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ABSTRACT the formulation of generalized Gaussian distributions D&} as
well as the modeling of Gabor coefficients using GGD's. Ceeffi
cient quantization by means of Lloyd-Max algorithm is exmpéal

in Section 4. The impact of coefficient quantization on veaifion
performance is reported in Section 5 with experimental ltesan
the XM2VTS database [3]. Finally, conclusions and futursesgch
lines are drawn in Section 6.

Gabor filters are biologically motivated convolution kdethat have
been widely used in the field of computer vision and, speagiail
face recognition during the last decade. This paper prepassa-
tistical model of Gabor coefficients extracted from face gemus-
ing generalized Gaussian distributions (GGD's). By measguthe
Kullback-Leibler distance (KLD) between thpelf of the GGD and
the relative frequency of the coefficients, we conclude G&D'’s
provide an accurate modeling. The underlying statistilcsalis to
reduce the required amount of data to be stored (i.e. datpresn
sion) via Lloyd-Max quantization. Verification experimeran the
XM2VTS database show that performance does not drop when, i
stead of the original data, we use quantized coefficients.

2. THE FACE RECOGNITION SYSTEM

A set of 40 Gabor filter{+m },,_, , 4 With the same configu-
'{ation as in [2] (5 spatial frequencies and 8 orientatioissjised to
extract textural information from face images. These §l&e bio-
logically motivated convolution kernels in the shape onglavaves
Index Terms— Face Recognition, Generalized Gaussian Distri-restricted by a Gaussian envelope [5], as it is shown next:

bution, Gabor filters, Kullback-Leibler distance, LloydaM quanti-
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zation, data compression, XM2VTS database

wherek,, contains information about spatial frequency and ori-
entation, and the same standard deviatioa: 27 is used in both
directions for the Gaussian envelope. Figure 1 shows th@agbof
the 40 Gabor filters used in this paper.

1. INTRODUCTION

Gabor filters are biologically motivated convolution kdethat have
been widely used in face recognition during the last decaée [1]
for a recent survey). Basically, Gabor-based approacligsttaone

of the following categoriesa) Extraction of Gabor responses from
a set ofkey points in face images arfg) Convolution of the whole
image with a set of Gabor filters. As highlighted in [1], onetloé
main drawbacks of these approaches (specially the onaglixtiin
categoryb) is the huge amount of memory that is needed to store
Gabor-based representation of the image. Regarding é&edonpar-
ison, similarity between Gabor responses has been usualiguned
by means of normalized dot products (or related measuresthére

is no theoretical evidence supporting this choice.

On the other hand, experiments have shown that generalize
Gaussian distributions (GGD's) provide a gopdf approximation
for the distribution of coefficients produced by severaktypf wavelet
transforms [7, 8, 9]. To the best of our knowledge, despiddinge
number of papers using Gabor filters for face recognitionstatis-
tical model has been proposed for Gabor coefficients. Ingper,
we suggest that GGD’s could provide a suitable modeling,eand
pirically validate this hypothesis using the Kullback-bler distance Orientation
(KLD). The underlying statistics allow us to perform datarmqmes-
sion via Lloyd-Max quantization, and open new possibiiiieterms  Fig. 1. Real part of the set of 40 (8 orientations5 scales) Gabor
of selecting an optimal measure between Gabor reponsesftbes  filters used in this paper.
oretical point of view.

The paper is organized as follows: Section 2 describes the-ba The baseline face recognition system used in this papesreli
line face recognition system used in this paper. Sectior8dnces  upon extraction of Gabor responses at each of the nodes from a
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nz X ny rectangular grid (Figure 2). All faces were geometrically set of face image$F1, F», ..., Fr}, we extract Gabor jets as in-
normalized -so that eyes and mouth are in fixed positionepped  troduced in Section 2. Regardless of the node from which tiae
to a standard size of 150x116 pixels and photometricallyeobed  been computed, the coefficients corresponding to a giveonGitier
by means of histogram equalization and local mean removaé T 1, (real and imaginary parts separately) are stored togedheirig
region surrounding each grid-node in the image is encodethdy two sets of coefficientS’c*" andS2™*9. Now, our goal is to assess
convolution of the image patch with these filters, and theofee-  whether these distributions can be modeled using GGD's.
sponses is called a jeff. Therefore, a jet is a vector with 4®dm-
plexcoefficients, and it provides information about a specifigoe
of the image. At nodg; = [z;,:]” and for each Gabor filtap,,,
m=1,2...,40, we get the following Gabor coefficient: °

gm(B) =33 1@, y)em (zi — 2, — y) @)

wherel (z, y) represents the photometrically normalized image patch.
Hence, the complete feature vector (jet) extractef; as given by
J@) = [g1(P:), 92(Pi), - - -, 9a0(pi)]. For a given a face with

n = ng X ny grid-nodes{pi, p,...,Pn}, We getn Gabor jets
{TB), T (B2), -, T (Pn)}-
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3. MODELING GABOR COEFFICIENTS WITH
GENERALIZED GAUSSIAN DISTRIBUTIONS (GGD'S) Fig. 3. Histogram for coefficienys4 along with the fitted GGD.
Generalized Gaussian distributions have been successiggid to ) . .
model coefficients produced by various types of waveletsfiams Figure 3 shows the histogram for the real part of coefficient

[7, 8, 9]. Thepdf of a GGD is given by the following expression;  &long with the fitted GGD. Although it seems clear from thisifig
that the GGD accurately models the coefficient distributigimi-

folz) = A 1Bl 3) lar plots were obtained for the remaining coefficients), wedithe
) Kullback-Leibler distance (KLD) [12] to assess the goodnekthe
Both A and § can be expressed as a function of the so-callediis. The Kullback-Leibler distance between two discrettritiu-

shaping factor: and the standard deviatien tions with probability functions® and@), is given byK LD (P, Q) =
1 /T(3 1/2 Efil P(i)log% > 0, whereK stands for the number of intervals
B== (M> in which the sample space is divided. Figure 4 (left) plats,Hoth
o \I'(1/e) real and imaginary parts of each Gabor coefficient, the KL®vben
the relative frequency of the coefficient and the fitted GGIDc&
__Be the obtained distances are small, it seems reasonable thuden
2I'(1/c) that generalized Gaussians are able to model Gabor coefce-

wherel'(.) is the complete gamma function. The shaping factorcurately. Other tests, such as thigtest, have been previously used
c is inversely proportional to the sharpness of i Therefore,  to assess the quality of the fit (for instance in [11]). Applythex”
this distribution is completely specified by two paramete@ndo. test to our data leads to the same conclusion -see Figurét4.rig
Note that the Gaussian and Laplacian distributions aresjpstial Figure 5 presents the shaping facterand thes parameters
cases of this generalizguif, given byc = 2 andc = 1 respectively.  of the 80 GGD’s modeling both real and imaginary parts of Gabo
In this paper, we attempt to model both real and imaginarispar coefficients. From this figure, we can conclude:
of each Gabor coefficient using GGD’s whose parameters heme b

. . . . . All the GGD’s have a shaping facterthat is well below 2,
obtained using the Maximum-Likelihood (ML) estimator. Fra ¢ v ping 1S W W

and hence we can conclude that the distribution of each Gabor
coefficientis not well modeled by a Gaussian. This fact is
also confirmed with normal probability plots (statisticelto

to assess whether or not a data set is approximately normally
distributed), which are not displayed due to space linotai

Fig. 2. Rectangular grid over the preprocessed (geometrically an
photometrically normalized) face image. At each node, acB@i  Fig. 4. KLD and x? distances between the fitted GGD and the data
with 40 coefficients is computed and stored. for both real and imaginary parts of each Gabor coefficient.
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Fig. 6. Shaping factors and standard deviationsfor the real part
of Gabor coefficients grouped by scale subbands.
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Fig. 5. Obtainedc ando GGD parameters for both real and imagi-
nary parts of each Gabor coefficient. 4. COEFFICIENT QUANTIZATION BY MEANS OF
LLOYD-MAX ALGORITHM

e The real and imaginary parts of a given coefficient have simNow that we have a way to statistically model Gabor coeffisiea

ilar ¢ parameters. The same conclusion can be drawa.for ~Wide range of applications arises. As highlighted in [1]eaf the
drawbacks of Gabor-based approaches is the large amoustaf d

e There exists a pseudo-periodic behavior in the GGD paramethat must be stored. Hence, we can think of reducing storamge v
ters. If we examine Figure 6, which replots the shaping faccoefficient quantization. To achieve this goal, we used tlogd-
tors and the standard deviations for the real part of each coepjax quantizer (the one with minimum mean squared error (MSE)
ficient grouped by scale subbands, it seems clear that asimil for g given numbefV;, of representative levels).
pattern emerges on each of these subbands. Further research |n our case, a face is representedrbjets, each one comprising
is needed in order to provide theoretical reasons suportin4o complex coefficients. Assuming that each coefficient fsae
this behavior. sented by 16 bytes (8 for the real part + 8 for the imaginary) par

« Inan analogous way, Figure 7 replotando for the real part total of 16 x 40 x n bytes are needed per face. After GGD modelling

of the coefficients grouped by orientation subbands. It carfd data quantization, instead of storing the originalfezeft, we
be realized that the GGD parameters increase with scale, i.@nly need to keep two indices (one for the real part and andtie

as long as spatial frequency decreases. Taking into accoutfi® imaginary part) per coefficien (< 40 x n indices per face).
the variation of Gabor filters with scale for a fixed orierdati  €NC€, UsingV., quantization levels, we can represent a coefficient
(any column from Figure 1), it is clear that a filter from the With 2 x [log, (NL)] bits. In [6], it was shown that a given im-
first row (15! scale, highest frequency) captures texture infor-2d€ can be reconstructed using the Gabor responses edtfiamte
mation from a smaller neighborhood than a filter with a lower & SParse graph (like the rectangular grid shown in Figuré&gure
frequency does. Hence, we can assume that the informatiof Presents the reconstruction of the face in Figure 2 usifigreint
encoded in a high frequency coefficient is more correlatedluan.“?at'on levels, along with the reconstruction usmgd?rlg.lnal
than the one captured by a low frequency filter and there_coefnme_nts: As can pe seen, the (econstructed face WI&].]OBl
fore, it is reasonable to conclude that the variance (and 4 quan_tlzatlon levels is already quite accurate, and_ t_h‘erdrﬁcesf
should be smaller for high frequency coefficients. Morepver N quality betweenVy, = 8, ..., 512 levels and the original coeffi-
the increase of with scale means that the coefficient distri- Ci€Nts are not easily noticeable from a perceptual pointe.v
butions are becoming “more Gaussian” and this fact could be

explained by the same hypothesis and the central limit the- 5. FACE VERIFICATION ON THE XM2VTS DATABASE
orem: as long as frequency decreases, the pixels in the im-

age patch that are taken into account for the convolution arén order to assess the impact of data compression on systéan-pe
less correlated and, applying the central limit theorere, th mance, we conducted verification experiments using the XW&V
result of this convolution should approach a normal distrib database on configuration | of the Lausanne protocol [4]. AM8VTS
tion. However, more experiments are needed to assess thiatabase contains synchronized image and speech datdeéaor



295 subjects (200 clients, 25 evaluation impostors, ande30im-
postors) during four sessions taken at one month intervalse
database was divided into three sets: a training set, anai@h

Table 1. Face Verification on the XM2VTS database. False Accep-
tance Rate (FAR), False Rejection Rate (FRR) and Total Rabe
(TER) over the test set using both raw and compressed data.

set, and a test set. The training set was used to build cliedets,
while the evaluation set was used to estimate thresholdditaim-
inate between client and impostor attempts. These thréstwke
chosen so that False Acceptance Rate (FAR) equals Falsetigeje
Rate (FRR) on the evaluation set. Finally, using the obththeesh-
olds, we measure the FAR and FRR on the separate test set. ITabl
presents FAR, FRR and Total Error Rate (TER=FAR+FRR) over th
test set varying the number of quantization levels, alortg thie per-
formance using the original coefficients. In [10], the autshadapt
statistical tests to compute confidence intervals arourfiTidtal Er-

ror Rates (HTER= TER/2) measures, and to assess whether there
exist statistically significant differences between twpraaches or
not. Using this analysis, we confirmed that performance \gasfs
cantly worse only fotN;, = 2 and N, = 4 quantization levels. For
the remaining ones, the performance was even better thawitha
original coefficients, although we can not conclude thanificant
improvements were achieved. In any case, these resultesiifpgit
noise reduction may be achieved via coefficient quantinatio

6. CONCLUSIONS AND FURTHER RESEARCH [1]
This paper has shown that Gabor coefficients extracted fewa f
images can be accurately modeled using generalized Gaudisia
tributions. This finding opens a wide range of possibilitidss a
first attempt, we took advantage of the underlying statisticre-
duce data storage via Lloyd-Max quantization. No degradatias
observed even with severe compression using 8 quantizatiers.
Further research is needed to investigate the pseudodpehehav-
ior of GGD parameters described in Section 3. Moreover, we ha
demonstrated that the distributions of Gabor coefficiergda from
being Gaussian, as long as the obtained shaping facaweswell be-
low 2 for all coefficients.

Gabor-based face recognition systems have used distamrces f
jet comparison that are not supported by theoretical ecieléno-
sine distance, as in [2], is one of the most accepted). W thist,
based on the GGD modeling of Gabor coefficients, optimal ways
compare jets (from a theoretical point of view) could be otsd,
and we will focus our efforts in this direction.
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