarded in this computation, and this is the reason why it produces an upper bound.

When the WNR is increased these overlaps diminish, and so thebound gets closer to the true value.

As in our implementation of DC-DM we are using uniform scalarquantizers, there are2L nearest error

neighbors. Thus, assuming that the pdf of the channel distortion is symmetric, the union bound may be

computed as

Pe ≤ Punion = 2L · Pr{‖U‖2 > ‖U − 1‖2}

= 2L · Pr

{

L
∑

i=1

Ui > L/2

}

,

where the last probability can be obtained by means of any of the methods in Sections III-A–III-C,

similarly to what is done with (15). Alternatively, forL large enough, we can compute an approximation

applying the Central Limit Theorem. To this end, we just needto compute the variance of the zero-mean

random variable whose pdf is the circular convolution of thechannel noise and the self-noise. Note that

due to the approximation implicit in the CLT, we can no longerensure that the result is a bound, but an

approximation to the bound, which will be asymptotically good asL → ∞. This approximation is given

by

Pe ≈ 2L · Q





L

2
√

∑L
i=1 Var{Ui}



 . (20)

In contrast to Section III-C, ifNi is symmetric about the origin the involved pdfs (i.e., thoseof fUi
(ui))

are also symmetric, so their convolution will converge morequickly to a Gaussian distribution.

Following the previous guidelines for the union bound we mayalso approximate the bit error probability

using the nearest neighbor distance sketched in [3]. The estimate therein assumes Quantization Index
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Modulation without distortion compensation and additive white Gaussian noise. This result may be

improved by replacing the real Gaussian pdf with a Gaussian with variance the sum of those corresponding

to the channel noise and the self-noise, what yieldsPe ∼ Q
(

L

2
√P

L

i=1 Var{Ui}

)

.

Following the discussion in [16] on the validity of the CLT, it is necessary to check against empirical

results all the CLT-based approximations and bounds that wehave given in Sections III-C and III-D.2.

This task is undertaken in Section VI-A.

IV. I MPROVEMENTS ONSTANDARD DC-DM

In this section we introduce some improvements in the performance of the DC-DM scheme studied so

far. Specifically, we will deal with the distortion compensation parameter as well as with the decoding

weights.

A. Study of the Distortion Compensation Parameter

The distortion compensation parameterν, may be used in two equivalent ways. Namely, it may reduce

the embedding power by a factorν2 for a fixed lattice, or, alternatively, it may afford an expansion of

the lattice by a factor1ν when the power of the watermark is kept constant. Interestingly, it can be shown

that both lead to the same bit error probability for a given WNR when the power spectral density of the

noise sequence is fixed, save for a multiplicative constant.Therefore, although throughout this paper we

are using a fixed lattice, we should be aware that, when the stated conditions are met, this is equivalent

to the expansion of that lattice for a fixedDw.

The determination of the distortion compensation parameter may be tackled under a number of different

optimization criteria. Obviously, these criteria will in general lead to different values ofν. Probably the

simplest, but also one of the most used, is the minimum mean square error (MMSE) criterion (see [17]).

This criterion was for instance used in [13]. We may also think of optimizing this parameter depending

on the bit error rate. The problem in this case is the lack of closed-form expressions that would allow

to face the optimization problem in an analytical way. Following MMSE, the initial intention would be

to minimize
∑L

i=1 σ2
Ui

; however, due to the aliasing effect, this becomes an unsurmountable problem.

Considering that for large WNRs and large values ofν the modulo operation can be neglected, it is

reasonable to address instead the minimization of

ϕ(ν) ,

L
∑

i=1

σ2
Ti

=

L
∑

i=1

{

σ2
Ni

∆2
i

+
(1 − ν)2

3

}

=

L
∑

i=1

{

ν2ξi

3
+

(1 − ν)2

3

}

, (21)
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for a fixed ξi , σ2
Ni

/E{W 2
i }, i = 1, · · · , N . Note thatξi can be regarded to as anoise to watermark

ratio for the i-th dimension. Functionϕ(ν) above can be easily seen to be minimized at

ν∗ =
1

1 + 1
L

∑L
i=1 ξi

.

Alternatively, one may also consider using a different value of ν for each dimension. This yields a

vector of distortion compensation parametersν , (ν1, · · · , νL), so (21) takes now the shape

ϕ(ν) =
L

∑

i=1

{

ν2
i ξi

3
+

(1 − νi)
2

3

}

, (22)

where, as above, the noise to watermark ratio in thei-th coefficient,ξi, is kept fixed. The vector of

distortion compensation parameters that minimizes (22) isgiven now by

ν∗
i ,

1

1 + ξi
,

for all i = 1, · · · , L. Clearly, ϕ(ν∗) ≤ ϕ(ν∗), since the first minimization is a particular case of the

second constrained to a vector with equal components.

It is possible to regard the distortion compensation effectof the vector case as a Wiener filtering with

matrix A∗ , diag(ν∗). This is so because all the self-noise elements corresponding to the components of

ν∗ are mutually independent, what implies a diagonal filter. Infact, similar solutions have been proposed

by Yu et al. in [18] from an information-theoretic point of view.

Finally, we would like to make some remarks. The performanceimprovement achieved by replacing

ν with ν is compatible with the gain due to using the decoding weightsin (13). Whereasν modifies the

pdfs independently at each dimension, we will see in the nextsection thatβ modifies the weighting of

the dimensions when they are considered together. This factwill be duly shown in the next Section VI-B.

B. Derivation of the Improved Decoding Weights

We turn next our attention to the problem of optimizing the weights introduced in (13). Recall that

the objective of this approach is to improve the performanceof the minimum distance decoder using

additional knowledge about the channel distortion eventually available at the decoder.

Adapting the method followed in Section III to the decoder in(13), it turns out that nowPe can be

written as

Pe = Pr

{

L
∑

i=1

βiU
+
i >

1

2

L
∑

i=1

βi

}

,

which obviously reduces to (15) forβ = 1. Taking into account that any analytical optimization of

the weights requires the availability of a closed-form approximation to Pe, we will discuss here the
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minimization of (19) and (20) when weights are introduced. Starting with the CLT-based approximation,

which we will see that it is very accurate for low values of WNRin Section VI, and under the same

assumptions as in Section III-C, it is possible to write

Pe ≈ Ps1
= Q





1
2

∑L
i=1 βi −

∑L
i=1 βiE{U+

i }
√

∑L
i=1 β2

i Var{U+
i }



 . (23)

Recalling that theQ(·) function is monotonically decreasing, it follows thatPs1
is minimized when

its argument is maximized. Then, the improved decoding weights can be found by differentiating the

argument ofQ(·) in (23) with respect toβi, 1 ≤ i ≤ L. Then, the decoding weights minimizingPs1
are

β∗
i = K ·

(

1
2 − E{U+

i }
)

Var{U+
i } , 1 ≤ i ≤ L, (24)

where K is an irrelevant positive real constant, since the weights vector can be scaled without any

impact on performance. Also, it is very interesting to note that some of theβ∗
i may be negative. This

will happen when E{U+
i } > 1/2, which may occur for large distortions. The effect of a negative weight

can be interpreted as a swapping of the centroids assigned toeach symbol.

As it can be inferred from (24), in order to compute the improved decoding weights, knowledge of

E{U+
i } and Var{U+

i } is required. Note that due to the aliasing and truncation effects that show up in the

construction ofU+, this information is not directly derivable from the first and second order moments

of the total noise random variable.

a) High WNR: As we will see in Section VI (Figure 6), the CLT-based approximation moves away

from the empirical results as the WNR increases. In this casewe can consider to use the union bound (20)

to compute the improved decoding weights, since it is a better approximation to thePe in the present

scenario. Accordingly, the function that we have to minimize now is

Pe ≈ Ps2
= 2L · Q





∑L
i=1 βi

2
√

∑L
i=1 β2

i Var{Ui}



 , (25)

which can be shown to be equivalent to the minimization of
∑L

i=1 β2
i Var{Ui} constrained to

∑L
i=1 βi =

G, for some arbitraryG. Applying Lagrange multipliers we may write the optimization functional as

ϕ(β) =
∑L

i=1 β2
i Var{Ui} − λ

(

∑L
i=1 βi − G

)

. Differentiating it with respect toβi and equating to zero

it is straightforward to see that the minimum of (25) is obtained for

β∗∗
i = K

1

Var{Ui}
,
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for 1 ≤ i ≤ L and any positive constantK. Interestingly, it is possible to show analytically that for large

WNRs β∗ will be nearly proportional toβ∗∗, which justifies the use ofβ∗ also for large WNRs in spite

of the looser approximation employed for its computation.

Notice that, after the optimal weights for the CLT-based approximations have been obtained, it is

possible to resort to a more accurate computation ofPe (such as the Beaulieu’s method or the DFT

approach) by slightly modifying it to take the weights into account. The improvements afforded byβ∗

andβ∗∗ will be empirically shown in Section VI-B.

C. A Geometric Interpretation of the Decoding Strategies

Here we provide a geometric interpretation of the various decoding strategies we have discussed, which

will help to understand the role of the decoding weights and the goodness of Forney’s approximation.

For pictorial reasons, the caseL = 2 is considered here. First of all, we derive the ML decision boundary

based on Forney’s approach whenσ2
Ti

is large. Noticing that from (9) the true ML lattice decoding

boundary is the locus of the points(u1, u2)
T for which fU(u1, u2) = fU((u1 − 1) mod 2Z, (u2 − 1)

mod 2Z), and making use of the approximation in Section II-B.1, we can conclude that in the positive

quadrant this boundary is approximately given by

φ =
{

(u1, u2)
T ∈ [0, 1] × [0, 1] :

(

1 + 2e−π2σ2
T1

/2 cos(πu1)
)

·
(

1 + 2e−π2σ2
T2

/2 cos(πu2)
)

=
(

1 − 2e−π2σ2
T1

/2 cos(πu1)
)

·
(

1 − 2e−π2σ2
T2

/2 cos(πu2)
) }

, (26)

with straightforward extensions to all other quadrants.

Figure 1 shows for the positive quadrant the true ML lattice decoder decision region for̂b = 0

(shaded area) and the approximate decision boundary given by (26). The parameters of this plot are:

σN1
/∆1 = 0.4113, σN2

/∆2 = 0.2530 and ν = 0.5, so σT1
= 0.5025 and σT2

= 0.3838. As it can be

perceived, Forney’s approximation gives a very good estimate of the real boundary. Figure 1 also plots

the decision boundaries that result using (13) withβ = 1, andβ = β∗, which with the above parameters

becomesβ∗
1 = 1.5936 andβ∗

2 = 3.9005. Observe how the use ofβ∗
i leads to a linear approximation of

the true lattice ML decision boundary. Note however, that the ultimate purpose of the weightsβ∗ is not

to yield the best linear approximation of this boundary but to minimize an approximation of the bit error

probability.
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Fig. 1. Comparison of the decision regions for DC-DM (L = 2) obtained using Forney’s approximation, the ML lattice decoder,

and the Euclidean distance decoder withβ∗ andβ = 1.

D. Discussion about the Pseudorandom Choice of the Partitions

Throughout this paper we have been assuming that the samplescomprising thej-th host subvectorXj

were pseudorandomly chosen. Starting from our CLT-based approximations, and using the law of large

numbers, it is possible to theoretically justify the use of such pseudorandom assignment. Due to the lack

of space, here we will only provide an empirical justification.

With this aim, we will consider the particular case of applying DC-DM watermarking to an image

on the mid-frequencies of its8 × 8-block DCT, the transform used in the JPEG standard. Moreover,

we will let the channel noise variance be proportional to thesquared JPEG quantization step (quality

factor QF =80) in each dimension, being this noise uniform. This quality factor is a scalar ranging

from 0 (poor quality) to100 (high quality) used by some implementations of the JPEG compression

algorithm to indicate the quantization table. We have chosen this attack because it is assumed to have a

perceptually-based power distribution (as JPEG quantization steps stem from perceptual considerations),

although it does not follow the same power allocation as the watermark. We will consider two cases for

defining the subvectorsXj : global pseudorandom partitions (i.e., all available coefficients in the same

pool), and frequency-dependent pseudorandom partitions (i.e., each pool consists of those coefficients

with the same frequency indices that come from different blocks).
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Fig. 2. Empirical and theoretical performance obtained with global vs. frequency-dependent pseudorandom partitions, using

DC-DM on the DCT domain with optimally weighted Euclidean distance decoding.L = 20, ν = 0.4, uniform noise, host image

Lena256 × 256, payload =1126 bits.

This last strategy resembles the one used by Ramkumar and Akansu in [19] as well as the parallel

channels studied by Moulin [20] applied to the DCT domain. Inthe former work, the data hiding capacity

of compressed images is analyzed by decomposing an image into M subbands using transform blocks,

thus giving rise toM parallel subchannels. Then, each symbol is only transmitted through a specific

subchannel. With that strategy, all the coefficients devoted to conveying a certain symbol can be assumed

to have the same noise statistics, differently to what happens when the indices are chosen pseudorandomly.

In Fig. 2 the improvement due to the use of global pseudorandom partitions is shown, choosing the mid-

frequencies as in [21] and using the same perceptual mask andattack as in Section VI-B. The theoretical

results were obtained using the DFT method. It is important however to note that a fixed subvector length

has been assumed in this comparison, which clearly puts the frequency-dependent scheme at disadvantage,

because each subchannel will have different host and noise statistics and, thus, different SNR’s. A solution

to this is to use subvector lengths that are also frequency-dependent, at the price of needing additional

knowledge about the channel at both embedder and decoder, something that is not required when global

partitions are used. Additionally, global pseudorandom partitions increase the entropy of the watermark

and hence the security of the system.
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E. Comparison with STDM

Although Spread Transform-Dither Modulation (STDM) [3], Spread Transform-Scalar Costa Scheme

(ST-SCS) [4], and Quantized Projection (QP) [9] techniquesdo not constitute at all the main issue of this

paper, a comparison with DC-DM with repetition coding is pertinent here for the sake of completeness. As

shown in [4] and later confirmed by the authors in [9], STDM-like methods show superior performance

than DC-DM in AWGN channels as the repetitionL (and, equivalently, the spreading factor) increases.

This is experimentally confirmed in Fig. 3(a) using real images as host data. The watermark is embedded

in the mid-frequency coefficients of the8 × 8 block-DCT domain [21] with a fixed Peak Signal to

Noise Ratio (PSNR) of40 dB, and uniform noise is added with standard deviation proportional to the

corresponding JPEG quantization step in each dimension (quality factor QF=80). The figure also shows

theoretical results, obtained using the CLT method in Section III-C for DC-DM and [9] for STDM. We

observe a large gap between both methods for high PSNR’s, butit is necessary to take into account that

ν = 0.4 used in the plot is not the optimal one when the PSNR of the attacked signal is close to40 dB

(large WNR). The optimal projection parametersβ∗ for STDM in Fig 3(a) are the ones derived in [22],

even though other optimization strategies are available (see for instance [23]). A further advantage of

STDM-like strategies, pointed out by an anonymous reviewer, is that they are quite independent of the

particular statistical distribution of each sample, because in most circumstances the projected samples will

look Gaussian (see [23], [9]). Moreover, it is more feasibleto design attacks which render the attacked

samples close to the decision boundary for DC-DM than for STDM.

This said, there are other simple attacks which can be much more detrimental for STDM-like methods

than for DC-DM, as for instance cropping. Whereas for DC-DM the cropping attack is simply equivalent

to decreasing the repetition factorL, which implies a smooth performance degradation, for STDM it can

be seen as adding noise with variance equivalent to that of the removed samples. As this variance is

usually much larger than the watermark variance, STDM performance is severely degraded by cropping2.

The effect of cropping may be seen in Fig. 3(b), that comparesthe performance of both methods after

removing an8-pixels-wide outer frame. These results suggest that a combination of DC-DM and STDM

is a good choice towards a truly robust moderate-rate scheme.

2The influence of the cropping in the BER could be reduced by taking block-wise partitions. Nevertheless, this would

significantly reduce the security of the system.
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Fig. 3. Performance of DC-DM (ν = 0.4) vs. STDM, watermarking the DCT domain of real images; results averaged over

twenty-two256× 256 images, withL = 20 (payload= 1126 bits). (a): Empirical and theoretical results with additive uniform

noise. (b): Experimental results with additive uniform noise after cropping an external8-pixels-wide frame.

F. Performance under Unforeseen Attacks

An interesting problem is posed by the performance analysisof DC-DM when the attack is different

than the one expected by both the embedder and the decoder. Weremind that the available information

about the attack is exploited by them to compute, respectively, the optimal distortion compensation

parameter and the optimal decoding weights. The general problem should be addressed from a game-

theoretic approach, trying to find the optimal attack and theoptimal encoding/decoding strategies, using
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Fig. 4. Experimental performance of DC-DM in the spatial under uniform additive noise applied in the spatial and DCT

domain, withν = 0.4, L = 20 and optimal decoding weight computed taking into account the noise in the spatial domain

(payload= 1126 bits); results averaged over twenty-two256 × 256 images.

a bit error rate payoff in our case. Unfortunately, we have not been able to obtain a solution due to the

cumbersome expressions for thePe.

In any case, it is interesting to observe the performance degradation when there is a mismatch between

the actual attack and the one considered when optimizing themethod. In Fig. 4 experimental results for

this case are shown for a particular case in which DC-DM is applied to the Lena image in the spatial

domain, and the embedder and decoder expect uniform noise inthe same domain. However, the noise

is added in the DCT domain in both cases. In order to set realistic conditions, the uniform noise in

the DCT domain has, at each coefficient, variances proportional to a squared perceptual mask computed

following Watson [24]. Although it can be verified that the energy distribution of the corresponding

inverse transformed noise in the spatial domain differs considerably from the spatial perceptual mask,

we may see that there is only a small performance difference (in fact a gain) with respect to the ideal

case where the noise follows the expected distribution.

V. DC-DM PERFORMANCE UNDERCOARSE QUANTIZATION

In this section we will analyze the performance of DC-DM whenthe watermarked signalY undergoes

coarse quantization, which is quite a common unintentionalattack. Notice that we cannot deal with this

particular attack using the generic methods presented up tothis point, as in this case we cannot assume
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the independence of the channel noise (actually the coarse quantization error). Furthermore, our analysis

will serve to show how to improve the performance of DC-DM under this particular attack.

We assume next that a coarse quantizer with centroids given by the latticeδiZ is applied toyi for all

1 ≤ i ≤ L. The computation of the probability of decoding error relies on knowing the probability mass

function (pmf) ofZi. Notice that this pmf will not only depend on the pdf of the host image, but also

on that of the watermark, which in turn depends on the transmitted bit b and on the ditherdi. In order

to obtain the desired probability we need the upper and lowerlimits of the k-th coarse-quantization bin,

which will be denoted byθ+
ik

, kδi + δi/2 andθ−ik
, kδi − δi/2, respectively. So, the probability thatZi

is equal to thek-th coarse-quantization centroid conditioned to the transmission ofb is

Pr{Zi = kδi | b} = Pr{Yi ∈ (θ−ik
, θ+

ik
] | b}

=

∫ θ+
ik

θ−

ik

fYi
(yi|b)dyi. (27)

We are interested in reformulating this integral in terms ofXi, what requires a change of variable

affecting the integration limits of the expression. This change of variable is not evident, but it can be

obtained in a straightforward manner. First, notice that the DC-DM centroid corresponding to the symbol

b and closest to the upper limitθ+
ik

of the integral (27) is justQb(θ
+
ik

), with Qb(·) defined in (3). Then,

considering the offsetρy(θ
+
ik

, b) , θ+
ik
−Qb(θ

+
ik

), it can be shown that the corresponding offset with respect

to Qb(θ
+
ik

) from the point of view ofXi is ρx(θ+
ik

, b) ,
min{max[ρy(θ+

ik
,b),−(1−ν)∆i],(1−ν)∆i}
(1−ν) . Therefore,

the upper limit when the integral in (27) is evaluated usingfXi
(xi) is just γ+

ik
(b) , Qb(θ

+
ik

) + ρx(θ+
ik

, b).

The lower limit γ−
ik

can be obtained similarly, and then the desired probabilitycan be put as

Pr{Zi = kδi | b} =

∫ γ+
ik

(b)

γ−

ik
(b)

fXi
(xi)dxi. (28)

This pmf plays a similar role as the pdffTi
(·) in (8). Hence, the probability of decoding error under

coarse quantization can be obtained by applying to this pmf the same modular strategy used in Section III.

Unfortunately, the resulting expression is quite involvedand it has to be computed numerically in practice.

Notice that the probability of error thus obtained will be ingeneral dependent onb. A side-effect

of this dependence is that the weights optimization in Section IV-B is not valid for coarse quantization

in general. Actually, the improved decoding weightsβ∗
i will only be valid for symmetric settings. In

section VI-D we will compare the performance under coarse quantization using two kinds of dithers. For

the first one we choosedi ∈ {±∆i/2}, for all i = 1, · · · , L. Due to symmetry, in this case the statistics

for each dimension are independent of the embedded bit, and the procedure to compute the decoding

weights can still be used. For the second one,di ∈ {0,∆i} for all i = 1, · · · , L, which does not give



25

a symmetric setting. With this choice, the statistics in each dimension do depend on the embedded bit,

thus making it impossible to derive the aforementioned weights.

1) JPEG Compression: We may particularize the expression (28) for a real coarse quantization case

such as the one induced by the popular JPEG standard for imagecompression. Accordingly, let us assume

throughout this subsection that the host signal is given in the8×8 block-DCT domain where JPEG works.

As discussed in [21] the AC coefficients of the DCT can be reasonably modeled by zero-mean generalized

Gaussian pdfs, given by the expression

fX(x) = Ae−|ηx|c . (29)

The parametersA and η can be expressed as a function of the shape parameterc and the standard

deviationσX . We refer the reader to [21] for the details on how to tackle inpractice the issue of their

estimation. Taking into account the model (29), and assuming that its parameters are estimated adaptively

for each dimension, we may rewrite (28) as Pr{Zi = kδi | b} = Pr{Xi ≤ γ+
ik

(b)} − Pr{Xi ≤ γ−
ik

(b)},

with

Pr(Xi ≤ τ) =







Ai

ηici
Γ(1/ci, |ηiτ |ci), if τ ≤ 0

1 − Ai

ηici
Γ(1/ci, |ηiτ |ci), if τ > 0

,

whereΓ(·, ·) is the incomplete Gamma function3.

VI. EMPIRICAL RESULTS

In this section we will check the validity of our theoreticaldevelopments, comparing the analytical

results with empirical ones. First, we retake the discussion in Section II about the optimal channel coding

for DC-DM with uniform scalar quantizers. In Figure 5 the performance of two coding settings using

DC-DM is depicted. The concatenation of DC-DM with repetition coding (L = 6) with a simple outer

turbo code rate1/3 —to yield an overall rate1/18— is compared to a rate1/17 turbo code over DC-DM.

We observe that, for these similar rates, the concatenationonly loses about1 dB with respect to a turbo

code with a much more complex decoding. Notice that the channel model used to decode the turbo code

concatenated with repetition is the CLT approximation described in Section III-C, which is detrimental

for the concatenation for such a lowL. This plot is in agreement with the results shown in [4] for this

type of concatenation, and it supports the practical utility of repetition coding for DC-DM.

3Γ(a, z) ,
R

∞

z
ta−1e−tdt.
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Fig. 5. Performance comparison of DC-DM with a turbo codeR = 1/17 (ν = 0.30) vs. DC-DM with repetitionL = 6

concatenated with aR = 1/3 turbo code (ν = 0.35), interleaver size 1000 symbols. Synthetic host data.

A. Comparison of the Approximations and Bounds

Figure 6 shows the approximations and bounds in Section III versus the outcomes of i.i.d. Montecarlo

simulations. In this plot channel noise is additive zero-mean Gaussian, the components ofX and N

are i.i.d.,L = 10 and ν is optimized following Costa’s formula, i.e.,ν = νc , Dw/(Dw + Dc). We

may verify that the accuracy of the approximations given in Sections III-A and III-B is remarkable. The

CLT-based approximation is excellent for low values of the WNR, but, as the WNR is increased, it gets

away from the true probability of error. As it was explained in Section III-C, this is due to the support

of fU+
i
(u+

i ) being only positive, to the small value ofL used in the experiment, and to the increase

in the skew-effect of the resulting pdf for large values of the WNR. Since this approach underrates the

importance of the tails offR(r), the approximation produces overly optimistic results.

On the other hand, the union bound gets closer to the empirical results when the WNR increases. This

is a consequence of the reduction of the probability corresponding to the overlapped decision regions

when the WNR grows. We also plotted the results of applying the CLT to compute the probability of

error with only one neighbor and then using the union bound, as described in Section III-D.2. In this

case the pdf involved in the computation is symmetric about the origin, so convergence to the Gaussian

distribution is unaffected when the WNR is increased. Note that both bounds approach the true probability

of bit error asymptotically as the WNR increases. The valuespredicted by the approximation of Chen

and Wornell are obviously parallel to those obtained when both the union bound and the CLT are used
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Fig. 6. Comparison of the empirical BER vs. the different analytical and numerical approximations and bounds for DC-DM

under Gaussian noise.L = 10, ν = νc. Synthetic host data.

(see Section III-D.2). As it should be expected, those values are clearly lower than the empirical results,

since only the probability of mistaking two neighbors is taken into account.

Finally, the bound by Erez and Zamir is not shown in Figure 6 because its value is around103. It is

pertinent to remark here that even though this bound is validfor any pair of nested lattices, it was designed

to show the capacity-achieving property of lattice decoding. Nevertheless, for that purpose, it is necessary

that the pair of nested lattices verify certain properties which fall short of being true for the lattices used

by DC-DM. This explains why such large values arise and demonstrates how information-theoretic results

cannot always be effortlessly extrapolated to practical schemes.

B. Optimized Distortion Compensation Parameter and Improved Decoding Weights

The next set of experiments were carried out by watermarkingthe imageLena 256× 256 in the DCT

domain, using a perceptual mask proportional to the perceptual thresholds proposed in [24] and [25].

The attack is uniformly distributed with amplitude proportional in each dimension to the corresponding

JPEG quantization step for QF=80.

Figure 7(a) shows the performance improvements due to the use of the weightsβ∗ and β∗∗ in the

Euclidean distance decoder. The plot depicts the WNR neededto achievePe = 0.01 with L ranging from

5 to 100, and clearly shows the improvement obtained whenβ∗ is used. The performance gain is already

large atL = 100, but the gap keeps increasing withL. Nevertheless, the improvement is not so large
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Fig. 7. DC-DM watermarking of the Lena256 × 256 host signal in the DCT domain with uniformly distributed additive

attack. (a): WNR needed to achievePe = 0.01 vs. L for ν = 0.7, with different weightings on the Euclidean distance decoder.

(b): Comparison of the empirical BER obtained whenν∗ or ν∗ are used in conjunction withβ = 1, β∗, andβ∗∗. L = 10,

payload= 2252 bits.

whenβ∗∗ is used. In order to explain this effect, consider that the WNR’s studied are rather negative,

and therefore that the CLT-based approximation used for thecomputation ofβ∗ is clearly better than the

union bound plus CLT expression used for the computation ofβ∗∗ (see Section III-D.2 and cf. Figure 6).

Figure 7(b) shows the results obtained whenν∗ and ν∗ are used in conjunction withβ = 1 (i.e.,

no weighting),β∗ andβ∗∗, for the caseL = 10. A considerable gain is achieved by using a vectorial

distortion compensation parameterν∗ instead of a scalar one,ν∗. The improvement due to usingβ∗ and
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Fig. 8. Performance of DC-DM using ML lattice decoding vs. using Euclidean distance decoding using the optimal weightsβ∗.

Gaussian noise with variance proportional to the squared JPEG quantization step (QF = 80),ν = 0.5, L = 10, payload= 2252

bits, host image Lena256 × 256.

β∗∗ compared to no weighting is also apparent. Note also that theweighting strategyβ∗ yields the best

results for the whole range considered in this case. Finally, as we have pointed out in Section IV-A,

the use of a distortion compensation vector is compatible with the improved decoding weights, so the

combination offers improvements of about 2 dB over the standard embedding/decoding strategy.

In Figure 8 we compare ML lattice decoding versus Euclidean distance decoding weighted byβ∗.

The theoretical results forβ∗ in that figure were computed employing the DFT method. This plot clearly

shows the near-optimality of performing Euclidean distance decoding with our optimal weighting strategy,

since the results obtained are virtually the same than thoseobtained with ML lattice decoding. This result

can be explained (at least for small values of WNR, where Forney’s approximation is valid) in view of the

resemblance between the decision regions used by these two decoders (see Section IV-C). It is interesting

to remark that, as the variance of the host signal is much larger than that of the watermark, adjacent

DC-DM centroids have similar probabilities, and then ML lattice decoding approaches ML decoding.

C. Comparison with Miller et al.’s Trellis-based Embedding

We compare next DC-DM to the side-informed algorithm based on trellis quantization presented in [26].

In order to undertake the comparison, we encoded DC-DM usingthe cascade of an outer code, given by

two serially-concatenated codes [27] with global rate1/4, with an inner1/3 repetition code, obtaining

the same overall coding rate1/12 used in [26]. The use of channel coding is necessary in order to make
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a fair comparison, since the method in [26] inherently includes an involved (source) code. Admittedly,

the comparison will be dependent on the particular codes used in each case, but we may get in this way

an acceptable perspective of the relative performance of both methods.

In order to set the same test conditions, DC-DM embedding is performed with the same image and

using the same DCT coefficients as in [26], and hence the payload is also1380 bits. Similarly, the same

Watson-based perceptual constraints [24] are taken into account, and the Watson measure due to the

DC-DM watermark is fixed to27.20 as in [26]. Our experiments show thatPe ≈ 10−3 for DC-DM when

the standard deviation of the additive noise is8.5, marking the region of the turbo-cliff in the iteratively

decoded DC-DM scheme. For the same noise power, Miller et al.’s method yieldsPe ≈ 3.3 × 10−3.

Thus, both techniques exhibit similar performance under this very specific scenario. Testing under other

circumstances is left open for future research.

D. Coarse Quantization: JPEG Compression

We compare next in Fig. 9 the performance of DC-DM under the coarse quantization attack given

by JPEG compression, using the symmetric and asymmetric dithers discussed in Section V. In the plot,

the probability of bit error is plotted versus the quality factor QF used to compress the watermarked

signalLena using JPEG. Embedding takes place in the8× 8 block-DCT domain. In order to obtain the

theoretical results we have used the CLT-based approximation and assumed a Laplacian distribution for

the host signal, which corresponds toc = 1 in (29). This approximation explains the small discrepancies

between the theoretical and empirical results, which are more evident forβ∗ as the convergence of the

decision statistic to a Gaussian is slower with weighting. As it can be seen, the use of an asymmetric

dither yields superior performance, even considering thatit is not possible to use the optimal weights in

this case.

VII. C ONCLUSIONS

Quantization-based methods have opened the gate to high-rate data-hiding and watermarking applica-

tions. Distortion-Compensated Dither Modulation with uniform scalar quantizers and repetition coding

is probably the simplest algorithm for robust informed embedding. For this reason, it is likely to become

an increasingly popular method in the near future. Moreover, as we have shown, repetition coding is a

reasonable choice for concatenation with more powerful coding schemes, such as turbo codes.

This paper comes to fill an existing gap in the theory of DC-DM with repetition coding. Firstly, we

have shown how to modify the basic method to take into accountperceptual shaping. Secondly, we
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Fig. 9. Empirical and theoretical performance whenLena is watermarked with DC-DM in the DCT domain and JPEG-

compressed with quality factor QF, for symmetric and asymmetric dithers.L = 10, payload= 2252 bits, ν = 0.5.

have provided a complete discussion of the several decodingalternatives, including ML lattice decoding

and Euclidean distance decoding. A thorough analysis of thebit error rate has been also presented.

This analysis, based on the key idea of projecting all the random variables onto the positive orthant,

includes two procedures for theexact computation of the BER as well as several approximations and

bounds with theoretical value. Furthermore, we have proposed two important enhancements: the use

of decoding weights, which can be approximately optimized thanks to our novel theoretical analysis,

and the application of a vectorial distortion compensationparameter. Together, they produce significant

improvements as it has been shown both analytically and empirically. A comparison with STDM-like

methods revealed that, even though the latter perform better under additive noise, DC-DM is much

more robust against cropping attacks. Finally, we have extended our methodology to the case of coarse-

quantization attacks such as JPEG, and discussed the advantages brought about by asymmetric dither

vectors. Results averaging error probabilities over real images have been reported as well, showing the

accuracy of our theoretical analyses. A comparison with Miller et al.’s trellis-based embedding has been

carried out, evidencing that DC-DM with repetition and an outer turbo code achieves similar performance.

Some of the proposals made in this paper, such as the employment of decoding weights and varying

distortion compensation parameters, can be easily extended to other quantization-based methods with

perceptual constraints. Nevertheless, in order to avoid costly numerical optimizations, it is of paramount

importance to have good analytical approximations to the desired performance measures. We expect that
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the guidelines here proposed be extended to more sophisticated lattices and/or coding schemes.

APPENDIX

We derive next the characteristic functionFU+
i
(u+

i ) required for computingPe in front of Gaussian

noise following Beaulieu’s method. LetσGi
,

σNi

∆i
be the standard deviation of the Gaussian attack after

the normalization by∆i. Taking into account (7), (8) and (16), the pdf ofU+
i can be written as

fU+
i
(u+

i ) =



















∑∞
k=−∞

1
µi

[

Q
(

u+
i −(1−ν)−2k

σGi

)

−Q
(

u+
i +(1−ν)−2k

σGi

)]

, if 0 ≤ u+
i ≤ 1,

0, otherwise,

,

with µi , 1−ν
σGi

. For the sake of simplicity we defineMi ,
U+

i

σGi

, whose characteristic function is

FMi
(ω) =

∫ δi

0
ejωmi

∞
∑

k=−∞

1

µi
[Q (mi − µi − 2kδi)

− Q (mi + µi − 2kδi)] dmi =

=
j

2µiω

{

− erf

(−µi − 2kδi√
2

)

+ erf

(

µi − 2kδi√
2

)

+ ejδiω

[

erf

(

δi − 2kδi − µi√
2

)

− erf

(

δi − 2kδi + µi√
2

)]

+ e−ω( ω

2
−j(µi+2kδi))

[

− erf

(

µi + 2kδi + jω√
2

)

+ erf

(−δi + µi + 2kδi + jω√
2

)]

+ e−ω( ω

2
−j(−µi+2kδi))

[

− erf

(−µi + 2kδi + jω√
2

)

+ erf

(−δi − µi + 2kδi + jω√
2

)]}

(30)

with δi , 1
σGi

. It is straightforward to see thatFU+
i
(ω) = FMi

(ω · σGi
). The erf(·) function is defined as

erf(z) =
2√
π

∫ z

0
e−t2/2dt =

2z√
π

M

(

1

2
,
3

2
,−z2

)

,

with z ∈ C, (31)
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with M(·, ·, ·) the Kummer confluent hypergeometric function of the first kind. The evaluation of (30)

presents numerical problems due to the evaluation of (31), which is computed as

erf(x + iy) ≈ erf(x) +
e−x2

2πx
[(1 − cos(2xy) + i sin(2xy)]

+
2

π
e−x2

∞
∑

n=1

e−n2/4

n2 + 4x2
[fn(x, y) + ign(x, y)],

where

fn(x, y) = 2x − 2x cosh(ny) cos(2xy) + n sinh(ny) sin(2xy),

gn(x, y) = 2x cosh(ny) sin(2xy) + n sinh(ny) cos(2xy).
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[20] P. Moulin and M. K. Mihçak, “The parallel-gaussian watermarking game,”IEEE Trans. on Information Theory, vol. 50,

no. 2, pp. 272–289, February 2004.
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