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Abstract—In video forensics, the study of the prediction residue
across successive frames is key to verify the integrity of digital
videos. Focusing on an MPEG-2 double compression scheme, we
analyze how the variance of the prediction residue evolves during
the second compression depending on the type of frame (either
I or P) employed in the first encoding and exploring different
compression strengths and deadzone widths for quantization.
This analysis reveals that the width of the quantizer deadzones
actually affects the performance of existing methods based on the
Variation of Prediction Footprint (VPF) for double compression
detection and Group Of Pictures (GOP) size estimation. The
predicted behavior from the theoretical characterization of the
prediction residue is confirmed through experimental results with
real video sequences.

Index Terms—Prediction residue analysis, double compression
detection, GOP size estimation, video forensics, MPEG-2.

I. INTRODUCTION

Video edition and composition is becoming increasingly
accessible due to the availability of many video editing soft-
ware tools not only for desktop or laptop computers, but
also for smartphones which nowadays represent one of the
main acquisition devices to share videos online. In addition,
the recent use of deep learning techniques to automatically
create realistic forgeries rises an important concern about the
trust of video contents, thus demanding more research in the
emerging field of video forensics. Fortunately, existing video
editing tools do not have the capability to directly work on
the compressed domain (except for some basic cut and paste
of clips within a video stream), so when creating realistic
forgeries a recompression of the whole sequence of frames
is needed, which will consequently alter the normal evolution
of the prediction residue across successive frames.

In this context, Wang and Farid were the first to study the
periodic artifacts induced in the prediction residue after the
insertion/removal of frames from a digital video in [1]. This
scheme has been further improved in [2], expanding this idea
and proposing an automatic way to detect such a periodic
artifacts. Still, not only the addition or deletion of frames
alters the prediction residue, in [3] it has been shown that a de-
synchronization in the GOPs used between the first and second
compression also modifies the evolution of the prediction
residue, yielding the so-called VPF, which can be captured
through the calculation of the relative frequency of each type
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of MacroBlock (MB) across time. The exploitation of this fea-
ture made possible the detection of double compressed videos
and the estimation of the GOP size employed during the first
compression. Later on, resorting to a rate-distortion analysis,
the link between the presence of the VPF and the variance
of the prediction residue has been established in [4], leading
to an improved VPF acquisition process that outperforms [3].
The work in [4] has nevertheless left out of such analysis the
influence on the prediction residue of the deadzone width used
for quantization. As we will later confirm, the use of certain
deadzone widths can either positively or negatively affect the
performance of VPF-based approaches. Hence, with the aim
of completing the analysis initiated in [4], here we study the
variance of the prediction residue as a function of the deadzone
widths that an encoder can use for quantization.

In particular, assuming an MPEG-2 double compression
scheme, in this paper we characterize the variance of the
prediction residue obtained in the second compression stage as
a function of the type of frame employed in the first encoding
(either I or P) and for different quantization deadzone widths.
This analysis provides valuable insights on the behavior of the
VPF exploited in [3], [4] and also indicates how the different
deadzone widths can favor or impair double compression
detection and GOP size estimation.

The paper is structured as follows: first, we formulate the
video double compression problem in Sect. II, then the evo-
lution of the variance of the prediction residue is analytically
characterized in Sect. III, and finally the derived theoretical
insights are experimentally validated for GOP size estimation
and double compression detection in Sect. IV. Lastly, Sect. V
concludes the paper and hints at possible new research paths.

II. PROBLEM FORMULATION AND MODELING

Let us consider the video double compression scenario
shown in Fig. 1, where the same MPEG-2 encoder is used
for both encodings. For the first compression, we assume
a constant GOP of length G1 and a fixed quantizer scale
factor Q1 ∈ {2, . . . , 31}. Similarly, the second compression
is conducted with a GOP of length G2 (different from any
integer multiple or submultiple of G1) and Q2 ∈ {2, . . . , 31}.
For the sake of simplicity, we assume that no temporal shift
is introduced between both encodings and we discard the use
of B-frames, leaving their analysis for a future work.

In MPEG-2, the MBs of an I-frame can only be encoded
by a single intra-coding mode that does not perform spa-
tial prediction and is denoted by I-MB. In the case of P-
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Fig. 1. Block diagram of the assumed video double compression scheme.

frames, besides the use of I-MBs, two inter-coding modes
are available to perform temporal (or motion-compensated)
predictions from the last decoded frame: P-MB, which en-
codes the motion vector and the prediction residue, and S-
MB, which efficiently signals those inter-predicted MBs that
yield a zero-valued motion vector and null residual data.
Accordingly, the set of available coding modes in this case is
C , {I-MB, P-MB, S-MB}. To identify the type of encoding
a frame has undergone at a particular time index n during
the first compression, we define the sets I1 and P1, which
respectively contain the time indices of I- and P-frames.

Under this setting, the left scheme in Fig. 1 models how a
given MB at time index n, denoted by Xn, is first predicted
based on a set of previously coded and reconstructed samples
stored in a buffer.1 Depending on the coding mode c ∈ C
selected by the encoder, the prediction X̂n is computed as

X̂n =

{
0, if c = I-MB
X′n−1(m), otherwise

, (1)

where X′n−1(m) denotes the MB extracted from the previ-
ously decoded frame at time index n− 1 with the relative
displacement pointed by motion vector m. The first case in
(1) reflects that no prediction is used for I-MBs, while the
second case is valid for representing the motion-compensated
prediction of P-MBs and also that of S-MBs, provided that
m is null. Then, the prediction residue is obtained as Un =
Xn − X̂n, which is later transformed applying the Discrete
Cosine Transform (DCT) on an 8 × 8 block-basis. In the
DCT domain, each (i, j)-th coefficient with i, j ∈ {0, . . . , 7}
is quantized with a distinct quantization step size and a
configurable deadzone width. The quantization step size is
controlled by the quantizer scale factor Q1 as follows

∆1(i, j) , (1/8)Q1Si,j , ∀i, j ∈ {0, . . . , 7}, (2)

where Si,j represents the (i, j)-th element of a weighting
matrix S that improves the perceptual quality of the encoded
videos, supporting the use of a different matrix for intra (i.e.,
SI) and inter (i.e., SP) coding modes. Regarding the quantizer
deadzone, its width is defined as w1(i, j) , α∆1(i, j), where
α ∈ [1, 2] is the parameter that allows the control of the
deadzone width. In practice, tighter deadzones are used for
intra-coding modes (e.g., αI = 5

4 in [5]) to retain more
details, whereas wider deadzones are considered for inter-
coding modes which lead to small magnitude signals (e.g.,
αP = 2 in [5]). Now, using (2) and the definition of the

1For the sake of clarity, position indices of Xn within the frame are omitted.

deadzone width, the quantization of an AC coefficient u from
the DCT of Un can be written (omitting position indices) as

uq ,

{
sgn(u)b(|u|+∆I

1(1−αI/2))/∆I
1c, if c = I-MB

sgn(u)b(|u|+∆P
1(1−αP/2))/∆P

1c, otherwise
, (3)

where | · | is the absolute value operator, b·c denotes the floor
function, and sgn(·) represents the sign function. The notation
∆I

1 and ∆P
1 has been used to remark that different quantization

steps can be employed in each coding mode, depending
on which weighting matrix SI or SP is used, respectively.
According to the MPEG-2 standard, the de-quantized version
u′ of a quantized AC coefficient uq is given by

u′ ,

{
sgn (uq) b∆I

1|uq|c, if c = I-MB
sgn (uq) b∆P

1|uq|+ ∆P
1/2c, otherwise

, (4)

where a different reconstruction offset is used depending on
the applied coding mode to improve coding efficiency. As a
last step in the reconstruction process, the samples in the pixel
domain X′n are recovered by adding back the de-quantized and
inverse-transformed samples U′n to the prediction X̂n, such
that X′n = U′n + X̂n.

The above description straightforwardly extends to the sec-
ond compression block on the right of Fig. 1: the source and
predicted samples are denoted by Yn and Ŷn, respectively,
the residue signal by Wn, its reconstructed version by W′

n,
and the recovered samples are accordingly represented by Y′n.

III. PREDICTION RESIDUE ANALYSIS

The use of de-synchronized GOPs in a double encoding
scheme causes the VPF effect unveiled in [3], which leads
to periodic changes in the distribution of certain MB types
in double compressed videos, specifically, at P-frames that
were originally encoded as I-frames. In view of the straight
connection between the presence of the VPF and the MB type
selection process implemented by the encoder, we focus on
the nowadays most common strategy for MB coding-mode
selection, which is based on Lagrangian optimization [6] and
consists in solving the following minimization problem

MB type = arg min
c∈C

D(Yn,Y
′
n) + λcR(Y′n), (5)

where λc denotes the Lagrange multiplier of the coding mode
c ∈ C, the distortion D(Yn,Y

′
n) is the Sum of Squared

Differences (SSD) between the reconstructed block Y′n and
its source Yn, and the rate R(Y′n) measures the number
of required bits to reconstruct Y′n. From (5) and since
D(Yn,Y

′
n) , ‖Yn−Y′n‖22 = ‖Wn+Ŷn−(W′

n+Ŷn)‖22 =
‖Wn−W′

n‖22, we know that the selection of a particular MB
type depends on the variance of the prediction residue. So, to
predict the strength of the VPF on those P-frames originally
encoded as I-frames, we need to analyze the evolution of the
difference of the variance Var (Wn) under n∈ I1 and n∈P1,
i.e.,

Var (Wn) |n∈I1 − Var (Wn) |n∈P1
, (6)

where a larger difference value yields a stronger VPF. With the
aim of characterizing the prediction residue Wn = Yn− Ŷn,



let us first describe the input signal Yn, which depending on
the selected type of frame and the applied MB coding modes
during the first compression, can be expressed as

Yn = Xn + (U′n −Un) =

{
Xn + EI1

n , if n ∈ I1

Xn + EP1
n , if n ∈ P1

, (7)

where EI1
n , X′n −Xn, since when n∈ I1 we have from (1)

that Un = Xn and U′n = X′n, while when n∈P1 we have that
EP1

n , U′n−Un. The subsequent sections separately describe
the prediction Ŷn as a function of the two prediction types
(intra or inter) that can be applied in the second compression.

A. Intra-prediction residue analysis

The use of the intra-coding mode I-MB during the second
compression yields Ŷn = 0, such that Wn = Yn. Hence,
from (7), the variance of the prediction residue results in

Var (Wn) =

{
Var (Xn) + Var

(
EI1

n

)
, if n ∈ I1

Var (Xn) + Var
(
EP1

n

)
, if n ∈ P1

, (8)

where we assume that the quantization errors EI1
n and EP1

n

have negligible correlation with the source signal Xn. This
assumption typically holds in practice since the probability
density function (pdf) of the source signal is smooth and its
variance is much larger than the employed quantization step
sizes. By inserting (8) in (6), the strength of the VPF can be
evaluated by means of the difference Var

(
EI1

n

)
− Var

(
EP1

n

)
.

The variance of both quantization errors is proportional to
the distortion introduced during the DCT quantization process.
Since the DCT adopted in MPEG-2 has orthogonal basis (if
rounding effects are disregarded), such distortion can be com-
puted in the DCT domain. Hence, for an arbitrary MB Zn, the
SSD distortion caused by a quantizer with deadzone parameter
α, reconstruction offset φ, and step size ∆, can be obtained
as D(Zn,Z

′
n) =

∑7
i=0

∑7
j=0DZ(i, j), where DZ(i, j) stands

for the distortion of the (i, j)-th DCT coefficient, given by

DZ(i, j)=

∫ α
2 ∆

−α
2 ∆

z2fZ(z)dz+2

∞∑
k=1

∫ (k+ α
2 )∆

(k−1+ α
2 )∆

(z−z′)2fZ(z)dz,

(9)
where z′ , b(k + φ)∆c and fZ(z) is the pdf of the (i, j)-th
DCT coefficient. Now, given the definition of EI1

n , we have that
Var
(
EI1

n

)
∝ D(Xn,X

′
n), which can be computed through (9)

using α = αI, ∆ = ∆I
1, and φ = 0 (see (3)-(4)), and a Lapla-

cian pdf as fZ(z) [7]. Accordingly, for a given pdf, we can
infer that the value of Var

(
EI1

n

)
increases with Q1 (i.e., coarser

quantization steps ∆I
1 are obtained through (2)) and also with

αI (i.e., due to wider quantizer deadzones). On the other hand,
the variance of the quantization error EP1

n satisfies the relation:
Var
(
EP1

n

)
∝ p(I-MB)D(Xn,X

′
n) + p(P-MB)D(Un,U

′
n) +

p(S-MB)D(Xn,X
′
n−1), where p(c) denotes the probability

of using the coding mode c ∈ C per frame. Regarding the
distortion terms, both D(Xn,X

′
n) and D(Xn,X

′
n−1) can be

computed as in the previous case,2 whereas D(Un,U
′
n) can be

2Note that for D(Xn,X′n−1), only an approximation would be obtained
through (9), but still valid in practice since Xn ≈ Xn−1 for S-MBs.
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Fig. 2. Evolution of Var(EI1
n ) (solid) and Var(EP1

n ) (dashed) for αP = 2
and varying αI and Q1: (a) static video (akiyo), (b) dynamic video (mobile).

obtained through (9) setting α = αP, ∆ = ∆P
1, and φ = 1/2

(see (3)-(4)), and a Laplacian pdf as fZ(z) [8]. Therefore,
the evolution of Var

(
EP1

n

)
does not only depend on the

quantization parameters and the pdf of each DCT coefficient
as for Var

(
EI1

n

)
, but also on the type of scene to encode which

rules the probability of each MB type. For instance, in static
scenes, it is common to have p(S-MB)� p(P-MB)+p(I-MB),
so Var

(
EP1

n

)
will increase with Q1 and αI, and will not be

excessively affected by αP, whereas in dynamic scenes, where
almost all the coded MBs have a non-zero motion vector with
U′n 6= 0, such that p(P-MB) � p(S-MB) + p(I-MB), the
evolution of Var

(
EP1

n

)
will be mostly governed by αP instead

of αI. This can be checked in Fig. 2, where the evolution of
Var
(
EI1

n

)
and Var

(
EP1

n

)
for the (1, 0)-th DCT coefficient is

shown for two videos gathered from [9]: the static video akiyo
in Fig. 2(a), and the dynamic video mobile in Fig. 2(b).

From the above analysis, it follows that for static video se-
quences, the difference Var

(
EI1

n

)
−Var

(
EP1

n

)
is usually small

and so Var (Wn) |n∈I1 ≈ Var (Wn) |n∈P1
, while for dynamic

videos it is harder to define a similar relation. In fact, the
varying nature of the prediction residue with dynamic videos
complicates the modeling (i.e., at least a motion estimation of
the scene would be needed), thus we leave its study for a future
work. In constrast, the nearly constant behavior of Var (Wn)
under the intra prediction (independently of the type of frame
used in the first compression), implies that for low-motion
videos, the presence of the VPF is ultimately guided by the
behavior of Var (Wn) under the inter prediction, which we
analyze below.

B. Inter-prediction residue analysis
In this case, Ŷn is the result of an inter prediction, i.e.,

Ŷn = Y′n−1(m). Assuming that the estimated motion scene
through m coincides in the two consecutive compressions
(which is reasonable in practice, provided that no forgery is
introduced between both compressions), Ŷn can be written as

Ŷn = Yn−1(m)+EP2
n−1 = Xn−1(m)+EP1

n−1 +EP2
n−1, (10)

where EP1
n−1 , U′n−1(m)−Un−1(m) and EP2

n−1 , W′
n−1(m)−

Wn−1(m) represent the quantization errors that result from
the first and second compression, respectively. Using (7) and
(10) in the definition of Wn, we obtain

Wn =Rn+En, with En =

{
EI1

n −E
P1
n−1−E

P2
n−1, if n∈ I1

EP1
n −E

P1
n−1−E

P2
n−1, if n∈P1

,



where Rn , Xn−Xn−1(m) represents the prediction residue
without any quantization error and En comprises all the
quantization errors that emerge during the two successive com-
pressions. Assuming that En has negligible correlation with
Rn, we can approximate the variance of Wn as Var (Wn) =
Var (Rn) + Var (En), and so the difference in (6) becomes

Var (En) |n∈I1−Var (En) |n∈P1

= Var(EI1
n )−Var(EP1

n )−2(cov(EI1
n ,E

P1
n−1)−cov(EP1

n ,E
P1
n−1))︸ ︷︷ ︸

depends on Q1

−2(cov(EI1
n ,E

P2
n−1)− cov(EP1

n ,E
P2
n−1))︸ ︷︷ ︸

depends on Q1 and Q2

. (11)

The expected evolution of the above terms Var
(
EI1

n

)
and

Var
(
EP1

n

)
has already been analytically described for low-

motion videos in Sect. III-A, showing that their difference
has a negligible effect in the evolution of (11). Now, the
derivation of analytical expressions for the remaining covari-
ance terms is a complex task, so as a first step towards their
modeling, we opted for a semi-analytic approach detailed in
a tech report [10], based on the use of synthetic signals and
autoregressive models for characterizing inter predictions and
temporal dependencies, leaving the complete modeling for a
future work. In brief, the analysis in [10] reveals that for static
videos the difference between the above covariance terms that
only depend on Q1 is nearly constant for distinct values of
Q1, αI, and αP, thus ensuring that these terms do not cause
prominent changes in (11). Hence, the presence of the VPF
(and also its strength) is fundamentally determined by the last
two covariance terms that jointly depend on Q1, Q2, and the
relation among αI and αP. The reader is referred to [10] for
a thorough description of each of these covariance terms.

To check the validity of the semi-analytic model derived
in [10], we compare in Fig. 3 the resulting synthetic versions
of the difference Var (Wn) |n∈I1−Var (Wn) |n∈P1

for αP = 2,
αI ∈ {1, 5

4 , 2}, and varying Q1 and Q2 (upper panels), with
the ones obtained empirically after processing the 14 videos
to be described in Sect. IV (lower panels). The synthetic
models show a very high degree of similarity with respect
to their empirical counterparts, except for the case αI = 2,
where the model possibly needs some adjustment. Yet, from
this characterization we can determine (through the relation
between the deadzone widths) the marked boundaries for
Q2 > Q1 beyond which Var (Wn) |n∈I1 − Var (Wn) |n∈P1

drops and, as a consequence, the VPF vanishes. In particular,
as discussed in [10], for αI ∈ {1, 5

4} and αP = 2 the limit
is achieved at Q2 > (2/αI)Q1 (see Figs. 3(d)-(e)), while for
αI =αP = 2 it moves downward to Q2 > (3/2)Q1, as can be
observed in Fig. 3(f). Since in all cases, the boundary is located
above Q2>Q1, this explains why the VPF-based approaches
are able to satisfactorily work in the challenging scenarios
where the second compression is stronger than the first one.

IV. EXPERIMENTAL RESULTS

The above findings on the dependence of the VPF with
the quantization parameters: αI, αP, Q1, and Q2, should serve
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Fig. 3. Evolution of Var (Wn) |n∈I1−Var (Wn) |n∈P1
for a fixed αP = 2

and varying αI, Q1, and Q2. The upper panels show the obtained results with
synthetic signals, while the lower panels show the average of 14 real videos.

Algorithm 1 Peak extraction pseudocode for G-VPF [4]
Inputs: in, sn, pn // # of I-MBs, S-MBs, and P-MBs with m = (0, 0)
Output: vn

for n = 1 to N − 1 do
if (E (in, 1)=1 and E (−sn, 1)=1 and E (pn, 1)=1) then
vn ← 0

else
vn ←

∑
k∈{−1,1} E (in, k)E (−sn, k)E (pn, k)

end if
end for

function E (an, k) // Extract up (down) peaks from an with k=1 (k=−1)
if an > max(an−1, an+1) then

return |an−an−k|
end if
return 1
end function

to predict the performance of the methods that essentially
exploit the presence of the VPF to estimate the size of
the GOP employed during the first compression and also to
expose double compressed video sequences. Here, we consider
the baseline method proposed in [3], i.e., “B-VPF”, and its
generalized version in [4], i.e., “G-VPF”, that further improves
the VPF acquisition by introducing in the peak extraction
process information about the number of P-MBs with null
motion vector, as described in Algorithm 1. Both methods
share the same periodicity analysis proposed in [3].

The set of video sequences over which we conduct the
experiments is composed of 14 uncompressed videos with CIF
resolution [9], which are either static: with low-motion scenes
captured by a fixed camera; or dynamic: with a large amount
of motion caused by a focal length change or a moving camera
position.3 The experimental validations carried out in [3] and
[4] prove the practical applicability of both methods, so here
we mainly focus on validating the aforementioned findings
in the constrained double compression framework illustrated
in Fig. 1, where the same MPEG-2 encoder is used in both
compressions under a fixed quantization procedure controlled
first by Q1 and then by Q2. Still, we replicate the same set

3Static: akiyo, bridge-close, bridge-far, container, hall, mother-daughter,
news, silent, and paris. Dynamic: foreman, highway, mobile, and waterfall.
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Fig. 4. EMR for G-VPF under αP =2 and varying αI (MPEG-2 encoder).

of experiments using other two encoders, i.e., MPEG-4 from
[5] and H.264 from [11], for checking to which extent the
theoretical modeling for MPEG-2 also holds under different
video coding standards. Since MPEG-2 and MPEG-4 share
the same set of quantization parameters, we test each pair
(Q1,Q2) in the set Q = Q1 × Q2, where Qi = {2, . . . , 31}.
In the case of H.264, we test the pairs (Q1,Q2) that result
from the Cartesian product between 30 integer values in the
range [4, 51]. As common settings we settle the Lagrangian-
based strategy for coding-mode decision, we fix the first and
second GOP lengths to G1 = 10 and G2 = 33, respectively,
and we use the same deadzone widths for the two consecutive
encodings (fixing αP = 2 and testing αI ∈ {1, 5

4 , 2}). Finally,
for each video we limit the analysis to the first 250 frames.

Fig. 4 shows the obtained Exact Match Rate (EMR) between
the true GOP size G1 and its estimated value Ĝ1 by the G-VPF
method under the MPEG-2 scenario. These results confirm the
theoretical findings from Sect. III, given that the evolution of
the EMR values is consistent with the representation in Fig 3,
i.e., the larger the difference Var (Wn) |n∈I1−Var (Wn) |n∈P1 ,
the higher the EMR. In fact, it can be appreciated how an
almost perfect estimation is achieved for Q2 > Q1 upon
reaching the marked boundaries (for each distinct value of
αI) and the increasing lost in performance beyond them.

In order to save space when comparing G-VPF against
B-VPF in the tested scenarios, we define a digest measure
denoted by EMR, that synthesizes the quality of the esti-
mation under each setting by computing the average EMR
across all the tested quantization parameters in the set Q as
EMR , 1

|Q|
∑

(Q1,Q2)∈Q EMR(Q1,Q2), where EMR(Q1,Q2)

represents the obtained EMR for a particular pair (Q1,Q2).
The upper part of Table I reports the EMR values obtained
by the two methods in each scenario, from which it becomes
clear that G-VPF always outperforms B-VPF, thus indicating
that the use of P-MBs with m = (0, 0) is key to better
capturing the VPF. Focusing on the G-VPF results, the EMR
values for MPEG-2 decrease as αI increases (consistently with
Fig. 4), while this is not the case for MPEG-4 and H.264.
The subtle differences between MPEG-2 and MPEG-4 suggest
that the above modeling could be easily adapted to cover the
particular structure of MPEG-4, while for H.264 a closer look
to the novel coding elements of the standard with respect to
MPEG-2, should be considered to understand their effect on
the VPF. Interestingly, we also report in Table I the obtained
EMR results for each type of videos under MPEG-2, which
essentially confirm that the assumed model for static videos
does not match the characteristics of the dynamic ones.

To evaluate the detection performance of the two methods,

TABLE I
EMR AND AUC VALUES FOR G-VPF VS. B-VPF UNDER DIFFERENT

SCENARIOS. BOLD NUMBERS INDICATE THE BEST RESULTS PER ENCODER.

EMR

MPEG-2 MPEG-4 H.264 MPEG-2 (G-VPF)

αI G-VPF B-VPF G-VPF B-VPF G-VPF B-VPF Static Dynamic

1 0.9111 0.6835 0.9065 0.6557 0.7262 0.6967 0.9632 0.8173
5
4

0.9063 0.7150 0.9079 0.6942 0.7274 0.6984 0.9444 0.8378

2 0.8630 0.7699 0.8826 0.7978 0.7399 0.6874 0.8651 0.8592

AUC

MPEG-2 MPEG-4 H.264 MPEG-2 (G-VPF)

αI G-VPF B-VPF G-VPF B-VPF G-VPF B-VPF Static Dynamic

1 0.9632 0.8406 0.9509 0.8073 0.8556 0.8589 0.9872 0.9259
5
4

0.9588 0.8540 0.9572 0.8306 0.8589 0.8603 0.9733 0.9254

2 0.9243 0.8930 0.9382 0.8952 0.8743 0.8443 0.9111 0.9129

we build for each encoder a dataset of 420 single compressed
videos (which results from compressing the 14 videos with
the 30 values of Q1) and we randomly select other 420 videos
from the total of 12,600 double compressed video sequences.
The lower part of Table I collects the obtained values of
Area Under the Curve (AUC) corresponding to the receiver
operating characteristic of the G-VPF and B-VPF methods.
In this case, the evolution of the AUC results follow the
same course of their relative EMR values, which reaffirms
the conclusions drawn from the GOP size estimation analysis.

V. CONCLUSIONS

In this paper we have delved into the analysis of the
prediction residue during the second stage of an MPEG-2
double compression scheme. The full characterization of the
quantization process revealed how distinct deadzone widths
affect the performance of VPF-based approaches. However, as
noted along the paper, there is room for improving the above
analysis by extending it to other video coding standards and by
addressing more complex types of scenes and coding settings.
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