ADAPTIVE ALGORITHMS FOR
IDENTIFICATION AND EQUALIZATION
USING RECURSIVE FILTERS

Ph.D. Thesis

Author: Roberto Lopez Valcarce
Advisor: Fernando Pérez Gonzdilez

2001

Escola Técnica Superior de
Enxeneiros de Telecomunicacién
Universidade de Vigo






Abstract

Adaptive filters play an important role in many control and signal processing
applications such as system identification, echo and noise cancellation, adaptive
equalization, etc. Although the potential advantage in terms of computational sav-
ings of adaptive IIR filters over their FIR counterparts has long been recognized,
adaptive FIR filters are the most commonly used, due to their simplicity and ro-
bustness. Adaptive recursive filters present a series of drawbacks, which arise as
a consequence of the nonlinear dependence of the filter output with the filter pa-
rameters due to the presence of feedback. Among these one finds problems such as
multimodality of the cost function, ill-convergence in undermodeled cases, biased
solutions, potential instability, etc.

In this thesis we analyze several issues arising in adaptive IIR filtering. Since
in any practical application it is critical to ensure that the adaptive filter remains
stable during operation, special attention is given to the normalized lattice structure
which is known to provide the desired stability even when it becomes time-varying.
To this end, an analysis of the convergence properties of previous adaptive lattice
algorithms is developed, which reveals that these schemes may fail to converge even
in ideal cases. To overcome this drawback, a systematic approach to the derivation
of a lattice algorithm from a given direct form scheme is presented. The resulting
implementation is fairly general and efficient, and it preserves the local convergence
properties of the direct form algorithms in sufficient order settings, in contrast with
previous approaches.

An analysis of several off-line system identification schemes, which serve as
starting points to the development of on-line adaptive algorithms for IIR filters,
is presented. This methods are iterative in nature and may break if the unknown
system estimate at a given iteration is unstable. Conditions for the stability of
equation error models which are the basis of these iterations are presented. Also,
conditions on the input signal for the uniqueness of the fixed point of these iterations
are given.

The convergence of one family of adaptive IIR filtering algorithms requires the
satisfaction of a passivity condition involving the unknown system to be identified.
One possibility to relax this requirement is the use of overparameterization. We
investigate this issue, as well as the associated spectral richness conditions on the
input signal, when the polyphase structure is adopted for the adaptive filter.

Recently, the potential of adaptive recursive filters for channel equalization in
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digital communication systems has started to be recognized. We provide a thorough
discussion of the problem and the theoretical framework for adaptive IIR filters
in this application. The adaptation of the poles and the zeros of the filter can
be carried out under different criteria. We investigate two different unsupervised
algorithms for the adaptation of the recursive part of the equalizer: Output Variance
Minimization (OVM) and a Pseudolinear Regression (PLR) method. In sufficient
order cases both algorithms converge to the desired setting, in which the filter
output becomes a white process. In undermodeled cases these algorithms do not
necessarily converge to a Mean Squared Error minimum, but they generally provide
acceptable performance. It is shown that under mild conditions PLR always admits
a stationary point. Blind adaptation of the zeros of the equalizer can be done using
schemes such as the constant modulus algorithm (CMA). A simple and efficient
method for on-line reinitialization of CMA is presented, which exploits the fact
that the recursive portion acts as a prewhitener. Given the interest of the topic,
we give at the end some lines for further research in the area of adaptive recursive
filtering applied to real problems such as those studied in the thesis.
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Resumen

El filtrado adaptativo desempena un papel importante en aplicaciones del proce-
sado de senal tales como identificacién de sistemas, cancelacion de ruido y de eco,
igualacién adaptativa, etc. Aunque el potencial de los filtros IIR adaptativos para
conseguir mejores prestaciones que los FIR ha sido reconocido desde hace tiempo,
la simplicidad y robustez de los filtros FIR adaptativos ha hecho de éstos la solucién
preferida en la mayoria de los casos. Los filtros IIR adaptativos presentan una serie
de problemas que son consecuencia de la dependencia no lineal de la senal de salida
con los coeficientes del filtro, un producto de la presencia de realimentaciéon. Entre
estos problemas cabe mencionar la presencia de minimos locales en la funcién de
coste, convergencia lenta, sesgo en las soluciones en presencia de ruido, inestabilidad
potencial, etc.

En esta tesis se analizan varios temas relacionados con el filtrado ITR adaptativo.
Dado que en toda aplicacién practica de estos sistemas es preciso que el filtro
adaptativo se mantenga estable, se presta especial atencién a la estructura en celosia
normalizada la cual es estable incluso cuando sus coeficientes varian a lo largo del
tiempo. Para ello se realiza un analisis de las propiedades de convergencia de una
serie de algoritmos para celosias propuestos anteriormente, del cual se desprende
que estos esquemas pueden no converger incluso en situaciones ideales. Para paliar
este problema se presenta una aproximacién sistemditica a la transformacion de
algoritmos en forma directa a celosia. Los esquemas en celosia resultantes son
eficientes en cuanto a la potencia de cilculo requerida, y en casos de orden suficiente
mantienen las propiedades de convergencia local de los algoritmos en forma directa
originales.

Se presenta también un estudio de ciertos métodos de identificacion de sistemas,
los cuales sirven como puntos de partida para el desarrollo de algoritmos adaptativos
para filtros ITR. Estos métodos son de naturaleza iterativa y pueden fallar si durante
alguna iteracién el estimador del sistema desconocido resulta ser inestable. Se
presentan condiciones suficientes para garantizar la estabilidad del modelo obtenido
por el método del error de ecuacion, el cual sirve como base para estos esquemas
iterativos. También se dan condiciones sobre la sefial de entrada para garantizar la
unicidad del punto fijo de estos métodos iterativos.

Una condicién suficiente para la convergencia de cierta familia de algoritmos
adaptativos es la verificacién de cierta condicién de pasividad sobre el sistema, de-
sconocido. Un método para relajar dicha condicién es la sobreparametrizacién del
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filtro adaptativo. Se investiga esta posibilidad en el caso de utilizar estructuras
polifase, asi como las condiciones asociadas de riqueza espectral sobre la senal de
entrada.

Recientemente ha habido un renovado interés en la aplicacién de filtros recur-
sivos adaptativos al problema de igualacion de canal en comunicaciones digitales.
Se proporciona una presentacién minuciosa del problema y el marco teérico del fil-
trado IIR adaptativo en esta configuracién. La adaptacién de los polos y los ceros
del filtro puede realizarse usando criterios distintos. Para la adaptacién de los polos
se investigan dos criterios no supervisados: la minimizacién de la varianza de salida
(OVM) y un esquema basado en regresién pseudolineal (PLR). En casos de orden
suficiente, ambos algoritmos convergen al punto adecuado, en el que la senal de
salida es blanqueada. En situaciones inframodeladas estos esquemas no convergen
necesariamente a un minimo del error cuadritico medio, aunque en general propor-
cionan soluciones validas. Se demuestra la existencia de puntos estacionarios del
algoritmo PLR en el caso inframodelado. La adaptacién de los ceros del igualador
puede realizarse mediante el algoritmo de médulo constante (CMA). Como conse-
cuencia de que la parte recursiva del igualador blanquea la entrada a la parte no
recursiva, es posible derivar un método sencillo para reinicializar el algoritmo CMA
en su busqueda del minimo global del error cuadratico medio.

Finalmente se comentan las numerosas lineas de investigacién que aparecen
como consecuencia de nuestros resultados.
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Chapter 1

INTRODUCTION

1.1 Why adaptive IIR filters?

Adaptive filters are systems with the ability to change their operating charac-
teristics in response to different conditions in the surrounding environment. This
property is useful in settings in which the nature of such conditions is unknown,
thus rendering the a priori design of an optimal, fixed filter impractical; or in situ-
ations where the statistical properties of the signals change with time, and the filter
is required to track these variations. An adaptive filter consists of two conceptual
blocks:

e A parametric structure performing the input-output (i.e. filtering) transfor-
mation.

e A procedure for updating the filter parameters as each new set of measure-
ments is available (the adaptive algorithm).

The design of an adaptive filter includes the selection of an adequate structure
and the update algorithm, a choice that is usually application dependent. Nev-
ertheless, the most popular structure in adaptive signal processing is by far the
linear finite impulse response (FIR) filter, usually implemented as a tapped delay
line. Similarly, the most popular update mechanism for this structure is the Least
Mean Square (LMS) algorithm, developed by Widrow and Hoff more than forty
years ago [129], and its variants. Over the years LMS-based adaptive FIR filters
have proved successful in many applications, lying at the core of adaptive signal
processing [46, 130].

On the other hand there are certain situations in which the order of the adaptive
filter must be relatively large in order to achieve a satisfactory level of performance.
A large number of adaptive coefficients translates into heavier computational and
memory loads as well as an increase in power consumption. Several approaches
have been investigated in order to improve performance while keeping a reasonable
number of adaptive parameters in the FIR structure, such as transform domain
techniques [23, 115], subband adaptive filtering [41, 98], block processing [43], and

1



2 Chapter 1. Introduction

the use of sparse filters which adaptively allocate a reduced number of adjustable
coefficients along the tapped delay line [47, 122].

Another possibility whose potential has long been recognized is the use of infinite
impulse response (IIR) structures, which incorporate feedback in order to form the
output as a linear combination of past values of both the input and output signals.
This potential is attributed to the superior modeling abilities of pole-zero transfer
functions, which can approximate long impulse responses with the same accuracy as
an FIR (or all-zero) transfer function but with significantly fewer coefficients. For
this reason there has been considerable interest in the problem of adapting recursive
filters.

Several authors have considered the use of IIR structures with fixed poles, for
which only the zeros of the transfer function are adapted [56, 99, 127, 132]. This
technique can be very effective in situations in which some a priori knowledge is
available regarding the filter operating environment, in order to choose the fixed
poles of the filter. On the other hand, it is reasonable to expect fully adaptive IIR
filters to provide better performance due to the added flexibility in the placement
of the filter poles. This approach has received a great deal of attention by both the
signal processing and the control communities [52, 105, 113]. However, while the
area of adaptive FIR filtering has reached a considerable degree of maturity and
the properties of adaptive FIR filters are reasonably well understood, a comparable
theory for adaptive IIR structures is still lacking. Simply put, estimation of the
optimum filter parameters becomes a nonlinear problem with the introduction of
feedback in the filter structure. This raises a series of theoretical and practical
issues that must be solved before the adaptive IIR filter replaces the widely used
adaptive FIR filter. It is the goal of this thesis to further investigate some of
these issues and to provide answers to several questions concerning adaptive IIR
filtering. In order to motivate the problem, in the following sections we proceed to
review several adaptive filtering applications for which the use of ITR structures has
been explored, namely system modeling, echo cancellation, adaptive notch filtering,
active noise control, predictive speech coding, and channel equalization.

1.1.1 Dynamical system modeling

Many concepts found in adaptive IIR filtering theory have their roots in the area
of adaptive identification, developed by control researchers driven by the necessity
of having a parameterization of the plant as a prerequisite for the design of suitable
controllers. Assume the physical continuous-time process to be controlled admits a
linear state-space description of the form

Zc(t) = Aczc(t) + Beue(t), Ye(t) = Cezc(t) + Deuc(t), (1.1)

where u,, y. and z. are respectively the continuous-time input, output, and state
vectors. In data sampled systems the output signal is periodically sampled, and
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Unknown system n(n)

(n)
H(z) | 5+ d(n)

Tunable model

H(z) 9(n)

d

Adaptive
algorithm

Figure 1.1: Adaptive filter in a system identification configuration.

the control signal u,. is specified at the sampling instants and held constant until
the next cycle (this is often called zero-order hold digital to analog conversion).
Defining u(n) = u.(nT), y(n) = y.(nT), z(n) = z.(nT) with T the sampling
interval, the state-space representation of the corresponding discrete-time system
obtained under these conditions is

z(n+ 1) = Az(n) + Bu(n), y(n) = Cz(n) + Du(n), (1.2)

where

T
A = AT, B:/eﬁﬂt&, C=0C,, D = D..
0

The objective of the control algorithm is to design u(-) according to some criterion
[5], for which it is often necessary to have access to the transfer function from u(-)
to y(+), given by

H(z) =C(2I — A)™'B + D.

Observe that H(z) has poles given by the eigenvalues of A, which are of the
form A = e*T with )\, the eigenvalues of A.. Hence in general H(z) is an IIR
transfer function, especially for fast sampling (small T") in which case its poles tend
to cluster around the point z = 1 in the complex z plane. In that situation an
FIR model for H(z) would require a large number of coefficients to capture its
dynamics; an IIR model is clearly preferred. In order to fit the parameters of the
model, one could drive H(z) with some input, record the corresponding output,
and then run some off-line identification procedure [118]. Another approach is to
perform identification in a recursive, on-line fashion, in which the coefficients are
tuned recursively as each new input-output pair {u(n),y(n)} becomes available
[71]. This is especially appealing if the system parameters are slowly time-varying,
as well as in adaptive control systems. The corresponding configuration is depicted
in Figure 1.1. This system identification setting in which the goal of the adaptive
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filter H(z) is to match an unknown plant H(z) is a recurring theme in adaptive
IIR filtering. Observe from Figure 1.1 that the plant output y(n) is assumed to be
corrupted by an additive disturbance n(n) so that the measurable reference signal
is d(n) = y(n) + n(n). The so-called output error d(n) — y(n), where g(n) is the
adaptive filter output, is often used as an indicator of the quality of the fit of H (2)
to H(z).

There are three possible situations for the system identification setting of Figure
1.1, depending on the relative orders of H(z) and H(z). If deg H(z) > deg H(z),
the adaptive filter is overparameterized. With IIR transfer functions this opens the
possibility of pole-zero cancellations, such that there are infinitely many parame-
terizations of H(z) yielding the same desired transfer function H(z) = H(z). This
may cause parameter drift during adaptation and slow down convergence, but in
real world situations it is very unlikely that deg A (z) > deg H(z). When the degrees
of the plant and the model coincide, one has the “matching order case” in which
the parameterization of H(z) yielding H(z) = H(z) is unique (assuming , of course,
that H(z) itself is free of pole-zero cancellations). Finally, if deg H(z) < deg H(z),
one has the “undermodeled case”, for which it is impossible to achieve H(z) = H(z).
Most of the available literature on system identification and adaptive IIR filtering
focuses on the matching order case, for which the problem of algorithm design and
analysis remains tractable. It is likely, however, that in a real world situation the
physical process to be modeled via the filter H () does not admit a description
in terms of a rational transfer function, and even if it does, its degree may be
prohibitively large, and often unknown. Thus, undermodeled scenarios are of great
practical importance, and unfortunately, they are also much harder to analyze [105].

1.1.2 Echo cancellation

Figure 1.2 shows a typical long distance telephone system loop, in which signals
at each end are sent through a twisted pair to the local switching office. In the
local office the twisted pair is connected to one port in a 4-port device known as
a hybrid circuit which acts as a bridge between bidirectional and unidirectional
lines. The fourth port of the hybrid is connected to a balancing impedance so
that ideally signals coming in through the bidirectional line come out one of the
unidirectional lines, while the signals arriving via the other unidirectional line come
out the bidirectional line. However, design of the hybrids requires knowledge of the
impedance characteristics at each port, and due to variations in the length, type
and gauge of wire as well as the number of phone extensions, these values are not
known precisely in practice. Imperfect impedance matching in the hybrid leads
to signal leakage from the incoming unidirectional line to the outcoming one; this
signal returns to the original transmitter as an echo. With speech signals, this echo
creates an annoying effect if the total roundtrip delay of the connection exceeds
32 ms. Often compromise hybrids are deployed achieving an echo attenuation of
6 dB, but this is far from the attenuation levels specified by the recent ITU-T
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Local 2-wire loop ——<—— Central 4-wire loop ——+—— Local 2-wire loop
| |
| |

subscriber 1 subscriber 2
echo echo

received \ . / transmitted

desired path

Figure 1.2: A 4-wire long distance telephone loop. Hp, Hs denote the hybrid cir-

cuits.
Hybrid 2
VNN —5, o |
o B e T
Subscriber 1 : : N ~ : :
[ Hi(z)| 1 (Hy(2) Hy(z)| '|H2(2)|!  subscriber 2
| | B
~ ' —é (e I g VI
F e
Hybrid 1

Figure 1.3: Echo cancellation in a telephone network.

Recommendation G.168 [35]. Additional echo suppressing devices, such as adaptive
echo cancellers, are required in order to achieve these levels.

An echo canceller is a filter that sits inside the 4-wire loop across the hybrid
with the purpose of substracting an estimate of the echo signal from the outgoing
unidirectional line. This is depicted in Figure 1.3, where H;(z) and Hs(z) represent
the echo paths across the hybrids, and the blocks z=%, 2~% represent the trans-
mission delays across each part of the 4-wire loop. The cancellers H;(z), Ho(z)
attempt to model the passthrough dynamics of the hybrids in order to remove the
echo from the hybrids’ outputs. Since the echo path transfer characteristics are not
known beforehand, and moreover they may change during a call (for example as a
result of a handoff in mobile telephone networks), the echo canceller is implemented
by an adaptive filter.

Observe that each canceller in this configuration can be cast as in the system
identification setting of Figure 1.1. For example, for the canceller H (2), the signal
transmitted by Subscriber 1 plays the role of the additive disturbance n(n) in Figure
1.1. This signal can overpower the echo (the output of H;(z)) and make adaptation
of H 1(z) difficult. Because of this, adaptive echo cancellers are usually implemented
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noise

local \ +

a
speech D A/D Y

acoustic H(z
echo (2)

D/A

Figure 1.4: Acoustic echo cancellation

with double talk detection devices which inhibit adaptation whenever the near-end
subscriber is active.

The typical effective time spans of echo paths in telephone networks are in the
order of a few tens of milliseconds [88, 111], although state of the art cancellers
handle echo path delays of up to 128 ms. With speech signals sampled at 8 kHz,
FIR implementations of adaptive echo cancellers may require several hundreds of
coefficients. In addition, voiceband data transmission applications, such as the
full duplex data modem specified in CCITT Recommendation V.32, require echo
cancelers to be placed at the line interface where hybrids connect the modem to the
2-wire line. These cancelers must achieve a considerably higher level of performance
than in speech applications [13, 88].

The impulse response of the echo path is a linear combination of decaying expo-
nentials, since the hybrid is an electronic circuit with discrete elements. Therefore
the passthrough dynamics of the hybrid circuit is typically modeled by a transfer
function with a few poles and several zeros. The inclusion of poles allows to model
the echo tail that is related to the low frequecy time constants of the circuit [13].
This indicates that an IIR structure for the adaptive filter should be suitable for
the echo cancellation task, as explored in [12, 31, 38, 40, 111].

Adaptive filtering also finds application in the area of acoustic echo cancellation.
Acoustic echo arises in settings where a microphone and a loudspeaker are placed
such that the microphone picks up part of the sound radiated by the loudspeaker
and/or its reflections. The speech from the far-end terminal is then fed back to the
far-end user who hears his or her own speech delayed by the roundtrip time of the
connection. Adaptive echo cancellers can again be used, being now located between
the loudspeaker input and the microphone output as shown in Figure 1.4. In con-
ventional telephones, the design of the handpiece provides an adecuate attenuation
level from the loudspeaker to the microphone. On the other hand, applications such
as hands-free telephone systems, audio or video conference systems, hearing aids,
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and voice control systems usually require adaptive cancellation of the acoustic echo
in order to achieve satisfactory performance. In some cases, such as hearing aid
systems, the impulse response of the acoustic echo path can be adequately modeled
by an FIR filter with the order of 20 coefficients [133]. However, for hands-free and
teleconference systems the large number of echo paths and reverberation effects
in the enclosure (car, office, etc) may give rise to echo transfer functions with an
effective duration of several hundreds of milliseconds. With a sampling rate of 8
kHz, an FIR filter may require thousands of coefficients to model these systems [8].
With such high filter orders an IIR structure for the canceller seems better suited
at first glance; some arguments favoring IIR over FIR structures with the same
number of free parameters were given in [83]. On the other hand, the results shown
in [67] suggest that this is not the case. The main obstacle seems to be the nature
of acoustic echo paths, whose energy spectra present many sharp peaks requiring
a large number of coefficients for satisfactory modeling, irrespective of the type of
model (FIR or IIR). Thus at this point the adequateness of IIR structures to the
acoustic echo cancellation problem seems dubious.

1.1.3 Active noise control

Acoustic noise control has become ever more important in recent years as pro-
grams and policies are being established worldwide in order to reduce and control
environmental noise produced by industrial equipment. Traditionally passive tech-
niques such as barriers, enclosures, etc., have been used to attenuate the undesired
acoustic noise. Although these passive silencers offer high attenuation over a wide
range of frequencies, they tend to be expensive and bulky, and not very effective at
low frequencies. An attractive alternative is active noise control (ANC), which is
based on the superposition principle. The unwanted noise is canceled by an artificial
noise signal of the same amplitude but opposite phase generated by an electroa-
coustic device (loudspeaker) driven by the ANC system [60]. Since the properties
of the environment and the noise source may be time varying, ANC systems are
usually adaptive in order to cope with these variations.

ANC systems can be classified as single-channel, which use a single loudspeaker
to produce the canceling noise, or multichannel systems with several loudspeakers
and sensors. Either of these can be based on a feedforward structure, in which
the noise source is sensed before the canceling noise is produced, or feedback ap-
proaches lacking this noise reference input. Feedforward ANC systems can be either
broadband or narrowband, depending on the spectral characteristics of the noise
source. In narrowband ANC the fundamental frequency of the noise can be detected
via nonacoustic sensors; this method, however, is not effective for nonperiodic noise
since the fundamental driving frequency is the only reference available. Thus broad-
band applications must resort to acoustic sensors (microphones) to acquire the noise
reference.

Figure 1.5 shows the schematics of a single-channel, broadband feedforward
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Figure 1.5: Single-channel, broadband feedforward active noise cancellation.

ANC system. The reference microphone picks up the noise signal which is sampled
and processed by the adaptive filter H (z) to generate the signal that drives the
loudspeaker. An error microphone located at the objective point provides a measure
of the achieved noise reduction. Besides H(z), a number of transfer functions
(acoustic paths) can be identified from Figure 1.5:

e H(z), the path from the noise source to the sampled error signal e(n);
e P(z), the path from the noise source to the input u(n) of the adaptive filter;

e F(z), the path from the output §(n) to the input u(n) of the adaptive filter,
due to acoustic feedback from the loudspeaker to the reference microphone;

e S(z), the path from the output §(n) of the adaptive filter to the sampled error
signal e(n).

The corresponding block diagram is represented in Figure 1.6. There are two
paths through which the noise signal travels to reach the error microphone: the
primary path H(z) and the secondary path comprising P(z), H(z), F(z) and S(z).
The transfer function of the secondary path is given by

S(2)H(2)P(2)

1—H(2)F(z)
Observe that the configuration of Figure 1.6 is considerably more complicated than
the standard system identification setting of Figure 1.1 due to the presence of P(z),
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Figure 1.6: Block diagram of an ANC system.

F(z) and S(z). Ideally one would like to have perfect noise cancellation at the
error microphone, i.e. e(n) = 0. For this, the transfer functions of the primary and
secondary paths must equal each other, i.e.

_ S(2)H(2)P(2) () — H(z)
B = T hore — "9 50P0 + H@FG)

Note that even if the transfer functions of all the acoustic paths can be regarded
as FIR, (1.3) shows that the optimum H(z) will in general have both zeros and
poles. This has led to consideration of IIR structures for the adaptive filter H (z)
[16, 15, 24, 86]. Preliminary results obtained with adaptive IIR noise cancellers seem
to favor these structures over their FIR counterparts, for the same computational
complexity, both in the narrowband [61] and the broadband cases [86]. Thus ANC
appears as a very promising area of application of adaptive IIR filters.

(1.3)

1.1.4 Adaptive notch filtering

There are many signal processing applications in which one is faced with the
problem of estimating the frequencies in a signal u(-) composed of multiple sinusoids
buried in background noise. For example, Dual Tone Multiple Frequency (DTMF)
signaling, a technique widely used in telephone dialing and digital answering ma-
chines, represents each symbol on a telephone touchtone keypad by the summation
of two sinusoids of different frequencies added together. The ITU Q.24 standard
[100] requires 100% detection of valid DTMF signals at an SNR of 15 dB. Other
examples include narrowband active noise control and vibration control. In other
applications, such as interference suppression and synchronization in communica-
tion systems, the sinusoidal components (and not just their frequencies) must be
retrieved.

Two different approaches to this problem exist. Off-line methods include spec-
tral estimation schemes based on the discrete Fourier transform, and subspace de-
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composition techniques such as multiple signal classification (MUSIC); these meth-
ods usually have high computational costs. On-line methods tend to be less complex
and are better suited for real-time processing and tracking time-varying frequen-
cies. These methods are based on adaptive filtering techniques: the parameters
of an adaptive filter H(z) driven by the composite signal (sinusoids plus noise)
u(-) are tuned so that the resulting transfer function has zeros on the unit circle
at the locations of the signal frequencies. Early on-line methods using adaptive
FIR filters include the adaptive line enhancer of [128] and the adaptive Pisarenko
method [102]. For example, a second-order FIR filter with zeros at z = e*7“0 has
the transfer function

H(z) =1—-2coswoz™t + 272 (1.4)

The only tunable parameter in (1.4) is wp, which controls the position of the zeros;
it is not possible to adjust the attenuation bandwidth. In other words, sharp cutoff
characteristics cannot be achieved with this structure, which constitutes the main
drawback of FIR filters for sinusoidal retrieval. This motivated the consideration
of adaptive IIR structures, known as adaptive notch filters (ANFs). A notch filter
is one whose magnitude response vanishes at a particular point on the unit circle
(the so-called notch frequency) while it remains nearly constant at all other points
on the unit circle. Although ideal notch filters are not realizable by rational trans-
fer functions, very good approximations can be obtained using ITR structures. A
popular approach is to use a cascade of second-order IIR sections, each of them
corresponding with a notch frequency. In this way, and assuming that the notch
frequencies match those of the sinusoids, the output of each section in the cascade
contains one less sinusoid. Complementary bandpass filters can be implemented
by substracting the outputs of each second-order notch section from their inputs,
effectively extracting the desired sinusoids.

It is customary to constrain the pole and zero locations of the ANF so that (i)
the zeros always lie on the unit circle, and (ii) the poles remain close to the zeros,
and inside the unit circle. These constraints on the notch transfer function can
be advantageously exploited in adaptive algorithm design. The filter bandwidth is
mainly determined by the distance between poles and zeros: the closer they are, the
narrower the notch is. Usually a second-order ANF has two tunable parameters:
while one is related to the notch frequency and made adaptive, the other controls the
attenuation bandwidth and is fixed a priori. Many parameterizations are possible,
each with its own advantages and problems. We refer the reader to [105, chapter
10] and the references therein.

An interesting feature of ANF's is that there is only one signal available for
the adaptation of the filter, namely the composite signal u(-) which constitutes the
ANF input. This is in contrast with the applications of the previous sections which
also had available a reference signal d(-). Lack of a reference signal is a feature
also encountered in other areas amenable for adaptive IIR filtering, such as linear
prediction and blind channel equalization, which we proceed to review next.
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Figure 1.7: An ADPCM system. (a) Encoder; (b) Decoder.

1.1.5 Adaptive linear prediction

One of the many applications of linear predictors is found in the area of speech
coding with the technique known as adaptive differential pulse code modulation
(ADPCM) [50]. The basic idea is to reduce the dynamic range of the signal to be
encoded by substracting a predicted value. The residual signal (the prediction error)
is then adaptively quantized and transmitted or stored. The receiver performs the
inverse operations in order to reconstruct the original signal, up to a quantization
error. The ADPCM encoder is is illustrated in Figure 1.7(a), where s(n) is the
signal to be encoded, §(n) is the predicted value of s(n), e(n) = s(n) — §(n) is the
prediction error, and &(n) denotes the quantized version of e(n). The decoder is
depicted in Figure 1.7(b), where 3(n) is the reconstructed version of the original
signal s(n). The quantized error e(n) and the predicted value §(n) are related via
the operator P. Observe that

s(n) = e(n) + Pe(n), s(n) = e(n) + Pe(n),
and therefore one has the fundamental relation
s(n) — s(n) = e(n) — e(n), (1.5)

showing that the difference between the original and the reconstructed signals equals
the error introduced by the quantizer. (Incidentally, note that (1.5) holds regardless
of the properties of P, which could even be nonlinear and/or time varying). The
advantage of this technique resides in the fact that if §(n) is a good estimate of
s(n), then the variance of e(-) is much smaller than that of s(-), and therefore e(-)
can be encoded with fewer bits for the same distortion level. Ideally, one would like
to have a white prediction error process, since in that case all the redundancy is
eliminated from the original signal and e(-) has the smallest variance achievable.

One possible approach is to compute §(n) as a finite linear combination of past
samples of the reconstructed signal 5(n), i.e. §(n) = N(z)3(n) where N(z) is a
strictly causal FIR filter. This is shown in Figure 1.8(a). With this choice, one has
P = N(z)/[1 — N(2)] in Figure 1.7, and e(n) is related to s(n) via

&(n) = [1 — N(2)]3(n). (1.6)
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Figure 1.8: Two predictor structures. (a) AR model; (b) ARMA model.

Eq. (1.6) corresponds to an autoregressive (AR) or all-pole model for the power
spectrum of the signal to be encoded, which results in an all-zero structure for the
prediction error filter 1 — N (z).

An alternative scheme shown in Figure 1.8(b) is to compute the predicted value
4(n) as a finite linear combination of past samples of both the reconstructed signal
5(n) and the quantized error é(n), i.e. §(n) = N(z)5(n) + D(z)é(n). Now both
N(z) and D(z) are strictly causal FIR filters. This corresponds to P = [D(z) +
N(z)]/[l — N(z)] in Figure 1.7. Now the relation between é(n) and s(n) can be

readily checked to be

B 1—-N(z)_
= " . ]"
n) = T3 by ") (L7)

Eq. (1.7) corresponds to an autoregressive, moving average (ARMA) or pole-zero
model for the power spectrum of the signal. This results in a pole-zero (i.e. IIR)
structure for the prediction error filter [1 — N(2)]/[1 + D(z)].

The AR model has been widely used in the area of speech processing. It is de-
rived from the acoustic tube modeling of the human vocal tract under the assump-
tion that during pronunciation the velum is closed and the sound wave propagates
only through the oral tract. This ignores the existence of the nasal tract, which
results in poor modeling of nasal sounds by the resulting all-pole type spectra. The
introduction of zeros in the spectral ARMA model offers more flexibility.

In terms of the ADPCM system, adopting the ARMA model should result in
further reduction of the prediction error variance once the predictor parameters are
properly tuned. Due to the presence of both poles and zeros in (1.7), the predictor
becomes an adaptive IIR filter. To see this, substitute the quantizer in Figure 1.7(a)
by a summing junction that injects the quantization noise ¢(n) = e(n) — e(n). In
that case the external inputs to the system are s(n) and ¢(n), and the predicted
value §(n) relates to these via

s(n) = N(z) + D(z)
1+ D(z)

which shows the IIR transfer function of the predictor. (if D(z) =0 as in the AR
model, then this transfer function becomes FIR). In 1984 a standard (then labeled

[s(n) + q(n)],
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CCITT Recommendation G.721 and now covered by the ITU-T Recommendation
G.726 [36]) was developed to digitize 64 kb/s PCM speech signals (8-bits/sample
with 8 kHz sampling rate) into 32 kb/s ADPCM coded signals (4 bits/sample with
8 kHz sampling rate). The IIR predictor structure of (1.7) was adopted, using 2
coefficients for the filter N(z) and 6 for D(z). It also specified an algorithm for the
adaptation of these parameters which was analyzed in [6]. One salient feature of the
standard is that the predictor parameters are not transmitted to the decoder, which
has to update its own predictor based on the only signal available: the quantized
prediction error €(-). The adaptation algorithm achieved a tradeoff between the
ability to synchronize decoder and encoder without transmitting side information
and the reduction of the prediction error variance, since completely whitening é(-)
would remove from it all information about the predictor parameters, making it
impossible for the decoder to recover them. Observe that the decoder implements
the inverse of (1.7), i.e.

_ 1+ D(z)
M =1"Ne)

This algorithm represents another example of an adaptive IIR filter in which the
adaptation is conducted without the aid of a reference signal.

e(n).

1.1.6 Channel equalization

The discrete-time baseband equivalent model of a digital communication system
can be expressed as

u(n) = C(2)s(n) + n(n) (1.8)

where u(-) denotes the received signal, s(-) is the sequence of information-bearing
transmitted symbols, C(z) is the transfer function of the channel, and 7(-) represents
additive noise. The nonideal characteristics of the channel introduce intersymbol
interference (ISI) which is usually combatted through the use of adaptive equalizers
[101]. An equalizer H(z) filters the received signal u(n) in an attempt to recover
s(n — ), a delayed version of the transmitted symbol sequence. The equalizer
output §(n) = H(z)u(n) is converted into a member of the source alphabet by a
classification device producing the hard decision §(n — ). The channel-equalizer
configuration is shown in Figure 1.9.

There are two approaches to equalizer adaptation. In the first, a training se-
quence known in advance by the receiver is transmitted. The receiver then adapts
the equalizer so that its output closely matches the reference training signal (usually
by minimizing the variance of the error e(n) in Figure 1.9). The second approach,
known as blind or unsupervised adaptation, attempts to tune the equalizer coeffi-
cients without the aid of a training sequence, with the subsequent improvement in
channel capacity. In either case the most popular structure for the adaptive equal-
izer is the FIR tapped delay line. Recently, however, there has been considerable
interest in the use of ITR architectures. These were initially proposed by Mulgrew
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Figure 1.9: Channel-equalizer configuration.

and Cowan [87] based on the observation that under certain conditions, the linear
filter that minimizes the mean square error (MSE) E[|e(n)|?] in Figure 1.9 under
the only constraints of causality and stability, has an IIR transfer function of finite
degree.

Consider the general filtering problem of producing an estimate of a reference
signal d(-) by driving a linear filter H(z) with an available signal u(-). The goal is
to minimize the variance of the estimation error e(n) = d(n) — H(z)u(n), and H(z)
is constrained only to be stable and causal: H(z) = Y reo hyz*. The solution is
given by the Wiener filter which is usually given in terms of the power spectra of
the signals u(-) and d(-) [119]. Let the power spectral density (psd) of the observed
signal u(-) be

o0
Suu(z) = Z Tuu(n)z™" with Tuu(n) = Elu(k + n)u* (k)]

n=—oo

Suu(z) can be factorized as Sy, (z) = y?F(2)F*(1/2*), where 72 is a constant and
F(z) is monic, causal and minimum phase (all poles and zeros inside the unit circle).
Define also the cross spectrum

o0

Sau(z) = D rau(n)z™  with  reu(n) = Bld(k + n)u*(k)].

n=-—oo

The Wiener filter is then given by

2 _ 1 Sdu(z)
") = 76 [%F*(l/z*)]0+ (19)

where the operator [-]o4 extracts the causal part of its argument. Observe that
H(z) in (1.9) can be seen as the cascade of a whitening filter 1/F(z) and a postfilter

[Saul2)/F* (1/2)]os-
Mulgrew and Cowan applied in [87] this result to the equalization setting of
Figure 1.9, in which the reference signal is d(n) = s(n — §). They showed that if:

e The sequence of transmitted symbols s(-) is white;
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e The noise process 7(-) is white and independent of s(-);

e The channel C(z) is FIR with degree L, i.e. C(z) = Y p_yckz";

Then F(z) can be taken as a polynomial of degree L, and the transfer function
[Squ(2)/y2F*(1/2*)]oy is FIR of degree §. Therefore under the conditions above
the Wiener equalizer has a transfer function that is rational and of finite order (it
has L poles and ¢ zeros), which is somewhat surprising since initially H (z) was only
assumed to be stable and causal with no restrictions on its degree. Other interesting
features of the Wiener equalizer are:

e The positions of the equalizer poles depend only on the psd of the received
signal, being independent of the equalization delay 4.

e The recursive part of the equalizer should whiten the received signal. This
can be done in principle without the aid of training sequences, and thus the
IIR equalizer structure is well suited for unsupervised adaptation.

This last property was exploited in [62] where an unsupervised procedure was pre-
sented that decouples the adaptations of the recursive and nonrecursive parts of the
ITIR equalizer, which are carried out under different criteria. Namely, the received
sequence is passed first through an all-pole filter that is adapted in order to whiten
its output. This white signal is then fed to an FIR filter which is adapted blindly
by means of the Constant Modulus Algorithm (CMA), a popular method for unsu-
pervised adaptation of FIR equalizers [54]. This prewhitening approach was further
explored in [89]. Some researchers have also considered the possibility of adapting
the recursive part via CMA [22] or some other blind criteria [7].

= s(n - 9
o O pe o

channel Q(2)

Figure 1.10: Decision-feedback equalization.

The original argument favoring IIR equalizers over traditional FIR architectures
of the same complexity was their superior performance in terms of MSE reduction
[87]. Also, Labat, Macchi and Laot [62] made an interesting observation relating
the Wiener IIR solution to decision feedback equalization. A decision feedback
equalizer (DFE) is a nonlinear device in which hard decisions are filtered and fed
back in order to additively cancel ISI [66], as depicted in Figure 1.10. DFEs yield
very good steady-state performance but their adaptation is usually carried out
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using training sequences since successful blind DFE adaptation from a cold start
initialization appears to be a very difficult problem [58]. It was noted in [62] that the
(linear) Wiener IIR equalizer and the MSE optimum (nonlinear) DFE share similar
components and hence the coefficients of the first could be used as starting point
for unsupervised DFE adaptation, an approach further investigated in [11, 22].
Labat, Macchi and Laot [62] report good results when testing the algorithm in
an underwater acoustic communication system, while Endres et al. [22] applied a
similar procedure to experimental digital television signals with encouraging results.

Other applications of adaptive IIR filters in digital communications can also
be found. For example, implementation of DFEs with IIR structures in the feed-
back filter (cf. Q(z) in Figure 1.10) was suggested in [17, 134] in order to cancel
the slowly decaying pulse tails of digital subscriber loop (DSL) channel responses;
[68] presented a multichannel adaptive IIR filter for multiple access interference
suppression in code division multiple access (CDMA) communication systems; and
[96] considers adaptive IIR continuous-time equalizers for magnetic recording read
channels.

1.2 A review of IIR filter structures

For any given system with a rational transfer function there exists a wide va-
riety of equivalent sets of difference equations, each corresponding to a different
filter implementation. Several considerations affect the choice among these differ-
ent structures. For example, in digital filter design properties such as computational
complexity, finite precision effects, and modularity for efficient VLSI implementa-
tion are often taken into account. If the filter is to be adaptive, other considerations
such as ease of algorithm implementation and stability monitoring play also an im-
portant role when choosing a particular structure. In this section we briefly review
the most popular implementations for adaptive IIR filtering applications.

1.2.1 Direct form

Most adaptive IIR algorithms were originally derived for a direct form filter
implementation. Suppose it has been decided that a filter with N zeros and M poles
be used for a particular application. Let the transfer function of this (adaptive) filter
be

A B(z) by+biz bbby
H(z) = = 1.10
() Alz) l14+aiz7'+---+apuz™ (1.10)
The input-output relation §(n) = H(z)u(n) leads to the difference equation
N M
§(n) = bru(n — k) =Y agj(n — k). (1.11)
k=0 k=1
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Figure 1.11: Direct form structures. (a) Direct form - I. (b) Direct form - II.

Direct implementation of (1.11) leads to the structure known as Direct Form - I
which is depicted in Figure 1.11(a). The subfilters B(z) and 1/A(z) are cascaded in
this implementation, with B(z) preceding 1/A(z). If the order of these subfilters is
reversed one obtains the Direct Form - II structure shown in Figure 1.11(b), where
p = max{N, M} (if N > M then the last N — M coeflicients ay are zero, while if
N < M then the last M — N coefficients by are zero). The difference equations of
the Direct Form - II are

P P
w(n) = u(n) — Z axzr(n), 7(n) = bow(n) + Z brxk(n), (1.12)
k=1 k=1

The Direct Form - II implementation of H(z) is minimal in the sense that it requires
the smallest possible number of delay elements z '. This is not true for the Direct
Form - I structure.

When either of these structures is chosen for the adaptive filter, the correspond-
ing algorithm updates the coefficients by, ..., by, a1, ..., aps. With adaptation
the filter becomes a time-varying system, and due to the presence of feedback in
the signal flowgraph it is possible for the filter to become unstable unless some
precautions are taken. The direct form, however, is not well suited for efficient sta-
bility monitoring unless M < 2, in which case one usually constrains |az| < 1 and
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la1| < 1 — ag at every iteration (this stability check may fail though unless adap-
tation is sufficiently slow [10],[105, chap. 6]). Another problem is its sensitivity to
quantization effects. Thus although the vast majority of adaptive algorithms were
designed with the direct form structure as starting point, practical considerations
have led to the investigation of other filter implementations.

1.2.2 Cascade and parallel forms

Cascade and parallel structures tend to be better behaved than direct form
implementations in terms of finite precision effects; also, the task of stability moni-
toring becomes much easier. The cascade form is obtained by factoring the transfer
function H(z) into first- and second-order sections, each of which is implemented
in direct form. Alternatively, the parallel form is obtained from a partial fraction
expansion of H(z) so that a parallel connection of first- and second-order sections
is obtained.

Several researchers have considered the use of cascade and parallel forms for
adaptive IIR filtering [91, 114, 131]. However, these structures present several
disadvantages that have somewhat stalled research in this direction:

e Parallel forms cannot model transfer functions with repeated complex poles,
unless the number of repeated complex poles and their multiplicities are
known a priori in order to modify the structure of the adaptive filter ac-
cordingly. Thus in the general case (no a priori information) the space of
rational functions of a given degree is not completely reachable using this
structure.

e In the cascade form, the output signal of each section depends on the coeffi-
cients of that section as well as on those of all previous sections. This con-
siderably increases the computational load of the adaptive algorithms [91],
although it can be alleviated by judiciously choosing the implementation of
the numerator of the adaptive filter [131].

e For both parallel and cascade forms, the overall transfer function remains
unaltered if the coefficients of two different sections are interchanged. This
produces manifolds in parameter space along which the convergence rate of
the adaptive algorithms may be considerably slower than that of direct form
structures [114].

1.2.3 Lattice form

The lattice form of an IIR transfer function H(z) as given in (1.10) is based

on the parameterization of the denominator A(z) = 1+ a1z~ ! +--- +ayz™™ in

terms of the so-called reflection coefficients sin¢1, ..., sin ¢ps (the quantities ¢; are
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known as rotation angles). One can recover the direct form parameters a; from the

reflection coefficients via the following recursion: for k =1, ..., M, do
a,(ck) = sin ¢y, (1.14)
o™ = o fsingy-alF), 1<i<k-1, (1.15)
Ap(z) =142z o g 0Pk, (1.16)

and then one has A(z) = Aum(z). Conversely, the reflection coefficients can be
obtained from the direct form parameters through the following reverse recursion:

set a™ =a;,1<i<M,andfor k=M, M—1,..,2, do

i

®) (*)
b ) (1) _ % FSmOkas 117
singg = a;.”’, a; sl Sts . (1.17)

The lattice parameterization of A(z) has the property that, provided the rotation
angles are restricted to the range ¢ € [—F, 7], the roots of A(z) all lie inside the
unit circle if and only if || < § (or equivalently |sin¢y| < 1) for 1 <k < M. This
is known as the Schur-Cohn stability test [3].

From (1.16), let us define

~

Ap(z) = Ap(z) =1, Ap(z) = 27 Ap(z71), E>1. (1.18)

Note that Ag(z), Ag(z) are degree k polynomials in z~'. One can write

40(2) 11
Al:(z) — L. z_ , (1.19)
Ak.(z) -
where Ly is a (k+ 1) x (k + 1) lower triangular matrix formed from the agj ) and
with ones on its diagonal. It is also useful to introduce the parameters
e = { H£k+11’003 bis 2 ; ?\; M (1.20)
and the (k + 1) x (k + 1) matrices
Ty =diag (70 71 -+ k) - (1.21)

In the range ¢ € (—%5,%) one has cos ¢, > 0 and therefore v, > 0, so that T'y, is
positive definite.

Two different lattice implementations of the transfer function H(z) = B(z)/A(z)
can be found in the literature, depending on how the numerator B(z) is realized:
the cascade and the tapped-state lattices. The cascade normalized lattice form
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Figure 1.12: Cascade normalized lattice structure.

e

Figure 1.13: Tapped-state normalized lattice structure, indicating the transfer func-
tions to the various nodes of the filter.

is shown in Figure 1.12. Similarly to the Direct Form - I of Figure 1.11(a) this
structure is composed of two subfilters, with the numerator B(z) implemented as
a tapped delay line and followed by the denominator 1/A(z) now implemented in
normalized lattice form. Of course it is also possible to reverse the order of these
subfilters, i.e. to have first 1/A(z) and then B(z), without altering the overall
transfer function. The output multiplier -y, ! in Figure 1.12 is included for clarity
purposes only in order to cancel the overall gain of the normalized lattice, but in

practical implementations it can be absorbed into the coefficients of the numerator
B(z).

The other variant is the tapped-state normalized lattice, shown in Figure 1.13
where again p = max{N, M }. In this structure the numerator B(z) is implemented
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as a linear combination of the polynomials v Ay (2):

N

B(2) = vk[wAk(2)]. (1.22)

k=0

If N > M, the last N — M reflection coefficients sin ¢, in Figure 1.13 would be set
to zero, while the reverse situation N < M is taken care of by setting the last v
weights to zero. As indicated in Figure 1.13, the transfer functions from the input
to the delay elements are 4, Ag(z)/A(z). The numerator parameters {b;} and {v;}
are related via
bo vy
=Liri | - |. (1.23)
by UN

Egs. (1.22) and (1.23) show that while the numerator coefficients {b;} are inde-
pendent of the filter poles, the weights {1;} are not: if the poles of H(z) change
even while its zeros are kept fixed, the corresponding parameters {v;} will change
as well. Also note that the tapped-state lattice form is minimal while the cascade
lattice form is not.

The primary advantage of the normalized lattice structure is that stability mon-
itoring becomes extremely simple, even when the filter becomes time-varying. Tt
was shown in [103] that as long as the rotation angles satisfy |¢x(n)| < 7/2 — €
for all k£ and n, with 0 < € < 7/2 a fixed constant, the time-varying normalized
lattice structure is exponentially stable. It is worth noting that this nice property
need not apply to other lattice structures, such as two-multiplier or one-multiplier
forms. Also, there is a unique parameterization of any stable transfer function
H(z) = B(2)/A(z) in either cascaded or tapped-state lattice form. Therefore the
slow convergence problems associated to the nonuniqueness of the cascade or par-
allel realizations of section 1.2.2 are not present in the lattice implementations. On
the other hand, the computational complexity of normalized lattice implementa-
tions is greater than that of direct form structures, but if one takes into account
the costly stability checks associated with adaptive direct form filters the lattice
structures tend to be preferred.

1.3 A review of adaptive IIR filtering algorithms

In this section we present four ‘classical’ algorithms for adaptive IIR filtering
settings in which a reference signal is available. As mentioned before, most adap-
tive algorithms were originally designed for direct form implementations, although
several authors have derived modifications for other structures as well. We start
with the direct form versions of the equation error, output error, Steiglitz-McBride,
and hyperstability based on-line adaptive algorithms, and then we comment on the
lattice versions of these schemes. The cascade and parallel forms will not be further
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considered in this thesis due to the inherent problems they present, as explained
in section 1.2.2. In addition, we shall focus on constant-gain type algorithms, for
which the update takes the form

New Old
parameter | = | parameter | + [
vector vector

Fixed Driving Error
stepsize vector signal

In what follows, u(-), y(-) and d(-) designate the adaptive filter input and output
and the reference signal respectively. All signals and coefficients are assumed real-
valued. We designate the vector of direct form parameters by

(1.24)

Adaptive filter H(z) Postfilter 1/A(z)

Figure 1.14: Qutput error configuration.

1.3.1 Owutput error algorithm

The Output Error (OE) approach attempts to minimize the variance of the
output error signal e,(n) = d(n) — §(n). An stochastic gradient descent of the cost
function E[e?(n)] takes the form

99 (n)

bi(n+1) = be(n) + p=g, Zeo(n),  ax(n+1) :ak(nHua@(n)

Bak

eo(’l’l),

where p > 0 is the stepsize. The gradient signals are readily obtained by taking
partial derivatives in (1.11):

_0j(n) 27k 09(n) z7k

i) = TG = Gy, ) =50 = —Tie). (125)
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The signals 62 (n) are readily available from the adaptive filter H(z) if the Direct
Form - II implementation is chosen. Generation of 0f(n) requires an additional all-
pole postfilter driven by the adaptive filter output §(n). The overall configuration
is shown in Figure 1.14.

If we define the regressor vector
$o(n) = [u(n) u(n —1) -+ u(n = N) =g(n—1) --- —g(n = M)J"  (1.26)

such that the difference equation (1.11) becomes §j(n) = 6% (n)1,(n), then the OE
algorithm can be compactly written as

1

Ba(n + 1) = 6u(n) + [mwo(m] eoln). (1.27)

A%z) — g)(n)

L

B(z)
/ copy coefficients
dm)— A O

ee(n)

Figure 1.15: Equation-Error configuration.

1.3.2 Equation error algorithm

The equation error (EE) method adjusts the coefficients of two FIR filters
B(z) = Zszo bpz™% and A(z) = Z,ICVI:O apz~* in order to minimize the variance
of the equation error signal

ee(n) = A(z)d(n) — B(z)u(n) = > _apd(n—k) = > byu(n — k). (1.28)
k=0 k=0

The coefficients of the FIR filter A(z) are then copied into an all-pole filter 1/A(z)
to obtain the adaptive pole-zero filter H(z). This is represented in Figure 1.15.

In order to avoid the solution A(z) = B(z) = 0, some constraint must be placed
on the filter coefficients. Traditionally a monic constraint on A(z) has been used:
one fixes ayp = 1. Alternatively a quadratic constraint of the type Z,ICVI:O az =1
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could be placed [104]. The monic constraint approach leads to a standard two-
input one-output FIR filtering problem. Defining the vector

Ye(n) = [u(n) u(n —1) --- u(n — N) —=d(n —1) -+ —d(n — M)]T, (1.29)

the equation error becomes e.(n) = d(n) — 6% (n)ie(n), which is a linear function
of the filter coefficients. A stochastic gradient descent on the cost function E[e2(n)]
yields the EE algorithm

Oa(n +1) = 04(n) + ppe(n)ee(n), (1.30)

which is just a generalization of the standard LMS algorithm for adaptive FIR filters
to the two-channel case. Observe that the equation error and output error signals
are related by eq(n) = A(z)ey(n).

1.3.3 Steiglitz-McBride algorithm

The Steiglitz-McBride (SM) adaptive algorithm is rooted in an off-line system
identification procedure [120] which will be discussed in chapter 3. The on-line
direct form algorithm was developed by Fan and Jenkins in [30], and has the form

Ba(n+ 1) = 64(n) + [ﬁwe(n)] eoln), (1.31)
where e,(n) = d(n) — g(n) is the output error and 1.(n) is the vector defined in
(1.29). Note that the numerator parameters {b;} are adapted in the same way as in
the OE algorithm. The update of the denominator coefficients, however, is different,
although conceptually similar. Specifically, as shown in Figure 1.14 the signals that
drive the adaptation of the coefficients {a;} in the OE algorithm are generated by
an all-pole filter driven by the signal §(n). In the SM algorithm, these signals are
in the same way taken from the states of an all-pole filter but now driven by d(n).

1.3.4 Hyperstability based algorithms

The class of algorithms presented in this section has its origins in the work of
Landau [64] in the system identification context of Figure 1.1 and Johnson [51]
in the general adaptive filtering setting. The constant gain member of the family
is known as SHARF (Simplified hyperstable adaptive recursive filter) and has the
following form:

Oia(n + 1) = 04(n) + pipo(n) [C(2)eq(n)], (1.32)

where the so-called compensation filter C(z) is chosen by the designer in order to
meet certain Strictly Positive Real (SPR) condition that this class of algorithms
require for convergence. The role of the SPR condition will be discussed in section
1.4.3. The special case in which C(z) = 1 is known as pseudolinear regression
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(PLR) algorithm and was originally proposed by Feintuch [34]. It can be seen
as a simplification of the OE algorithm in which the dependence of the regressor
1)o(n) with the filter coefficients is ignored when taking the partial derivatives of
§(n) = 07 (n)tho(n) with respect to these parameters. From (1.25), this leads to the
approximations

62 (n) = u(n — k), Sp(n) = —j(n — k).

Due to these simplifications, the convergence properties of the OE and PLR. algo-
rithms are quite different.

1.3.5 Lattice algorithms

Due to the difficulty in monitoring stability of the adaptive filter when realized
in direct form, there has been considerable effort in translating the host of available
adaptive algorithms to the lattice structure. Early attempts in this direction [55, 95]
focusing on the Qutput Error method led to schemes that required heavy compu-
tational loads in order to obtain the gradient signals. In particular, each gradient
component associated to the reflection coefficients required an additional lattice
structure for its computation: the resulting complexity is of order M?2. In contrast,
the direct form OE algorithm only requires an additional postfilter, thus its com-
plexity is of order M. For several years this proved a significant obstacle to lattice
adaptive IIR filters. Subsequent work showed that the gradient computations can
be significantly reduced [110],[105, sec. 7.5], obtaining efficient tapped-state nor-
malized lattice implementations of the OE method with complexity of order M.
The resulting algorithms required a single additional postfilter, as the direct form
version, with the difference that several internal signals from the lattice adaptive
filter are used as inputs to this postfilter (in contrast the postfilter in the direct
form version has a single input, namely the adaptive filter output §(-)).

The algorithms of [110],[105, sec. 7.5] were true stochastic gradient descent
methods in the sense that they used the exact sensitivity functions of §(-) with
respect to the filter coefficients. Further simplifications in the computation of these
sensitivity functions led to new lattice algorithms, both in cascade [84] and tapped
state forms [105, secs. 7.6 and 7.7]. The driving vectors of these schemes are only
approximations to the true gradient and therefore the convergence properties of
the simplified algorithms need not be the same as those of the lattice OE method,
although similar behavior was observed in simulation experiments.

The driving vectors of the simplified algorithms are generated by a postfilter
driven by the adaptive filter output, similarly to the direct form case (with the
particularity that the postfilter is now implemented in lattice form). As it could be
expected, this opened the door to lattice versions of the Steiglitz-McBride algorithm
by simply switching the postfilter input from §(-) to the reference signal d(-). This
was suggested in [103] for the tapped-state lattice and in [84] for the cascade lattice.

Simplified lattice versions of the EE approach were also developed. Observe
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that the driving vector of the direct form EE algorithm, 1¢(n), is comprised by the
state signals of the two FIR filters B(z) and A(z) in Figure 1.15. One can take
advantage of the fact that the reflection coefficients of an FIR lattice filter with
transfer function A(z) coincide with those of an IIR lattice with transfer function
1/A(z) [93], and implement these blocks in lattice form in the setting of Figure
1.15. The state signals of the FIR lattice A(z) were used to generate the driving
vector of a lattice EE algorithm proposed in [76]. Another possibility is to use the
same driving vector as for the direct form algorithm, as in [92]. As a result of these
approximations neither of these schemes is a stochastic gradient descent of the EE
cost function E[e?(n)] anymore.

Hyperstability based algorithms in lattice form are also found. By observing
that the driving vector of the direct form SHARF algorithm in 1.32 is comprised by
the state signals of the Direct Form - I implementation of the adaptive filter, Miao,
Fan and Doroslovacki [84] proposed the use of a cascade lattice structure, with the
corresponding state signals forming now the driving vector. Again, this approach
introduced certain approximations so that the convergence analysis of the direct
form algorithm does not completely carry over to the lattice variant.

1.4 Issues concerning adaptive IIR filtering algorithms

In previous sections we have described potential applications that could benefit
from adaptive recursive filters and presented the most popular criteria for the adap-
tation of these systems. There is a series of practical obstacles, however, which are
not present for traditional adaptive FIR structures and have prevented widespread
use of adaptive IIR filters. In this section we describe in some detail the advantages
and drawbacks associated to these algorithms, highlighting those issues that have
motivated the work that is presented in the subsequent chapters of the thesis.

Consider the general constant-gain adaptive algorithm
O(n+1) =6(n) + px(n)e(n), (1.33)

in which the vector § comprises the coefficients of the adaptive filter H(z) in some
parameterization (direct form, lattice, ...). The stationary points of the algorithm
(1.33) are those values 8, of the parameter vector for which the update term vanishes
on the average, that is,

E[x(n)e(n)] vt = 0. (1.34)

Observe that if a parameterization 6, exists for which the error signal e(n) becomes
identically zero, then (1.34) is satisfied. For example, in the system identification
setting of Figure 1.1 with deg H(z) > deg H(z) and in the absence of noise, H(z) =
H(z) constitutes a stationary point for any algorithm using the output error e,(n)
or the equation error e.(n) since these two error signals vanish at such point. In
more realistic undermodeled and/or noisy scenarios there is no H(z) for which
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e(n) = 0 identically, although solutions of (1.34) may still exist. Of course different
algorithms will exhibit different stationary points in general.

A stationary point 0, is locally convergent or locally attractive if once the adap-
tive algorithm enters a small enough region around 6,, then it will remain near
0.. In other words, if the parameter vector is perturbed away from the stationary
point, the adaptive algorithm will tend to restore it back to the value that zeroes
the expected value of the correction term, provided that the perturbation is small
enough. When this property holds irrespective of the magnitude of the perturba-
tion, the stationary point is said to be globally convergent. It is worth mentioning
that in general the parameter vector will not settle at the well-defined values of a
convergent stationary point: convergence takes place only in some mean asymp-
totic sense, and the parameters will exhibit a random component superimposed on
a mean asymptotic value as a result of measurement noise, numerical errors, etc.

We can summarize the main questions arising in the analysis of any adaptive
IIR filtering algorithm as follows:

e Does the system remain stable (in a bounded-input bounded-output sense)
during adaptation?

e Which are the stationary points of the algorithm?
e Of these, which are locally (or globally) convergent?

e What can be said about the convergence rate of the algorithms?

The answers to these questions strongly depend on the particular configuration and
filter structure. In many cases, due to the nonlinear character of the problem, only
partial answers are available.

1.4.1 Filter stability

As we mentioned in section 1.2 when discussing adaptive filter structures, in
general direct form IIR filters are not well suited for adaptive applications due to
their potential instability. The lattice form is much better behaved in this sense
since the stability condition for this structure is easily translated in the filter coeffi-
cient space. However, as discussed in section 1.3.5, reformulating the original direct
form algorithms in lattice form tends to be a complicated task, and the majority
of lattice algorithms available in the literature involved some kind of simplification
in their development. This immediately raises the question of how the properties
of stationary points are affected by these simplifications, which will be the topic
of chapter 2. While it is known that the stationary points of the simplified lattice
algorithms coincide with those of the original direct form algorithms (in transfer
function space), whether this is also true for convergent points has remained an
open problem. In chapter 2 we answer this question in the negative, by showing
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that for several of these simplified lattice schemes one can find system identification
settings (with model order matching and in the absence of noise) in which the sta-
tionary point corresponding to the unknown system is not convergent, in contrast to
the corresponding direct form versions. This constitutes a clear drawback of these
methods, which prompts the search for reliable and efficient lattice algorithms. We
develop a general approach for the translation of any given direct form adaptive IIR
filtering algorithm into lattice form. It is shown that the resulting schemes preserve
not only the set of stationary points but also their convergence properties, at least
in the sufficient order case. These results have been presented in [80].

1.4.2 Noise induced bias and local minima

Referring again to the system identification setting of Figure 1.1, we observe that
the reference signal d(-) includes an additive noise disturbance 7(-). The physical
origin of this noise process depends on the application: it could model sensor mea-
surement noise, or near-end speech in an echo cancellation setting, etc. It is usually
assumed that the input signal u(-) and the noise 7)(-) are statistically independent.
We say that an adaptive algorithm is biased if the locations of its stationary points
are affected by the presence and characteristics of the output noise.

The standard example of a biased adaptive algorithm is the monic-constrained
EE method (1.30). This scheme shares several nice properties with adaptive FIR
algorithms (to which it is closely related) due to the fact that the equation error
ee(n) is a linear function of the filter coefficients, such as a unique stationary point
which is globally convergent and relatively fast convergence . On the other hand,
if we write the reference signal as d(n) = y(n) + n(n) where y(-) is the uncorrupted
reference, then e(n) becomes

ee(n) = [A(2)y(n) — B(z)u(n)] + A(z)n(n).

Since 7(-) is independent of u(-) and y(), it is seen that minimizing F[e2(n)] involves
a tradeoff between reducing the modeling error A(z)y(n) — B(z)u(n) and the noise
component A(z)n(n): the adaptive filter is trying to minimize the noise power
reaching e.(n) in addition to identifying the unknown system. As a result of these
conflicting goals the optimum A(z), B(z) will vary with the signal to noise ratio
and the spectral characteristics of n(-). When the bias becomes significant, the
performance of the adaptive filter may be completely unsatisfactory: the stationary
point may even correspond to an unstable transfer function B(z)/A(z) [116]. This
stability problem will be addressed in chapter 3, providing a new result which has
been reported in [74].

In contrast with the EE approach, the presence of output noise 7(-) does not bias
the OE algorithm (1.27). This is due to the fact that the noise does not appear in the
driving vector of the algorithm. On the other hand, although the OE cost function
E[e2(n)] is quadratic in the coefficients of the numerator B(z) of the adaptive filter,
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this is no longer true for the coefficients of the denominator A(z). As a result,
the stochastic gradient descent (1.27) may converge to a local minimum of the cost
function depending on the starting point, with the consequent performance loss.
Some researchers have isolated sufficient conditions for the absence of local minima
in the OE cost function, in a system identification setting like the one in Figure
1.1 and with an adaptive filter whose order matches that of the unknown system.
Nayeri [90] shows that the OE cost is unimodal provided that the input signal u(-)
is a white process and that N + 2 > M, where N and M are the number of zeros
and poles, respectively, of the adaptive filter as in (1.10). Regalia shows in [105]
that in the case N > M unimodality follows if u(-) is a first-order autoregressive
process, which includes a white input signal as a special case. Whether this is also
true regardless of the power spectral density of u(-) remains an open question (to
the author’s knowledge, no counterexamples have been presented). However, it is
widely recognized that in undermodeled cases the presence of local minima, in the
OE cost function is not the exception but the rule [105].

The EE and OE methods appear to be complementary, in that the former
presents a unique, globally convergent stationary point which is biased in the pres-
ence of noise, while the latter is unbiased but may converge to a local minimum.
There have been several attempts to overcome these problems:

e Instrumental variable methods [117] eliminate the bias problem in the EE
algorithm by suitably modifying the driving vector in (1.30), but global con-
vergence is lost in general.

e [f the monic constraint in the EE scheme is replaced by a quadratic constraint,
the position of the minimum of E[e?(n)] is not altered by the presence of white
measurement noise [104]. The resulting on-line algorithms tend to be more
involved than the standard LMS algorithm (1.30) [20, 37, 48] and sometimes
the global convergence property of the monic EE approach may be lost.

e Hybrid algorithms [14, 59, 69] provide a trade-off between the features of the
two formulations by using driving vectors and /or error signals that are convex
combinations of those of the EE and OE algorithms.

e The Steiglitz-McBride method for off-line system identification [120] trans-
forms the nonquadratic OE minimization problem to a sequence of quadratic,
EE-like problems which are iterated until convergence. The presence of out-
put noise does not alter the locations of SM equilibrium points as long as this
noise is white. The same is true for the corresponding on-line algorithm (1.31)
[30]. In sufficient order system identification settings, H(z) = H(z) is the only
limit point of the off-line SM iteration and it is locally stable, as long as the
disturbance 7(-) is white [121], irrespective of the spectral characteristics of

the input u(-).

A different off-line procedure was presented in [76]. This method, known as
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Interpolation Expanded Numerator (IXN), is similar in spirit to the SM scheme in
that a sequence of quadratic minimization steps is iteratively performed. IXN is
not biased by the presence of output noise (white or otherwise), and has a single
equilibrium corresponding to H(z) = H(z) in sufficient order system identification
settings with white inputs. In chapter 3 this off-line method is further investigated
in order to extend the results from [76] to more general input signals. On-line
algorithms based on this procedure will be developed and analyzed. In addition, a
novel unbiased off-line scheme termed Steiglitz-McBride Expanded Numerator (SM-
XN) will also be presented together with its on-line version. Part of the results in
this chapter can be found in [77].

1.4.3 The SPR condition

The schemes based on hyperstability concepts, such as the SHARF algorithm of
(1.32), are not biased by output noise, since the driving vector 1, (n) is uncorrelated
with the noise component in the error signal C(z)e,(n). In contrast with the EE and
OE approaches, there is no cost function underlying the design of these algorithms.
Rather, they were devised from feedback theory concepts applied to the system
identification setting in the matching order case, by realizing that the interaction
between the unknown system and the adaptive algorithm can be expressed as a
feedback loop consisting of a linear block closed by a nonlinear block. The algorithm
is then designed in order to meet the conditions of the hyperstability theorem [97]
which in turn ensures asymptotic stability of the closed loop, leading to convergence
of the output error to zero in the noiseless case [51]. Parameter convergence, i.e.
H(z) — H(z), will follow under standard ‘persistent excitation’ conditions on the
input signal u(-) [2]. This convergence is global and still holds in the noisy case,
although only in a mean asymptotic sense.

However, in order to invoke the hyperstability theorem a ‘Strictly Positive Real’
(SPR) condition must be satisfied. A transfer function F(z) is SPR if it is stable
and causal and the real part of F(z) evaluated on the unit circle is strictly positive:

Re{F(“)} >0 Vuw. (1.35)

For the SHARF algorithm (1.32), if the unknown system is written as H(z) =
B,(z)/A«(z), then the transfer function C(z)/A.(z) must be SPR in order to ensure
global convergence in the matching order case. The designer is free to choose the
compensating filter C(z) in order to meet this requirement. However, since H(z)
(and therefore A,(z)) is unknown, successful design of C(z) becomes a difficult task.
In certain cases some a priori knowledge may be available about the poles of the
unknown system, e.g. in the form of uncertainty regions, which can be exploited
in order to select the compensating filter [86]. Another possibility is to make C(z)
adaptive [64], but for this approach global convergence has not been proven yet in
the general case of nonwhite output noise.
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Another attempt to circumvent the SPR condition was proposed in [112], based
on the fact that the transfer function of the unknown system can be written as

By(z)  Bi(2)T(z)

H&) =20~ 4070

(1.36)

where T'(z) is a minimum phase polynomial which is otherwise arbitrary. The
adaptive filter H(z) = B(z)/A(z) can be overparameterized correspondingly so that
the orders of B(z) and A(z) match those of B,.(z)T'(z) and A.(z)T(z) respectively.
The key observation is that, for any given polynomial A,(z) of order M such that its
roots all lie in the region |z| < p < 1, a polynomial T'(z) exists such that A,(z)7T(z)
is SPR provided that the degree P of T'(z) satisfies

P2M<M—1>-
log p

Thus if a bound p on the magnitude of the poles is available, this expression gives
the degree of overparameterization that suffices for convergence of the output error
to zero (the compensating filter can be set to C(z) = 1 in that case). However,
due to the nonuniqueness of the polynomial 7'(z), parameter convergence is not
guaranteed as a result of the pole-zero cancellations artificially introduced in the
adaptive filter.

A more refined version of this approach appeared in [85], where T'(z) is chosen as
the unique monic polynomial of degree P such that the coefficients of z~! through
2P in A,(2)T(z) are all zero. In that case one can write

M
A (2)T(2) =1+ 2z PG(2) with G(z) = Z gez F,
k=1

and the adaptive filter H (z) is accordingly overparameterized: the numerator and
denominator orders should be N + P and M + P respectively, but now the first P
coefficients of the denominator are fixed to zero. The degree of overparameterization
should be such that 1 + 2~FG(z) is SPR, which will be the case provided that

M,
P>i—2M,
1— %/p

where again p is an upper bound on the magnitude of the poles of A,(z) [85]. Due
to the uniqueness of the overparameterization, in this case satisfaction of the SPR
condition yields global parameter convergence.

In chapter 4 we present an analysis of hyperstability based algorithms using an-
other class of overparameterized filters. This architecture is known as the polyphase
structure and also has the property that the polynomial 7'(z) in (1.36) is uniquely
determined from A,(z). In other words, the artificial pole-zero cancellations are
introduced in a structured way in order to ensure parameter convergence once the
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SPR condition is satisfied. Burt and Gerken considered in [9] the use of polyphase
structures for IIR filters adapted via the Output Error algorithm and observed that
the cost function became better conditioned, with the corresponding improvement
in convergence speed. Our goal in chapter 4 will be to investigate the SPR and
persistent excitation requirements for hyperstable algorithms with polyphase fil-
ters; these results have been reported in [75]. A connection with subband adaptive
filtering will also be presented.

1.4.4 Existence of stationary points in undermodeled cases

Most adaptive IIR filtering algorithms have been designed in the system identi-
fication context of Figure 1.1, and assuming that the adaptive filter is of sufficient
order so that identification is achievable. Under these conditions an ‘ideal’ adap-
tive algorithm would have H(z) = H(z) as (unique) globally convergent stationary
point, irrespective of the presence of output noise and the spectral characteristics
of the input signal. As we have seen, no known algorithm simultaneously fulfils all
these requirements.

In reduced order cases the situation becomes even more problematic: one must
first isolate the set of stationary points, then determine the subset of these station-
ary points that are locally convergent, and then ask whether any of these convergent
points provides a useful approximant to the unknown system H(z). In many in-
stances, even determining the ezistence of stationary points becomes a difficult
problem of solving a set of nonlinear equations. Next we summarize what is known
about the behavior of the four different approaches discussed in section 1.3 in the
undermodeled case.

e The Equation Error method is a minimization criterion and therefore the
stationary points correspond to the minima of the cost function. Under the
monic constraint, this cost is quadratic irrespective of the order of the un-
known system, and therefore uniqueness of the stationary point (which will
be generally biased in the presence of noise) and local convergence are en-
sured. The cost function of the quadratically constrained EE approach is not
quadratic; rather, it becomes a Rayleigh quotient of the form (a’Ra)/(a”a)
where a is the vector of coefficients of A(z) and R is a symmetric positive def-
inite matrix. Thus the stationary points are found to be the eigenvectors of R
associated to the different eigenvalues. There is still a single minimum which
corresponds to the smallest eigenvalue, although the remaining eigenvalues
are now associated to saddle points.

Regalia studied in [104] the approximation properties of the EE scheme in the
udermodeled case. Let H(z) be the transfer function obtained by minimizing
the EE cost, and assume the input u(-) is white and that the output noise
is absent (or white for the quadratically constrained approach). If we write



1.4.

Issues concerning adaptive IIR filtering algorithms 33

H(z) = Y52 hgz ™ and H(z) = 352, hpz ", then under both the monic
and quadratic constraints,

hi = hy, 0<k<N,

where N is the number of zeros of H(z). In addition, the quadratically con-
strained solution satisfies

o0 o.°]
D Tk =Y hihmir,  1<m <M,
k=0 k=0

with M the number of poles of H (z). Thus both solutions interpolate the
first N 4+ 1 coefficients of the unknown system’s impulse response; in addi-
tion the quadratically constrained solution also matches the autocorrelation
coefficients of lags 1 through M. These interpolation properties translate into
fairly good approximation of the unknown system [104].

The Output Error approach is also a minimization procedure, and as such
the (locally convergent) stationary points correspond to the minima of the
output error variance. The problem is that in general undermodeled cases,
no conditions have been found in order to ensure the unimodality of this cost
function. In the absence of a priori knowledge of the whereabouts of the
global optimum, the gradient descent algorithm (1.27) could easily converge
to a local minimum providing unacceptable performance.

Hyperstable algorithms do not seek the minima of a cost function, which
difficults the characterization of stationary points. In addition, the set of
these points varies with the choice of the compensating filter C(z) unless the
input signal is white [105]. Regalia, Mboup and Ashari showed in [109] that
the SHARF algorithm (1.32) admits at least a stationary point corresponding
to a stable transfer function provided only that the compensating filter C(z)
is minimum phase and that the power spectral density of u(-) is nonzero and
bounded for all frequencies. This stationary point will be locally convergent
provided that C(z)/A«(z) is SPR, where now A, (z) is the denominator of the
model obtained at the stationary point.

What can be said about the quality of the approximants obtained at these
stationary points? Regalia studied in [105, sec. 9.7] several examples and
concluded that these models need not provide any useful approximation to
the unknown system in terms of reduction of the output error. On the other
hand, Mosquera reports in [86] good results using SHARF with experimental
data in the contexts of echo cancellation and active noise control. In view of
this, we believe that further research should be conducted along these lines
and more experimental evidence should be gathered before discarding the
hyperstable family of algorithms in undermodeled situations.
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e Although the Steiglitz-McBride method does not attempt to minimize any
meaningful functional either, Fan et al. [29, 30, 33] early observed that in
many reduced order situations, the SM algorithm converged to a point very
close to the global minimum of the OE cost function. This striking property
was theoretically justified by Regalia and Mboup in [106] for the case of a white
input u(-) and N = M. They developed an a priori bound for the output
error variance obtained at any stationary point of the SM iteration, if one
exists. This bound is related to the degree of undermodeling in the sense that
if the order of the unknown system H(z) is ‘close’ to that of the model H(z)
then the resulting output error variance will be small. Existence of stationary
points was addressed by Regalia, Mboup and Ashari in [108], where it is shown
that for white input u(-) and white measurement noise 7(-), the SM algorithm
admits a stationary point under a mild stability condition on the unknown
system H(z). Although these results do not exclude the existence of settings
in which the SM scheme presents several locally convergent stationary points,
this is not necessarily harmful since the error bound of [106] should apply at
each of them. Because of these features, the SM method is regarded as an
appealing approach to adaptive IIR filtering.

It is clear that despite the considerable effort dedicated to the undermodeled
system identification problem, many questions remain open. This is also the case
for the channel equalization configuration of Figure 1.9, for which results are scarce.
In chapter 5 the properties of a pseudolinear regression algorithm proposed for this
context are examined, and it will be shown how this scheme admits a stationary
point in reduced order cases.

1.4.5 Convergence rate

In adaptive FIR filtering it is well known that, for a fixed value of the stepsize,
the convergence rate of the LMS algorithm slows down as the eigenvalue spread
of the autocorrelation matrix of the input signal increases [46]. For adaptive IIR
filters in a system identification setting, convergence speed can still be linked to the
eigenvalue spread of the information matrix associated to the particular algorithm
[19], but now this depends not only on the spectral characteristics of the input
signal but also on the unknown system to be identified. Fan examined the effect of
the location of the unknown system poles [27] and finite precision [28] in sufficient
order settings, to find that local convergence speed worsens as the poles approach
the unit circle. The case of poles close to z = 1 in the complex plane was found
to be particularly problematic. The analysis also showed that adaptive normalized
lattice structures are numerically more robust than direct form implementations,
as in the fixed coefficient case, and that they may provide faster convergence rates.

Burt and Gerken presented in [9] a global analysis of the Output Error cost
function for direct form filters, concluding that in general this cost exhibits relatively
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flat regions as well as steep minima (steeper as the poles approach the unit circle).
This steepness of the cost near the minima imposes a small adaptation stepsize
to gradient algorithms, which in turn slows down convergence when the algorithm
is traversing the flat regions. This is a fundamental limitation of constant-gain
algorithms. Gauss-Newton schemes are more robust to these phenomena [27], but
the associated computational loads are considerably higher. The use of polyphase
structures [9] and d-operator based filters [32] have been suggested as a means to
improve convergence speed of constant-gain gradient descent algorithms. We discuss
the application of the polyphase architecture and related concepts to hyperstability
based algorithms in chapter 4, where its potential for faster convergence is observed.
In general, the issue of convergence speed for algorithms other than gradient descent
ones in reduced-order settings remains open.

1.5 Thesis outline

The main purpose of this thesis is the investigation of certain topics concerning
the theory of adaptive recursive filtering. Chapter 2 presents a new look at the
problem of implementing the available host of algorithms in lattice form. It will
be shown that many of the existing lattice algorithms may fail to converge even in
ideal scenarios, a phenomenon which will motivate the development of new lattice
schemes with improved convergence properties. This new approach is fairly general
and allows the translation of virtually any direct form algorithm into lattice form,
and most importantly the resulting schemes can be efficiently implemented with
complexity linear in the filter order. The material of this chapter can be found in
[80].

Chapter 3 investigates the properties of three off-line system identification meth-
ods, which share the common feature of being iterative in nature. Each iteration
is based on solving a ‘distorted’ Equation-Error problem, with the parameters ob-
tained at each stage being used to distort the EE cost function in the next. As a
consequence, it is of paramount importance that the model obtained at every iter-
ation by solving the EE problem be stable. The chapter begins with a discussion
of this problem, which appeared in [74].

The first off-line scheme considered is the Steiglitz-McBride method. The lattice
variant of this method [103] overcomes the problem of finding an unstable interme-
diate transfer function along the iteration, and its fixed points are known to be the
same as those of the direct form off-line version. We show, however, that the con-
vergence properties of the two variants may be quite different. This phenomenon
was originally reported in [78].

Next, the properties of the Interpolation Expanded Numerator (IXN) method
are revised. It will be shown that the uniqueness of the fixed point of this scheme
in sufficient order cases, which was known to hold in the white input case, is also
preserved for certain colored inputs. The implementation of on-line algorithms
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based on the IXN concept is also discussed. This part is based on results originally
published in [77].

To close the chapter a third off-line scheme, the Steiglitz-McBride/Expanded
Numerator (SM/XN) method, is presented and analyzed in depth. Conditions are
given for the uniqueness of the SM/XN stationary point in system identification
settings. An on-line implementation of the SM/XN algorithm is presented.

Chapter 4 presents two novel implementations of hyperstability based adaptive
algorithms which have the purpose of relaxing the SPR condition underlying these
schemes. The first one is a polyphase implementation of the adaptive filter, while
the second involves subband filtering and decimation of the input and reference
signals. Some of the results in this chapter can be found in [75].

In Chapter 5 we consider in depth the adaptive IIR filtering problem in the con-
text of channel equalization, analyzing the convergence properties of two candidate
algorithms which can be related to the Output Error method and the pseudolin-
ear regression approach. The quality of the solutions in the general case is also
examined. These results have been reported in [79].

Finally, conclusions are presented in Chapter 6 together with several open re-
search lines that arise from our work.



Chapter 2

STABILIZATION OF ADAPTIVE LATTICE IIR
FILTERING ALGORITHMS

In this chapter we examine the convergence properties of several adaptive al-
gorithms for lattice filters that have been proposed in the literature. Because the
development of many of these algorithms introduced certain approximations, this
convergence analysis is not a trivial extension of the direct form variant. As such,
it has remained an open problem despite the fact that simulation evidence led
researchers to believe that the set of convergent points of these simplified lattice
schemes coincide (in transfer function space) with those of the corresponding direct
form versions. Furthermore, in some cases the approximations introduced seemed
to yield faster convergence relative to the ‘full’ (i.e. nonsimplified) versions. In any
case, no theoretical analysis of the convergence properties of these lattice algorithms
is available to support these empirical observations.

The purpose of this work is twofold: to show that many lattice algorithms may
fail to converge, and to devise new schemes to avoid this problem. It is shown that
in identification settings (in which the order of the adaptive filter H(z) matches
that of the unknown system H(z)) there exist situations in which the stationary
point H(z) = H(z) corresponding to the identification of the unknown system is
not attractive for the simplified lattice schemes. This constitutes a clear drawback
for these methods: if an algorithm does not prove reliable in an identification ex-
periment with an ideal environment (model order matching and absence of noise),
it will be very unlikely to perform well under more realistic conditions including
model order mismatch and signal disturbances.

We also develop new algorithms based in the cascade lattice structure, which
can be implemented with complexity linear in the filter order. The approach is
quite general and can be applied to any direct-form adaptive algorithm in order
to obtain a useful lattice variant, thus facilitating algorithm design. In addition,
and most importantly, sufficient conditions are given that ensure the stability of
stationary points in the sufficient order case. Hence the new algorithms provide
both theoretical and practical advantages over existing schemes.

The main tool in our analysis is the ordinary differential equation (ODE) method

37
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[26]. The basic idea of this approach is to link the discrete-time adaptive algorithm
to a continuous-time ODE in such a way that the convergence behavior of the
algorithm can be related in some probabilistic sense to the stability properties of
the ODE. Consider the general form (1.33) of constant-gain adaptive algorithms,
repeated here for convenience:

O(n+1) =0(n) + px(n)e(n). (2.1)

Under some general conditions, the ODE method ensures convergence in mean to
the solution of the following differential equation as the stepsize u tends to zero:

0(t) = Elx(n)e(n)] oot (2.2)

The expectation in (2.2) is taken assuming that the adaptive filter parameters are
fixed at @ = 6(¢t). If the signals x(-) and e(-) are jointly stationary, this expectation
becomes independent of n although it remains a function of §. Thus for sufficiently
slow adaptation, the parameter trajectories of the algorithm approach asymptoti-
cally stationary random variables, whose mean values correspond to an attractive
equilibrium point of the ODE (2.2).

Direct analysis of (2.2) is usually difficult because this ODE is highly nonlinear,
and often one has to resort to local linearization in order to obtain a more tractable
problem. Let 6, be a stationary point of (2.1), which means that 6, is also an
equilibrium of the associated ODE. Then (2.2) can be linearized in a neighborhood
of 0,, yielding

_ dBx(n)e(n)

o(t) T

-[0(2) — 0.] = S(0) - [0(2) — 0.]. (2.3)
0=0.

From this, the stationary point 8, is seen to be locally attractive if and only if all
the eigenvalues of the feedback matrix S(6,) have negative real parts (in which case
we say that S(6.) is stable). In that case, 0, is a locally convergent stationary point
of the adaptive algorithm (2.1).

The ODE approach is valid for any filter parameterizatrion, although in general
the differential equations obtained will be different for different structures. We
shall exploit a link between the feedback matrices corresponding to the ODEs for
the direct-form and lattice schemes in order to derive the new adaptive algorithms.

The rest of the chapter is organized as follows. Section 2.1 provides the ma-
chinery needed to set up the problem. The general lattice algorithm structure and
its particularizations (EE, OE, SM and SHARF) are presented in section 2.2. The
general convergence analysis is developed in section 2.3, while in section 2.4 the
new algorithms and their properties are presented. Simulation results are given in
section 2.5.
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2.1 Preliminaries

Let the transfer function of the adaptive filter be

A B(Z) bo + blz_l + -4+ bNZ_N
H(z) = = ) 2.4
(2) Az) 14+aiz7t+---+apyz™ 24)
We designate the vector of direct-form parameters by
T
Hd:[bo---bNal---aM] . (2.5)

The subscript d in 84 stands for ‘direct form’. Similarly we shall denote the vector of
lattice parameters by 6;, with an additional label depending on whether we refer to
the cascade or to the tapped-state lattice architectures respectively (refer to section
1.2.3 for a description of these structures):

Hl,c = [b() bN sinqbl Sin¢M]T, (26)

Orts = [v0 -~ VN singy - sin¢M]T.

When the symbol 4 is used without a subscript, it is meant to represent the
actual transfer function H(z). A matrix which will be of particular interest to us
is the Jacobian D(#), whose i, jth element is Ja;/0sin¢;. An efficient algorithm
for the computation of this matrix based on the Schur-Cohn recursion is given
in appendix A. The matrices Li(f) and T';(f) introduced in (1.19)-(1.21) will
also be useful. As a consequence of the one-to-one correspondence between the
direct-form parameters a; and the reflection coefficients sin ¢; in the stability region
{0 : |¢x| < 5, 1 <k < M}, for 6 in this set the matrices D(6), Ly (0), T'x(0) are
nonsingular.

Defining the map from the lattice parameters to the direct form coefficients as
04 = f(6;), then the Jacobian matrix F(0) = df(6;)/d0, is given for the cascade
and tapped-state structures respectively by

Po) = | 75" pigy | =P (2.8)
T T
F(0) [LN(")OFN(") gggg] — F1,(6), (2.9)

where C(0) is an (N + 1) x M matrix with the 7, jth element given by 0b;/Jsin ¢;,
0<i<N,1<j5< M. For example if N = 0 then, using by = vy, one obtains

C(0) = —vomo [ SngL ... Sindu ] : (2.10)

cos? ¢ cos2 ¢
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2.2 Algorithm formulation

The four direct-form algorithms for updating 6; discussed in section 1.3 have
the form

Oa(n+ 1) = 04(n) + pxq(n)e(n), (2.11)
where e(-) is some error signal and x4(-) is a driving vector sequence, which can be
written as ()

. Va\n
xd(n) = [wd(n)]
where
1 z71
o1 52 1
v = | o, wam = | 7| g,
2z N z M

for some signals v(-), w(-). Different choices for v(-), w(-) and e(-) give rise to
different adaptive algorithms.

Several authors have attempted to reformulate the direct form update (2.11) in
terms of the lattice parameters ;. The resulting lattice algorithms have a generic
structure resembling (2.11), namely

Oi(n+ 1) = 0;(n) + uxi(n)e(n). (2.12)

While e(-) is usually the same as in (2.11), it is the choice of x;(-) that characterizes
the transition from (2.11) to (2.12). In most cases the vectors x4 and x; are related
via

xi(n) = ["’(”’ ] — R(O(n))xa(n) (2.13)

wi(n)

for some matrix R(6). Next, we briefly review the four direct form algorithms and
their lattice counterparts in order to examine the particular values of v(-), w(-), e(-)
and R(#). As usual, u(-) and §(-) will denote respectively the adaptive filter input
and output, so that §(n) = H(z)u(n), and d(-) will denote the reference signal.

2.2.1 Equation-error algorithms

For the direct-form equation-error algorithm (1.30), one has
v(n) =u(n),  w(n)=—A(z)d(n), (2.14)

and e(n) = A(z)d(n) — B(z)u(n) = ec.(n), the equation error. Recall that this
algorithm is simply a stochastic gradient descent of the cost E[e?(n)].

Two lattice variants of the EE method have been proposed. The first one was
suggested in [76] for a cascade lattice structure, so that 6; is given by (2.6). It
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AM_l(z)d(n — 1)
Figure 2.1: Equation-error lattice configuration.

used v;(n) = vg4(n) while w;(-) was taken as the state vector of an FIR lattice with
transfer function A(z) driven by the reference signal d(-), yielding

Ao(Z)
wi(n) = — : z~td(n).
AM_l(Z)
[Recall the definition of the polynomials Ay (z) in (1.18)]. This is illustrated in

Figure 2.1. Thus for this algorithm, which we term Equation-error Lattice version
1, or EEL-1 for short, the matrix R() is given by

R(0) = [I]B“ LM?I 0 ] : (2.15)

The second variant, EEL-2, appeared in [92] where it was suggested to use the
same driving vector as in the direct form parameter update, i.e. x;(n) = x4(n).
Therefore, for EEL-2, one simply has

R(0) = Intm+1- (2.16)

2.2.2 Output-error algorithms

For the direct form output-error algorithm (1.27), the signals v(-), w(-) are given
by

v(n) = mﬂ(n), w(n) = _A(z)“(") = —j(n), (2.17)
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and e(n) = d(n) — §(n) = ey(n), the output error. In this way, one has x4(n) =
—V,e0(n) = —(dey(n)/doy)T [113].

Three different schemes for efficient lattice implementation of the output error
method can be found in the literature. The first one appeared in [110] and consid-
ered a two-multiplier lattice; its extension to the tapped-state normalized form can
be found in [105, section 7.5]. The resulting algorithm computes the driving vector
by means of

x)(n) = —Vg,eo(n) = Fry(0)xa(n), (2.18)

with ; and Fy(0) given by (2.7) and (2.9) respectively. This algorithm effectively
performs a gradient descent of the cost E[e2(n)] in the lattice parameter space, so
we refer to it as Gradient Lattice (GL). Thus for GL, R(0) = F,(6).

The second variant (Partial Gradient Lattice or PGL) was presented in [105,
section 7.6]. Still using the tapped-state structure, the reflection coefficients sin ¢y
are adjusted as though the tap parameters v, were optimized. This assumption
results in the following transformations:

de(n)
vy

vifn) = | ¢ | =Tn(0)Ln(0)va(n),

de(n)
vy

wi(n) = DT (0)wqy(n).

Consequently the matrix R(#) for PGL is given by

_ | Tn(O)LN(B) O

R(0) = 0 DT(0) | (2.19)

Further approximations in the PGL parameter update led to the Simplified
Partial Gradient Lattice (SPGL) algorithm, developed in [103] and [105, section
7.7]. While v;(-) is obtained in the same way as for GL and PGL, w;(-) is taken as

the state vector of an all-pole lattice with transfer function 1/A(z) driven by the
adaptive filter output §(-):

Ap(z
73 ,f((z))
wi(n) = — : z 1g(n)
A —1(2
73y A

= T3 1(0)Lias—1(8)wa(n).

Figure 2.2 illustrates the generation of these signals. The corresponding matrix
R(6) for the SPGL algorithm is then

(2.20)
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Figure 2.2: Generation of the driving vector in the SPGL algorithm (p =
max{N, M}).

Finally, an algorithm similar in spirit to SPGL but using the cascade structure was
presented in [84]; the corresponding R(€) coincides with that of EEL-1, given in
(2.15).

2.2.3 Steiglitz-McBride method

For the direct-form Steiglitz-McBride algorithm (1.31), one has

1 .
v(n) = MU(n), w(n) = —d(n), e(n)=d(n) —g(n) = e,(n).

A lattice variant appeared in [103], using the tapped-stated normalized structure.
Generation of w(-) is done as shown in Figure 2.2 but driving the postfilter with
the reference signal —d(n) rather than the adaptive filter output —g(n). The cor-
responding transformation from x4 to x; is the same as that for SPGL:

vi(n) = Tn(0)Ly(0)va(n),

wi(n) = L1 (0)Lay—1(0)wa(n).
From these, the matrix R(#) is seen to be the same for the Steiglitz-McBride Lattice
(SML) and for the SPGL algorithms, and it is given in (2.20). Similarly, [84]

considered a cascade structure using vi(n) = vg4(n), wi(n) = La—1(0)wg(n), so
that the corresponding R(#) is as in (2.15).
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2.2.4 Hyperstability based algorithms
For the direct-form SHARF algorithm (1.32), one has
v(n) =u(n),  w(n)=-B(z)u(n) = -A(2)j(n), (2.21)

and e(n) = C(z)[y(n) — §(n)], with C(z) the compensating filter. A cascade lattice
version of SHARF (LSHARF) appeared in [84]. It uses v;(n) = v4(n), and w;(n)
is taken as the (scaled) state vector of the adaptive filter denominator block. This
is illustrated in Figure 2.3. The corresponding transformation is given by

Ap(2)
wi(n) = — : 27 19(n) = Ly 1(0)wa(n).
AM_l(Z)

Therefore the matrix R(6) for LSHARF is as in (2.15).

vi(n)
|
( ) 1 T 1 1 d(n)
u(n - - i P

z z z "
bo b1 bo ce by B 60('”)

9 \9; - 1 70_1

(onr) (pm—1) (¢1) J
-~ z—1<— z—1<————— 2—1
7]?41_1 7;41—2 ’70_1

Figure 2.3: Generation of the driving vector in the LSHARF algorithm.

2.3 Analysis of lattice algorithms

In this section we present an analysis of the general lattice algorithm (2.12),
in terms of stationary points and local convergence properties. Our approach is
based on the relation of these properties to those of the corresponding direct-form
algorithm from which the lattice version was derived.
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First, consider the set of stationary points of (2.12). These points 6, are those
for which the expectation of the update term vanishes. Using (2.13), one obtains

E[x;(n)e(n)] . = 0 = R(0.)E[x4(n)e(n)] , = 0, (2.22)

I .
where 04, = f(6;) is the stationary point in direct form parameter space. If R(6,)
is nonsingular, as is the case for all the algorithms presented in section 2.2, then
(2.22) shows that 6, is a stationary point of (2.12) if and only if 8, is a stationary
point of (2.11). Therefore the stationary points of the lattice variants coincide (in

transfer function space) with those of their direct-form counterparts, as claimed in
[76, 84, 92, 103].

For local convergence analysis, we resort to the ODE method. The stationary
point of the lattice algorithm, 6y, is locally attractive if and only if the feedback
matrix
_ dBJxi(n)e(n)]

(2.23)

01*

is stable. Similarly, the stationary point of the direct form algorithm, 4, is locally
attractive if and only if the feedback matrix

dE[x4(n)e(n)]

Sa(6:) = 6,

(2.24)

ed*

is stable. The connection between these matrices is shown in the following result.

Lemma 2.1. Let 6, be a stationary point (in transfer function space) of the al-
gorithms (2.11)-(2.12), and let S;(0.) and S4(0.) be the feedback matrices of the
corresponding linearized ODEs as given in (2.23)-(2.24). Then

Si(6x) = R(0:)Sa(0:)F(0.), (2.25)

where R(0y) is given by (2.13), and the Jacobian matriz

_ df(0)
T dg

F(0,)
0,=0,.

is given by (2.8) or (2.9).

The proof is given in appendix B. Lemma 2.1 provides the crucial link between
the convergence properties of the lattice algorithm and those of the corresponding
direct-form version. When (2.25) is particularized to the lattice algorithms of section
2.2, one cannot in general conclude anything about the eigenvalue behavior of S;(6,.).
That is, even if it is known that the stationary point 8y, is locally attractive for the
direct-form algorithm (2.11), whether the same will be true for the lattice version
is not clear since the transformation (2.25) does not necessarily preserve the sign
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of the real parts of the eigenvalues. Indeed, examples will be given in section 2.5
showing that the transformation (2.25) may result in an unstable S;(6,) starting
with a stable S4(6.). The only exception is the GL algorithm, for which

Si(6.) = FL(6,)Sq(0.)Fs(6s). (2.26)

Since the direct-form output error and the GL algorithms are just gradient descents
of the same cost function, S4(6.) and S;(6.) are simply the negative Hessian matrices
of this cost in terms of 6; and 8, respectively. Therefore they are symmetric, and
(2.26) shows that S4(6) < 0 & S;(0.) < 0, which happens if 6, is a minimum of
the cost function.

Note that should one choose R(#) = F~1(6), then S;(6,) and S4(6,) would
be similar, and therefore they would have the same eigenvalues. Thus, the local
convergence properties of stationary points would be the same for the two pa-
rameterizations. The main obstacle to such an approach is the transformation
x;(n) = F1(6(n))xq(n) which requires the computation and inversion of the Jaco-
bian matrix F(#). A lattice algorithm using this scheme would be computationally
expensive. In the next section we consider a different approach, which can be
thought of as the next best thing to a similarity transformation: a congruence
transformation.

2.4 New lattice algorithms

The transition from the direct-form algorithms (2.11) to lattice versions (2.12)
that we propose is characterized by the following.

1. We use the cascade normalized lattice structure of Figure 1.12. Thus the
parameter vector 6; will be given by (2.6).

2. We have the following choice for the driving vector x;(n):
xi(n) = F¢ (0(n))xa(n)- (2.27)

This can be applied to any of the approaches in section 2.2. Next, we show how
these algorithms can be implemented. A convergence analysis is then presented.

2.4.1 Implementation

Efficient implementation of the new lattice variant is considerably facilitated
by the use of the cascade (as opposed to the tapped-state) lattice structure. For
this configuration F(0) = F.(0) is given in (2.8), so that x;(n) can be generated as
follows. First, one has

vi(n) = vg(n). (2.28)
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Figure 2.4: Generation of the transfer functions G (z) for M = 4.

On the other hand, w;(n) is computed now by means of

wi(n) = D (O)w(n)

r _Oa; ... _Oay -1
dsin ¢y dsin ¢y z 1
= : : : w(n)
dai . danm z*M A(Z)

L Osin ¢y Jsin ¢y

- T 1
_ | 8A(z) 0A(z)
= [ .. o ] TR (2.29)

Gilz) = 1< k<M. (2.30)

A structure that performs this task with complexity linear in M was developed in
[105, section 7.6.2] in order to generate the driving vector of the PGL algorithm.
This structure is depicted in Figure 2.4 for the case M = 4. In this way, with a sec-
ondary lattice G(z) = [G1(2) -+ Gam(z)]T fed with the signal w(-) corresponding
to the direct-form scheme used as starting point, the new lattice algorithms can be
efficiently implemented.
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2.4.2 Convergence analysis

As noted before, F.(#) is nonsingular for all 8 corresponding to stable transfer
functions. Therefore,

Elxi(n)e(n)l. =0 &  F(0)E[xa(n)e(n)l. =0 &  Elxg(n)e(n)]s, = 0.

Thus, the set of stationary points of any of the direct-form algorithms coincides
with that of the corresponding lattice version, a feature shared with the variants of
section 2.2. On the other hand, by virtue of our choice R(#) = FI(#) and Lemma
2.1, the feedback matrix S;(6,) is given now by

S1(6:) = FL(6,)S4(0,)F(6,), (2.31)

so that S;(0.) and S4(0.) are congruent. Due to this fact, sufficient conditions for
local stability can be given.

Lemma 2.2. Let 0;, be a stationary point of the lattice algorithm (2.12), using the
cascade lattice structure and with x;(n) generated via (2.27). Also let 04, = f(04).
If the symmetric matriz Sq(04.) + Sg(ed*) is negative definite, then 6y, is locally
attractive.

Proof: Recall that A + AT < 0 implies A stable [63]. As S4(64.) and S;(6;,) are
congruent, Sq(0g.) + S5 (04:) < 0 implies S;(0) + SF (6;.) < 0 so that S;(6;.) is a
stable matrix. -

Having the symmetric part of S;(04.) negative definite is a sufficient condition
for S4(044) to be stable, but by no means necessary. Nevertheless, Lemma 2.2 has
immediate application to the new lattice version of the adaptive methods of section
2.2, as summarized next.

1. Equation-error method: The direct-form EE algorithm is a gradient descent
for the cost E[e2(n)] with e.(n) the equation error. This cost is quadratic in
04, so that there exists a single minimum 6y, which is an attractive stationary
point; S4(0,) is just the negative of the Hessian of the cost, and in view of
Lemma 2.2, the corresponding stationary point 6;, of the new lattice variant
is locally stable. Alternatively, this lattice version performs a gradient descent
on the cost E[e2(n)] in the space of the cascade lattice parameters.

2. Output-error method: Similarly, when applied to the OE scheme, the new lat-
tice variant reduces to a gradient descent on the cost E[e2(n)], where e,(n)
is the output error, in the space of the cascade lattice parameters. The rela-
tion (2.31) simply shows how the Hessian matrices relate to each other when
moving from the direct-form to the cascade lattice parameter space. Thus, a
stationary point 6;, of the lattice algorithm is locally stable if and only if it
furnishes an external transfer function corresponding to a (local) minimum of
the cost function.
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. Steiglitz-McBride method: Consider the sufficient order case, in which the ref-

erence signal d(-) is given by
d(n) = H(2)u(n) + n(n) (2.32)

where as usual 7(-) is the output noise, and H(z) is a transfer function with
at most N zeros and M poles. It is known that in that case, the direct-form
Steiglitz-McBride algorithm has a single possible stationary point 6, which
is attractive, corresponding to H(z) = H(z), provided that the input u(-) is
persistently exciting and that 7(-) is white [121]. The matrix S4(6.) is seen
to be given by

Sq(6.) = FE [d);,;(dn) eo(n)]a +E [xd(n) d(z)ﬂ(:)]e*
_E d’;die(:) n(n)| — B [Vaseom)Vieo(n)],  (2:33)

where use has been made of the fact that, at the stationary point 6,, one
has §(n) = H(z)u(n), so that the output error and the driving vector reduce
to eo(n) = n(n) and x4(n) = —Vy,eo(n) respectively. The first term in the
right-hand side of (2.33) vanishes if the noise 7(-) is white, so that S4(6.)
coincides with the negative of the Hessian of the output-error cost E[e2(n)]
at 64, which is a minimum. Then applying Lemma 2.2, we conclude that
in sufficient order settings with white disturbances, the new lattice variant of
the Steiglitz-McBride algorithm has a single stationary point, which is locally
attractive, corresponding to H(z) = H(z).

On the other hand, it is not possible to establish such a link between the S,
matrices of the direct-form Steiglitz-McBride and output-error algorithms in
undermodeled scenarios. Extensive simulation evidence suggests that even in
reduced order cases, a stable S4(0,) translates into a stable S;(6,), although
a formal proof of this statement is not available at this time.

SHARF algorithm: Consider again a sufficient order setting as in (2.32), and
let A.(z) be the denominator of the system H(z) to be identified. Then the
direct-form SHARF algorithm has a single stationary point 8, corresponding
to H(z) = H(z), which is stable provided that the input is persistently excit-
ing and that the transfer function C(z)/A.(z) is SPR. Moreover, the matrix
S4(0.) at this stationary point is given by

do, 04
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where we have used again the fact that e,(n) = n(n) at the stationary point.
Since the noise 7(+) and the driving vector x,4(-) are independent, the first term
in the right-hand side of (2.34) vanishes. The symmetric part of the second
term was shown in [70] to be negative definite provided that C(z)/A.(z) is
SPR. Therefore, for sufficient order settings satisfying the SPR condition, one
can apply Lemma 2.2 to conclude that the stationary point of the new lattice
variant is locally stable.

2.5 Simulation examples

In order to demonstrate the superior stability properties of the new lattice al-
gorithms with respect to the previously proposed schemes discussed in section 2.2,
several computer simulation results are now presented. In all cases the adaptive
filter operates in a sufficient order setting, in which, for the sake of simplicity, the
unknown system H(z) to be identified is all-pole (i.e. N = 0), and the input sig-
nal u(-) is a stationary white zero-mean process with unit variance. The white
input and all-pole assumptions are useful in order to facilitate the computation
of the matrices S;(0,) via (2.25) for each algorithm, once H(z) is given. In this
way, examples in which the existing algorithms discussed in section 2.2 suffer from
instability problems can be relatively easily found.

2.5.1 Equation-error algorithms

It can be shown that for N = 0 and white u(:), the matrix S;(.) obtained at
the stationary point of EEL-1 and EEL-2 is stable if M < 2. However, for higher
values of M (for which lattice structures provide a real advantage over direct form
filters in terms of stability monitoring) this is no longer true. For example, let H(z)
be the fifth-order system parameterized in cascade lattice form by

O1cx = [ box Singrs -+ sins, |7 = [0.1 0.25 0.88 0.9 0.75 0.85]". (2.35)

Then the matrices S;(0.) of both EEL-1 and EEL-2 turn out to have a pair of
eigenvalues with positive real parts, and hence they are not stable. Figure 2.5 shows
the trajectories of the reflection coefficients of the adaptive filter H(z) obtained in a
computer simulation of this setting. No additive noise was present in the reference
signal in order to focus on the convergence properties of the algorithm. The adaptive
filter parameters were initialized as

6,,.(0) = [0.1 0.25 0.8801 0.9 0.75 0.85]7, (2.36)

which is extremely close to the stationary point. Nevertheless the EEL-1 and EEL-2
algorithms eventually pull the parameter vector away from the stationary point, as
could be expected. We should note that this divergence is not the result of a too
large stepsize value: Similar behavior was observed if 4 was further reduced.
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(a) Reflection coefficients, EEL—1 (b) Reflection coefficients, EEL—2
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Figure 2.5: Instability of (a) EEL-1 algorithm, and (b) EEL-2 algorithm. Dashed
lines show the values of the parameters at the stationary point.

Reflection coefficients sincpk and feedforward weight b0
1 T T T T T

parameter value

pn=1023 -

SNR = oo

I I I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1
iterations x 10°

Figure 2.6: Parameter evolution for the new equation-error lattice algorithm.
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The new algorithm was also tested in the same environment, with all adaptive
parameters initialized to zero. Convergence to the true system parameters was
achieved, as predicted by our analysis. This is illustrated in Figure 2.6.

We should note that in the presence of additive noise in the reference signal d(-),
the stationary point of the new equation-error lattice algorithm will in general be
biased from the true parameter values, since the stationary point is the same (in
transfer function space) as that of the direct-form algorithm.

2.5.2 SPGL and SML algorithms

Recall that in sufficient order settings, the matrices S;(6,) of SPGL and SML at
the point H(z) = H(z) are identical if the output noise 7(-) is white. For low orders
this matrix seems to be stable for all H(z), but higher order unstable examples can
still be found. Indeed, let H(z) be the sixth-order all-pole system (N =0, M = 6)
whose cascade lattice parameters are

O, = [0.01 0.2 0.85 0.8 0.75 0.7 0.6 (2.37)

Then S;(6,) turns out to be unstable, for both the tapped-state algorithms of [105]
and the cascade algorithms of [84]. Figure 2.7 shows the evolution of the tapped-
state algorithms in this setting, initialized within a ball of radius 10™* centered at
0145« The new algorithm was also tested, initialized at by(0) = 0, sin ¢5(0) = 0.7,
1 <k < 6. It converges to the true parameter values as shown in Figure 2.8. As
predicted by the theory, this stationary point is now attractive.

2.5.3 SHAREF algorithm

The LSHARF algorithm of section 2.2.4 can also present stability problems in
identification settings, as we show next. In order to ensure that the SPR condition
is satisfied, the compensating filter is chosen as C(z) = A.(z), the denominator of
the system to be identified, so that C(z)/A.(z) = 1. With this choice of C(z), it
turns out that in the noiseless case the matrices S4(0,) for LSHARF and EEL-1
coincide. Since the corresponding matrices R(#) and F() are also the same for
these algorithms, we conclude from (2.25) that under these conditions the feedback
matrices S;(0,) for LSHARF and EEL-1 coincide as well. Since (2.35) was shown
to be an unstable stationary point for EEL-1, the same must be true for LSHARF.

Figure 2.9 shows the parameter evolution of a single run of LSHARF and the
new lattice variant in this scenario. LSHARF was initialized at the point given in
(2.36); the unstable character of the stationary point is clear. We must emphasize
that this divergence phenomenon is not related to the SPR condition, which is
satisfied; its origin resides in the nature of the lattice algorithm itself. The new
lattice variant exhibits no convergence problems, as expected. The starting point
in this case was ) .(0) = 0.
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(a) Ref. coefficients, SHARFL (b) Ref. coefficients, new lattice version
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Figure 2.9: Parameter evolution for (a) LSHARF and (b) the new lattice variant of
SHARF.



Chapter 3

ITERATIVE OFF-LINE IDENTIFICATION
METHODS

In this chapter we explore several off-line procedures for identification of linear
systems which share two common features: They are iterative in nature, and each
iteration involves an optimization problem which is quadratic in the free parameters.
These off-line methods are also interesting for adaptive filtering, since it is possible
to derive on-line forms of the algorithms suitable for real-time applications.

The development of the off-line iterative schemes attempted to eliminate the
drawbacks associated to the Output Error and the Equation Error approaches. Ba-
sically, all of them construct a sequence of EE problems in which the cost function
is somehow distorted in order to avoid the bias problem to some extent. This
‘distortion’ depends on the solution of the EE problem obtained at the previous
iteration, and usually involves the inversion of the corresponding estimate of the
system denominator. This may break down the iteration if some roots of this esti-
mate happen to be outside the unit circle. Hence, it is important to find conditions
guaranteeing the minimum phase character of the EE denominator estimate. This
problem is investigated in section 3.1.

The Steiglitz-McBride method was probably the first iterative off-line procedure
described in the literature [120]. Recently, there has been renovated interest in the
SM approach due to the good approximation properties of the stationary points in
reduced order cases. This feature was theoretically justified via a lattice version of
the off-line SM procedure [106], whose stationary points coincide with those of the
original direct-form off-line SM iteration. Section 3.2 describes the direct-form and
lattice variants of the off-line SM method, and comments on the sets of attractive
points of these two versions.

A different off-line scheme known as the eXpanded Numerator (XN) method
was originally proposed (in on-line form) by Gerald, Esteves and Silva in [39] as
a modification to a similar procedure, the Master-Slave (MS) method, due to Hall
and Hughes [45]. These schemes were analyzed in [73] and [76], where a new off-
line iterative procedure termed Interpolation eXpanded Numerator (IXN) was also
introduced. It was shown that the MS and XN approaches may present undesirable

55
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stationary points, even in noiseless sufficient-order environments. On the other
hand, the stationary point of the IXN method was shown to be unique, in the
sufficient order case with a white input signal.

Section 3.3 provides a description of the off-line XN method. Then the IXN
approach is further investigated in section 3.4, where we show how the uniqueness
result for the IXN method can be extended to allow for a wider class of input signals.
On-line implementation will also be discussed. Finally, we present a new iterative
off-line scheme and its on-line version in section 3.5. This method incorporates
elements from both the SM and the XN methods. Conditions will be given for the
uniqueness of this SM/XN procedure.

In this chapter we work with functions of the complex variable z belonging to
the space Lo on the unit circle. In this space, the (weighted) inner product induced
by Suu(z), the power spectral density of u(-), is defined as

1 _1.dz

(@9 = 5= § Sl (™) T

where the path of integration is the unit circle, in the counterclockwise direction.
Note that this inner product can be also written as

(f(2),9(2))u = E[f(2)u(n) - g(2)u(n)],

that is, as the cross-correlation of the outputs of two filters with transfer functions
f(z) and g(z) driven by the same input u(-). When u(-) is white, Syu(z) = o2
becomes a constant and the inner product becomes unweighted. We shall denote
the unweighted inner product by dropping the subscript u from the (-, -),, notation.

Note that

and that

fR)= Y fiz™® gx)= > g™ = (£(2),90) = D fagks

k=—o0 k=—00 k=—o00
which is just Parseval’s relation.

The Hardy subspace Ho is the subspace of stable and causal functions of z,
whose standard basis is {z_k},;“;o. This basis is orthonormal with respect to the
unweighted inner product, but in general this orthonormality is lost once spectral
weighting is introduced. This generally complicates the analysis of the off-line
methods when the input signal u(-) becomes colored. This problem can be alleviated
by introducing the Szegd polynomials {py(z)}32, associated to u(-), which constitute
an orthonormal basis of Hs with respect to the inner product induced by Syy(z)-
See appendix C for a review of these polynomials and their properties.
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3.1 Stability of Equation-Error models

Assume that the input/output description of the system under study is as fol-
lows:

d(n) = H(z)u(n) +n(n) = y(n) +n(n), (3-1)

where H(z) is assumed to be stable and causal, the processes u(-) and y(-) are
jointly stationary and the noise term 7(-) is uncorrelated with the input u(-). The
EE method fits the rational model

A B(z) bo —I—blzfl + .- +bN2’7N

H pr— pr— -2
(2) A(z) ap+aizt+--+ayz M (3.2)

by minimizing the variance
E [|A(z)d(n) — B(z)u(n)|?] = %/ Suu(e?)|A(e™*)H (&) — B(e/*)dw
™ —T
+ %/ S,m(ej“’)\A(ej“’)Fdw, (3.3)

where Sy, (€7¥), Spn(e?¥) are the power spectral densities of the input u(-) and the
noise 7)(-) respectively, and some constraint must be imposed on A(z) to avoid the
zero solution. Usually one fixes ap = 1 (monic approach) or Z,]g\/[: 02 =1 (unit norm
approach). Let us denote the solution of (3.3) subject to one of these constraints
by A.(z) and B,(z). Then it is desirable that A,(z) be minimum phase (i.e., all of
its roots lie inside the unit circle) so that H(z) = B,(2)/A,(z) is a stable transfer
function. It is known that in certain cases H(z) may be unstable: See [116] for
an example. Hence, isolating conditions under which A,(z) can be ensured to be
minimum phase is an important problem.

Regalia [104] has shown that for both monic and unit norm approaches, the EE
model H(z) is stable provided only that u(:) is an autoregressive (AR) process of
degree less than or equal to N, i.e. that its psd satisfies Sy, (z) = 1/[P(2)P(z71)]
with P(z) a polynomial of degree not exceeding N. In particular, no assumptions
were made about the spectral characteristics of the noise 7(-) or the degree of the
unknown system H(z). In this section we show that in fact it suffices to have u(-)
AR of degree not exceeding N + 1.

Introduce the signal vectors

and the coefficient vectors

a:[aoal---aM]T, b:[bobl---bN]T.
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Then the variance (3.3) can be written as

E [|A(2)d(n) — B(z)u(n)[’] = E{[a’[y(n) +v(n)] — b u(n)[*}
= a’(Ry, + Ryy)a+ b Ry, b —2b"Ryya (3.4)

where
Ry, = Elu(n)u(n)’], Ry, = Ely(n)y(n)'],  Ruy=Eu@)yn)"].

Now (3.3) is minimized with respect to B(z) if b = R, Ryya. After substituting
this in (3.4) one obtains the following reduced cost function:

K(a) = a” Ry + Ry )a, (35)

where Ry, = Ryy — REyRJJRW. Note that K(a) is a function of A(z) only,
through its coefficient vector a.

3.1.1 The monic case

Here we consider the problem of minimizing (3.4) subject to the monic constraint
ag = 1. Let us introduce first the following notation: If M is an m X m square
matrix, we denote by M|, [M, |M and M| respectively the northwest, southeast,
northeast and southwest matrices of size (m —1) x (m — 1) extracted from M. With
this, our main tool will be the following result from [49]:

Lemma 3.1. LetR > 0, and let a, be the monic vector that minimizes the quadratic
cost J(a) = alRa. Then the polynomial A,(z) constructed from the coefficients of
a, has all roots strictly inside the unit circle if A > 0, where A = [R — R is the
displacement matriz of R.

Hence, in view of Lemma 3.1 and (3.5), it suffices to find conditions on u(-) and
7(-) to ensure that the displacement matrix of Ry + R, ), is positive semidefinite.
The following result gives such conditions.

Theorem 3.1. Assume that u(-) is an autoregressive process of degree not exceeding
N +1. Then the polynomial constructed from the monic vector that minimizes (3.5)
has all roots strictly inside the unit circle.

The proof is given in Appendix B. Observe that no assumptions are made on the
noise properties; this is because the displacement matrix of the noise autocorrelation
matrix R, is zero, due to the Toeplitz structure of R, and therefore automatically
positive semidefinite.
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3.1.2 The quadratically constrained case

Here we consider the case where a quadratic constraint is placed on the vector
a. First we need to recast the result from Lemma 3.1 into this setting.

Lemma 3.2. Let R > 0 and J(a) = a’Ra. If A = [R—R] > 0, then there exists
a vector a, solving
min J(a) subject to al Qa = 1 (3.6)

where Q > 0 is Toeplitz symmetric, such that the polynomial A,(z) constructed
from a, has no zeros outside the unit circle. If A > 0, then A,(z) has all zeros
strictly inside the unit circle.

The proof is given in Appendix B. Observe from (3.5) that if K(a) is minimized
subject to the constraint a’R,,a = 1, then the minimizing argument a, does
not vary with the noise power E[n?(n)], in contrast with the monic approach. In
particular, if 7(-) is white, then the unit norm constraint ||a||3 = 1 avoids bias.

We can state now the corresponding stability result for the quadratically con-
strained EE estimate.

Theorem 3.2. Assume that u(-) is autoregressive of degree not exceeding N + 1.
Then the polynomial constructed from the vector that minimizes (3.5) subject to
aT’R,,a = 1 has no roots outside the unit circle.

Proof: The result follows immediately in view of Lemma 3.2 by mimicking the
proof of Theorem 3.1. =

Note that for the monic constraint, A > 0 implies strict stability, but not for
the unit norm constraint ||a||3 = 1. (For example, one can always construct settings
for which the matrix Ryy + R, /, is Toeplitz. If its smallest eigenvalue is simple,
then the roots of the corresponding A,(z) lie all on the unit circle [82]). In the case
N = M, the results in [107] show that whenever A,(zp) = 0 with |z| = 1, then
B, (%) = 0 as well. Therefore all the poles of the approximant H(z) = By (z)/A.(z)
on the unit circle are canceled out, and all of the remaining poles lie strictly inside
the unit circle.

3.2 The Steiglitz-McBride method

The off-line Steiglitz-McBride system identification method as originally pro-
posed in [120] constructs the model H(z) = B(z)/A(z) from the limit point of a
sequence of Equation-Error modeling problems as follows. Let

B (2) = bék) + bg’c)z_1 4+ 4+ bs\l,c)z_N, A(k)(z) =1+ agk)z_1 +eee 4+ as\l/c[)z_M
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be the estimates of the unknown system’s numerator and denominator polynomials
at iteration k. Assume that the polynomial A(*)(z) has all its roots inside the unit
circle. Then with u(-) and d(-) the input and reference signals as usual, we can
define the filtered signals

1 1

u'(n) = ——u(n), d(n) = ————d(n).
The corresponding estimates at the next iteration are then computed in order
to minimize the variance of the ‘equation-error’ signal e(n) = A*+V(2)d'(n) —

BED (2)a! (n), ie.

{A(k+1) (z),B(k+1)(Z)} = arg A(E)l,i]?(z) E [‘A(z)d’(n) - B(Z)u’(n)‘Q] .

Unknown system  7(n)

1 1
AR () AR ()
u'(n) d'(n)
B(k+1)(z) A(k+1) (z)
‘ ~T ‘

Figure 3.1: Block diagram illustrating the off-line Steiglitz-McBride iteration.

The SM iteration is illustrated in Figure 3.1. Observe that at any SM stationary
point, achieved whenever A#+1D(z) = A(®)(2), the signal e(n) becomes an output
error. Also note that it is critical that all the polynomials A*)(z) constructed along
the way be minimum phase; otherwise the corresponding prefilter 1/A%)(z) would
become unstable, an event that could stop the iterative process. The following
result gives a sufficient condition for this.

Lemma 3.3. If the input sequence u(-) is an autoregressive process of order not
exceeding N—M+1, then the monic polynomials AK) (2) constructed by the Steiglitz-
MecBride iteration are minimum phase.

Proof: Observe that if u(-) is AR of order not exceeding N — M + 1, then the
filtered signal u/(+) is AR of order not exceeding N + 1. Then from Theorem 3.1
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in the previous section, the equation-error minimization problem yields a minimum
phase denominator at every iteration of the SM method. m

Thus if the input sequence is AR(N — M + 1), then any limit point of the SM
iteration gives a stable transfer function. In addition, it is known [121] that if the
order of the model H (z) matches that of the unknown system H(z), and if the noise
disturbance 7(-) is white, then the only stationary point of the off-line SM iteration
is H(z) = B(®)(z)/A)(z) = H(z), which in addition is locally attractive. It is
possible, however, that if the process is initialized too far from the stationary point
and if the input does not satisfy the AR condition of Lemma 3.3, the iteration could
construct an unstable intermediate transfer function.

This problem can be eliminated by introducing a lattice-based variant of the
off-line method [103]. This variant presents several advantages with respect to the
direct form method:

1. The stability of the intermediate transfer functions and of the approximant
obtained at any convergent point (if one exists) is guaranteed since the lattice
structure is inherently stable.

2. The iteration is rephrased as a sequence of extremal eigenvalue problems,
providing useful error bounds at any stationary point for white inputs [106].

3. It can be used as starting point for developing on-line adaptive algorithms
using lattice structures [103].

The key idea behind this lattice reformulation is to implement the prefilters in
normalized lattice form, and to obtain the ‘equation-error’ e(n) as a linear combi-
nation of the state signals of the prefilters. This is illustrated in Figure 3.2, where
p = max{N, M}. It is understood that if N > M, then the last N — M rotation
angles cﬁgk) and coefficients ¢; are constrained to be zero; and conversely, if M > N
then the last M — N tap parameters v; are fixed to zero.

The lattice SM iteration is as follows. For simplicity, suppose p = M = N.

At step k, the rotation angles gbgk),. . ¢§)k) are available. Define the orthogonal
matrices

| PR}
—sin d)z(-k) cos gbgk)
cos qﬁz(-k) sin qbz(-k)

I,

and from them the prefilters

o)l [ enlie] o

w(n)
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Unknown system  7(n)

H(z)
d(n)
T (k) (k) ¢(k) B (k)
—1le__ 1 -1 TP -1 Lt B RS P 1 -1
z z z z z

Ta(n+1) z1(n+1)| s(n) £p(n+1) £2(n+1) £1(n+1)

Vp—1 V1 Vo Y Y‘I}J dp-1 a q0
--- O ( J N T ~
~ +

Figure 3.2: Reformulation of the Steiglitz-McBride method in lattice form (p =

max{N, M}).
Now with q = [qo -+~ qp]" and v = [vp --- vi |7, form the error signal e(n) as
follows: ( ) ( )
_r|én+1)| rlx(n+1
e(n) =q [ s(n) ] v [ w(n) ] (3.9)
and find the coefficients qz(kﬂ), I/J(-k—i_l) minimizing E[e?(n)] subject to q”'q = 1, and
taking q(()kH) > (0. The reflection coeflicients for the next iteration are determined
from the following relation:
(k+1)
sin([)glﬂ—l) = % 1=1,...,p.

(k+1)]2 , (k+1)2,
b7 e [

Upon convergence, {¢;} and {v;} determine the model H(z) in tapped normalized
lattice form [103]. A fundamental property (and a key advantage) of this reformu-
lation is that the prefilters for the next iteration are automatically stable, due to
the inherent stability of the lattice structure.

It is known that the stationary points of the lattice and direct-form versions
of the Steiglitz-McBride iteration yield the same set of transfer functions [105],
although the convergence properties of these two iterative processes need not be
the same. However, it has been suggested [105] that the sets of convergent points
of both methods may coincide, based on empirical evidence from examination of
many examples. In fact, this is not necessarily the case: Next we present an example
which shows how the lattice variant of the off-line SM iteration may have stable
limit cycles and even to present chaotic behavior in undermodeled cases.
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Suppose u(-) is unit-variance white noise and p = N = M = 1, and assume H(z)
is rational with a minimal state-space description (A,b,c,d) such that H(z) =
c!(2I — A)"'b +d. Tt was shown in [105, p. 429] that in that case the lattice SM
variant can be expressed as an iterated eigenproblem:

(k+1) (k+1)
(k)\ | cos ¢y L (k) cos ¢

R (¢1 ) Lin gD ] = Amin [R (¢1 )] Lin ¢§k+1)] ; (3.10)
where the matrix R(¢;) is given by

R(¢1) _ |:bT(I+Sin¢ll;AT)_TAT COSs ¢1:| W [COS ¢1A(I+ SiHQSlA)_]‘b b] ’

(3.11)
with W the solution of W = ATWA + ec”.

Consider the fourth-order system H(z) = z=! + az~* with state-space descrip-
tion (A, b,c,0) given by

0000 1 1 14a®> 0 0 a
1000 0 0 0 a20 0
A=lo100]” P=lol" = lo| = W=| 0 o0ao0
0010 0 a a 0 0 a?

The corresponding values for R(¢1) and its smallest eigenvalue are

a®(1 — sin® ¢;) acos ¢y sin? ¢,
a cos ¢; sin? ¢y 1+ a? ’

R(¢1) = [

1 1 1
Amin[R(#1)] = 5 +a® = Ja?sind 1 5\/4(12 cos? gy sin' ¢y + (1 + a2sin® )2,

and the explicit SML iteration that results is

_ (k) 2 (k)
sin ¢{F ) = acosdy sin ¢y . (3.12)

\/a2 cos2 ¢§’“) sin* ¢g’€) + (1 +a? — A\yin [R ( gk))])z

It turns out that for small values of |al|, sin¢; = 0 is the only fixed point of (3.12),
and it is locally attractive. At |a| =~ 3.863925, two new fixed points appear. At
la| ~ 13.089751 the first bifurcation occurs, and a stable limit cycle of period 2
appears. The second and third bifurcations take place at |a| ~ 28.695753 and
la| ~ 37.585665 respectively. Eventually the chaotic regime is reached as |a| is
further increased.

In contrast, the direct-form iteration is given in this case by

asin ¢§’“) [a (1 — sin® ¢§’“)) — cos? ¢§’“) sin ¢§’”]
. (k+1)
sin ¢, =

., (3.13)
a2 sin? ¢gk) (1 — sin® ¢§k)> + cos? ¢§’“) (1 + a2 — 2asin® ¢gk))
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which is free of limit cycles for all a. Although the fixed points of the lattice
and direct-form iterations are the same, clearly their convergence properties may
be quite different. It is relatively easy to find settings in which the lattice variant
presents stable limit cycles, but we have been unable to construct any examples with
limit cycles for the direct-form method. Figure 3.3 shows the SM maps sin ¢§k) —

sin ¢§k+1) given by (3.12) and (3.13) for different values of a.

a=0.2 a=1
0.05 1
0.5 ood
-
= -
; P
£ o _ |
£ P
@ m
~
-0.5f . "
025, 0.5 o 0.5 1 = 0.5 0 0.5 1
’ sin(pgk) ’ ’ sin(p(lk) '
a=3 a=15
1 1
- e _
0.5 Siie 1 0.5 -
- e
= - o) g
) ~ ) -
' 0 s o
= e = _
0 2 * e
- ~
-0.5 - -0.5 PN
— - -
= 0.5 0 0.5 1 = 0.5 o 0.5 1
’ sin(pgk) ' ’ sin(p(lk) ’

Figure 3.3: The maps obtained from the lattice (solid) and direct-form (dash-dot)
Steiglitz-McBride iterations, with N = M =1 and H(z) = 2~ +az~*.

It is not our purpose to claim superiority of the direct-form variant: Recall
that the direct form version may suffer from misconvergence problems as well, as a
result of an unstable intermediate transfer function. The problem is most likely at-
tributable to the lack of an optimization criterion underlying the Steiglitz-McBride
method, whether it be in direct form, lattice form, or some other variant that some-
one may devise, since the intermediate transfer functions constructed along the way
have no clear interpretation in terms of some distance minimization.
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Unknown system  p(p)

u(n) b d)

H(z) jré

+
) output
_c error
) B () j(n)
-+
C(k+1)(z) ) A(k+1)(z)
L equation
error

Figure 3.4: Block diagram illustrating the off-line Expanded Numerator iteration.

3.3 The Expanded Numerator method

The Expanded Numerator (XN) method is based on the observation that the
output error d(n) — [B(z)/A(z)]u(n) is a linear function of the coefficients of B(z),
and therefore its variance can be easily minimized with respect to these parameters.
On the other hand, in order to estimate A(z), a series of equation-error problems
is iteratively solved. The process, illustrated in Figure 3.4, is summarized next.

1. At iteration k, the estimate A¥)(2) is available. Find B%**1)(2) as the solution
to the following quadratic minimization problem:
2]

2. Let §(n) = [B**t1(2)/A®)(2)]u(n), and find the coefficients of the filters
C*tD(z), A®+tD(2) by solving the quadratic equation error minimization
problem

B*+D(2) = arg gl(lzr)lE ”d(n) - A?%Z()Z)u(n)

{A(’H'l)(z), C(’H’l)(z)} — arg A(?)l,icr‘l(z) E [|A(z)@(n) — C(z)u(n)b]

subject to a monic constraint on A(z).

3. Discard the filter C(*+1)(2) and repeat the process.
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In addition to being quadratic, the minimization problem in Step 1 is not biased
regardless of whether the output disturbance 7(-) is present or not. In addition, the
equation error problem in Step 2 uses the signals {u(-), J(+)} rather than {u(-),d(-)}.
Since the estimate g(-) of d(-) is noiseless, the disturbance 7(-) cannot affect this
step either. We conclude that the XN off-line method is unbiased, regardless of
the spectral characteristics of the output noise. This is in contrast with the SM
method, which is biased in general unless 7(-) is white.

Observe that in order for the XN method to evolve, the equation error identifi-
cation problem in Step 2 must face a reduced order setting. Otherwise one would
obtain C*+1)(z) = B¢+ (2) and AK+D(2) = A% (2) for all k. This is achieved
by overparameterizing the numerator B(z) with respect to the auxiliary filter C(z)
(hence the ‘Expanded Numerator’ label). The analysis of the XN method in [76]
for the case in which u(-) is white suggests that the order of B(z) be at least the
sum of the orders of C(z) and A(z).

Similarly to the direct-form SM method, the XN iteration may break if the
estimate A%**1)(z) obtained in Step 2 is not minimum phase. In order to find
sufficient conditions for stability, we can apply Theorem 3.1 to conclude that if u(-)
is autoregressive of order not exceeding N +1, where N is the degree of the auxiliary
filter C(z), then the polynomials A®)(z) obtained in the XN iteration are minimum
phase.

Although the XN method has the advantage of being unbiased for all kinds of
disturbances, simulation results given in [76] show that in sufficient order settings
the iteration need not converge to the desired solution B(z)/A(z) = H(z), which
constitutes a clear drawback. In the next sections two modifications of the XN
method are presented which attempt to sidestep this problem.

3.4 The Interpolation Expanded Numerator method

The Interpolation Expanded Numerator (IXN) method is based on the same
configuration as that for the XN procedure, shown in Figure 3.4. The difference
from XN resides in the way in which the numerator B *1(z) for the next iteration
is computed. The process is as follows:

1. At iteration k, A®)(2) is available. Let §(n) = [B(z)/A®) (2)Ju(n). The
numerator B *1(z) is chosen so that §j(n) satisfies the following interpolation
conditions:

E[g(n)u(n — k)] = E[d(n)u(n — k)], 0<Ek<L, (3.14)
where L is the degree of B(z).

2. With g(n) = [B*+1(2)/A®)(2)]u(n), find the coefficients of the FIR filters
C*+1(2) (degree N) and A%*+1)(2) (degree M) by solving the quadratic equa-
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tion error minimization problem

{A(’“+1)(z), C(k—|—1)(z)} = arg A(gl,icr‘l(z) E [|A(z)g}(n) — C(z)U(n)|2]

subject to a monic constraint on A(z).

3. Discard the filter C**1)(2) and repeat the process.

Observe that the set of equations (3.14) is linear in the parameters of B(z),
and that its solution is not biased by the output disturbance since u(-) and 7(-) are
statistically independent. The equation error step is identical to that in the XN
method, and thus the stability of the intermediate transfer functions is guaranteed
if u(+) is AR(N + 1) where N is the degree of the auxiliary filter C(z).

In this section we present an analysis of the stationary points of the off-line IXN
method. Our goal is to extend the result from [76], which showed the uniqueness of
this stationary point in sufficient order settings with a white input signal, to a more
general class of inputs. On-line implementations will also be presented together
with the corresponding convergence analyses.

3.4.1 Minimum length of the expanded numerator B(z)

The first point to be addressed about the off-line IXN scheme is what the order
L of the numerator B(z) should be. Clearly, L must be greater than N, the order
of the auxiliary filter C(z); otherwise the equation error step would face a sufficient
order, noiseless scenario, hence preventing the method from evolving (‘convergence’
would be achieved in the first iteration).

If the input u(-) is white, then the interpolation conditions (3.14) amount to
imposing that the first L + 1 impulse response coefficients of B*+1)(z)/A%)(z)
match those of the unknown system H(z) at every iteration k [76]. More generally,
for nonwhite w(-), the first L + 1 coefficients of the expansion of H(z) over the
Szegd polynomials {py(z)}3°, associated to u(-) are matched, since (3.14) can be

rewritten as
B(k-i—l)(z)
<H(Z)7'z )U_< A(k)(z) 72 ) Z—O,l...L’
u

or, since span{zil}lL:O = span{pl(Z)}{;o,

(k41)
(H(2), pi(2))u = <Bj4%(z()),pl(z)>  1=01...L (3.15)

Therefore at every iteration k, the L 4+ 1 leading coefficients in the expansions of
H(z) and B%+1(2)/A®)(z) over the Szegd polynomials associated to u(-) are the
same.
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Let us denote by H (z) the estimate of the unknown system obtained at an IXN
stationary point, i.e. H(z) = B(®)(z)/A(®)(z). Then it is one’s hope that, in
sufficient order scenarios, H(z) = H(z). This brings out the question of how many
interpolation conditions of the type (3.15) are required in order to ensure that two
rational functions of the same degree are equal.

Lemma 3.4. Let u(-) be an autoregressive process of order not exceeding N+ M +1.
Then any rational function with N zeros and M poles is uniquely specified by the
first N+ M + 1 coefficients of its expansion over the Szego polynomials associated
to u(-).

The proof can be found in Appendix B. Whether this result applies as well to
other classes of inputs is left at this stage as a conjecture. It is obviously true for all
u(-) if M = 0 and N is arbitrary. Also, if u(-) is a first order moving average process,
or MA(1), (meaning that Sy, (z) = q(2)q(z~!) with g(z) a first order polynomial),
then it is shown in Appendix B that the result holds for the particular case N = 0,
M=1.

In view of Lemma 3.4, it is clear that the order of the numerator B(z) should
satisfy L > N 4+ M in order to impose a sufficient number of interpolation con-
straints. Incidentally, this is the same lower bound as that obtained in [76] for the
white input case. With this result in mind, we can proceed to study the stationary
points of the off-line IXN method in the general (non-white input) case.

3.4.2 Analysis of stationary points

At any stationary point of the off-line IXN method, the equation error mini-
mization step produces an estimate A®t1)(z) = A%)(2). To characterize the set of
these points, let us define the signal vectors

and let the vectors
az[ao al---aM]T, b:[bo bl---bL]T (320)

comprise the coefficients of the polynomials A(z) and B(z) obtained at a stationary
point. It is assumed that the monic constraint ag = 1 is used. Define also the
correlation matrices

Ru, = Elu(n)u(n)’], Ry =E[Fn)yn)’], Ry =Eu@)yn)"],
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and with these, let
R/, =Ry — RUR, Ry

Then the variance of the equation error A(z)y(n) — C(z)u(n), after C(z) has been
optimized as a function of A(z), is given by a’ R; /u@. As shown in [104], the vector
a that minimizes this quadratic cost subject to a9 = 1 is orthogonal to the last M
rows of Ry,
o2
— e
R;/ua = [OM] , (3.21)
where o2 is the resulting equation error variance. On the other hand, observe that
A(2)§(n) = B(z)u(n), or in vector form, y(n)"a = ii(n)?b. This gives

Elu(n)y(n)"la = E[u(n)a(n)"]b = Ryya =Ry, P]b (3.22)
E[y(n)y(n)"]a = E[y(n)a(n)"]b = Ryza = [Ry; S" b, (3.23)

where we have introduced the matrices
P = E[u(n)u(n)"], S=E[a(n)y(n)"].

Now if we substitute (3.22) and (3.23) into (3.21), we obtain

.
[RY; S"]b-R{Ry[Ru Plb=|"° |,
LYM |
that is,
L
_ g
[RY; $")b[Rl; RLRPJb=| |,

or equivalently

— O’2
[0 ST-RLR,Pb= [0;}] :

Thus if we define the vector of the ‘extra’ coefficients of B(z) as b= [byy1 - b7,

then we have
2

e ] . (3.24)

Onm

g,

ST —R;R,,Plb= [
It is possible to further reveal the structure of this equation with the aid of the Szego

polynomials pg(z). Let us introduce the lower triangular matrices Cj, comprising
the coeflicients of these polynomials:

=Cr| . |- (3.25)
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The matrix Cj, can be partitioned as

Cy 0 ] (3.26)

CL:[BA

where A is (L — N) square and nonsingular, since the diagonal elements of Cr, are
nonzero (see Appendix C). The following result, whose proof is in Appendix B, will
be useful.

Lemma 3.5. With Ry, P, A and B as above,
R,.P=-BTA T, (3.27)

Now consider the expansion of B(z) over the Szegb polynomials
L
B(z) = 3 bpil2).
i=0

Then, the vector b’ = [ b} --- b, |7 is related to b by b’ = C;Tb. From this, it
follows that b = [byyy - b ]" satisfies

b=A"bp & b=A"b.
Substituting this and the result from Lemma 3.5 in (3.24), one obtains

2
TE! g
[AS+BR,;]'b = [0;[] . (3.28)
The matrix in (3.28) has a crosscorrelation interpretation. Introduce the signals
Bi(n) = pi(z)u(n), ¢ > 0, which are the backward prediction errors (normalized to
unit variance) associated to the input signal u(-) (see Appendix C), and define the
vector

Bn) = [Bn+i(n) -+ Br(n)]". (3.29)
Then, noting from (3.26) that 3(n) = [B A ]i(n), one has

Ryj

E[f(n)3(n)"] = [B AlE[a(n)y(n)"]=[B A][ S

] = BR,y + AS.
Therefore, at any fixed point of the off-line IXN iteration, the relation

2
By ()BT = | 5 | (3.30)
M

must hold. The first equation simply gives the equation error variance achieved and
is not very informative. The remaining M equations show that at any stationary
point, the signal B(n)TBI is uncorrelated with §(n — 1), ..., g(n — M). Note that
in principle these M equations are nonlinear in the coefficients of the vector BI,
since the signal §(-) depends on these parameters. An autoregressive constraint
on the input signal suffices to sidestep this problem, as the next result shows (see
Appendix B for the proof).
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Lemma 3.6. With §j(n) = [B**1)(2) /A% (2)]u(n) the output of the adaptive filter
at any iteration k, let H be the M x (L — N) matriz obtained after deleting the first
row of E[y(n)B(n)T], i.e.
g(n—1)
H=F : [Bws1(n) -+ Br(n)] ¢ (3.31)
g(n — M)

If the input sequence u(-) is an autoregressive process of order not exceeding L + 1,
then the matriz H is completely specified by the unknown system H(z) and the psd

Suu(2).

From this discussion, we find that the IXN fixed points are characterized by the
conditions

<H(z),pz(z))u=<§E2,pl(z)>, 1=0,1...L, and  Hb = 0.

These constitute L + M + 1 equations, with the same number of unknowns (the
coefficients of B(z) and A(z)). Under the conditions of Lemma 3.6, the M equations
Hb =0 M are linear in b. Similarly, the other L + 1 interpolation conditions are
also linear in the coefficients of B(z), although those of A(z) appear in a nonlinear
fashion.

Recall from the previous section that we must impose L > N + M. In that case
the matrix H has at least as many rows as columns, and the following result holds
for sufficient order situations.

Theorem 3.3. Assume H(z) = Bi(z)/A«(z) with B.(z), A«(z) coprime polynomi-
als of orders N and M respectively, and that L > N + M. If the input signal u(-)

s an autoregressive process of order not exceeding L + 1, then the matrizc H defined
in (3.31) has full row rank, i.e. rankH = M.

The proof is presented in Appendix B. The full rank character of the matrix H
is the key for establishing the uniqueness of the IXN stationary point in sufficient
order settings with autoregressive inputs. The situation in which the numerator
and denominator of the model have the same order (N = M) is particularly in-
structive. In that case, Theorem 3.3 can be seen as a spectrally weighted extension
of Kronecker’s theorem, as discussed at the end of its proof in Appendix B.

We can state the main result of this section as follows.

Theorem 3.4. If L > N + M, the input u(-) is an autoregressive process of order
not exceeding L + 1, and the unknown system satisfies H(z) = By(z)/A«(2) with
B.(z), A(z) coprime polynomials of orders N and M respectively, then the off-line
IXN iteration has a single fized point given by B(z)/A(z) = By(2)/A«(2).

See Appendix B for the proof. Next we turn our attention to the problem of
devising on-line adaptation algorithms based on the IXN philosophy.
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3.4.3 On-line adaptation of the expanded numerator

In contrast with the XN method, in which the adaptive filter’s numerator B(z)
was updated in order to minimize the output error variance, for IXN there is no
minimization objective associated to B(z) but rather the goal is to fulfil the interpo-
lation conditions (3.14). In order to clarify the development to follow, let us assume
for the moment that the recursive part of the filter, namely the block 1/A(z), is
held fixed so that we are to find an update procedure for the coefficients of B(z) in
order to have (3.14) at convergence. The original update proposed in [76] was

be(n + 1) = bg(n) + pu(n — k)ey(n), 0<k<L, (3.32)

where e,(n) = d(n) — g(n) is the output error. At any stationary point of this
procedure, one must have

Blu(n — k)eo(n)] =0, 0<k<L, (3.33)
which is equivalent to (3.14) as desired.
Let us(n) = [1/A(2)Ju(n) and
as(n) = [u(n) up(n —1) - up(n — L)

so that, with the definition of b in (3.20), the adaptive filter output can be written
as J(n) = if(n)Tb. Then (3.33) is equivalent to

E[a(n)a;(n)Tb = Ela(n)d(n)). (3.34)

Then the update algorithm (3.32) will have a unique stationary point provided that
the matrix E[a(n)as(n)?] is nonsingular. The AR constraint on the input signal
guarantees this.

Lemma 3.7. If u(-) is an autoregressive process of order not exceeding L+ 1, then

the matriz
T

21 21 1
M:EMMWmﬁ:< ] M@> (3.35)

is nonsingular, irrespective of the all-pole part 1/A(z).

The proof can be found in Appendix B. In order to study the convergence
properties of (3.32), we resort to the ODE method. Assume that M is nonsingular,
and let b, be the solution of (3.34). Then the ODE associated to (3.32) is

b(t) = —M(b(t) — b,), (3.36)
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which is linear in b. Thus the stationary point b, is seen to be globally convergent
provided that the eigenvalues of M have positive real parts. Observe from (3.35)
that for white inputs, M is lower triangular with ones in the diagonal, so that the
ODE (3.36) is globally convergent to b,. For colored inputs the situation is not
so simple. A sufficient condition for global convergence is that 1/A(z) be an SPR
transfer function. To verify this, define

with f # 0, and note that

fTMf = E[f(2)u(n) - ;7;((2)) u(n)] = <f(z), ﬁi;>

_ If 7‘“)I2
- 27r/ Suu )

- L sw(eﬂwnf(ew)fRe{

2 J_»

1
nen } dw > 0.
The third line follows from the second because Sy, (e’*)|f(e/*)|? is an even function
of w while Im {1/A(e/*)} is an odd function of w. Positivity of the fourth line

follows because the integrand is positive for all w if 1/A(z) is SPR. Now choosing
the Lyapunov function V(b) = (b — b,)T (b — b,), one has that

dv(b) [dv(b)]T db
dt [ db ] dt

:O, b:b*

= —2(b —b,)"M(b —b,) { <0, b#b,

and therefore b — 0 as ¢ — oo. Then under the SPR condition on 1/A(z) the
stationary point of the algorithm (3.32) is stable.

Fortunately, this SPR condition can be sidestepped, because being A(z) part of
the adaptive filter, it is known at every time instant. Then the output error e,(n)
in (3.32) can be replaced by a filtered version €,(n) = A(z)ey(n) to obtain

b(n + 1) = b(n) + pu(n)eé,(n). (3.37)
The stationary points of this algorithm are given by
Elu(n)é,(n)] = 0141, (3.38)

or equivalently
E[a(n)a(n)"]b = E[a(n) - A(2)d(n)],

because €,(n) = A(z)d(n) — @(n)Tb. Note that &,(-) takes the form of an equation
error; the algorithm (3.38), however, is still unbiased in the presence of output
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noise since the noise component in &,(-) is uncorrelated with the driving vector
u(+). The matrix E[u(n)u(n)!] is positive definite, and therefore the solution of
(3.38) is unique. Moreover, the positive definiteness of this matrix implies global
convergence of (3.37) for sufficiently small 4.

However, we still have to show that the stationary point of the algorithm does
not change after replacing e,(n) by €,(n) in (3.32). Note that (3.38) is equivalent
to

(A(2)H(z) — B(2), p(2))u =0, 0<k <L, (3.39)

which means that at the stationary point B(z) interpolates the first L+ 1 coefficients
of the Szegd expansion of H(z)A(z). One has the following result, whose proof is
given in Appendix B:

Lemma 3.8. Ifu(-) is an autoregressive process of order not exceeding L+ 1, then
the interpolation conditions (3.39) imply E[u(n)es(n)] = 0r41.

Therefore replacing the output error e,(n) by the filtered error &,(n) in (3.32)
leads to global convergence of the algorithm to the same stationary point.

In order to develop the algorithm (3.37) for the update of B(z), we have assumed
that 1/A(z) remained fixed in the process. This was useful for understanding the
problem; however, it is desirable to adapt all the blocks simultaneously. In the
next section we present two different forms in which the complete adaptive filtering
process can be implemented, with all parameters being updated simultaneously. We
will see that these two versions still enjoy a unique stationary point.

3.4.4 On-line adaptation of the remaining blocks

We show two possibilities for the implementation of the adaptive scheme. The
first one makes use of an adaptive lattice predictor which serves as a preprocessor,
while the second one is readily derived from the off-line IXN block diagram (Figure
3.4).

Consider first the adaptation of the coefficients of A(z). This is done by a stan-
dard stochastic gradient descent of the cost E[e2(n)], where e.(n) is the ‘equation
error’

ce(n) = A(2)j(n) - C(2)u(n).
The coefficients of 1/A(z) are then updated by means of
ak(n +1) = ax(n) — pj(n — klec(n), 1<k <M.
However, since §(n) = [B(z)/A(2)]u(n), the equation error e(n) reduces to
ee(n) = B(z)u(n) — C(z)u(n) = [B(z) — C(z)]u(n), (3.40)

which shows that the FIR block labeled A*+1)(z) in Figure 3.4 need not be imple-
mented in the on-line versions. However, one still needs to implement an FIR block
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with transfer function A(z) in order to produce the filtered error €,(n) = A(z)ey(n)
that drives the adaptation of B(z), as discussed in section 3.4.3.

The first structure

The analysis of the previous sections suggests the use of some preprocessing
device to decorrelate the input vector @(n). This can be achieved by means of
a lattice predictor of order L whose input is u(-). This predictor provides the
backward prediction errors ;(n), i = 0,1, ... L associated to u(-), which are (up to
a constant) the result of filtering u(n) by the Szegd polynomials p;(z):

Bi(n) = op,pi(z)u(n), i=0,1,...,L,

where 02 is the variance of 8;(n). Therefore these backward prediction errors are

orthogonal: E[Bi(n)Bj(n)] = 0,05, (pi(2),pj(2))u = 0 if i # j. See Appendix C for
more on the connection between lattice predictors and Szeg6 polynomials.

The numerator B(z) is implemented as a linear combiner of the backward pre-
diction errors:

where B(n) = [Bo(n) -+ Br(n)]" and W = [wq --- wr,]7. Similarly, the Nth order
auxiliary filter C(z) would be implemented as

N
C(2)u(n) = 3" vifi(n).
=0

However, since the minimization of E[e?(n)] with e.(n) computed as in (3.40)
would give v; = w;, 1 = 0,1,..., N, it makes sense to simplify the computation of
ee(n) into the following form:

L

ee(n) = Z w;Bi(n). (3.41)

i=N+1
This eliminates the need for the auxiliary filter C'(z). The resulting structure is
depicted in Figure 3.5. The algorithm can be summarized as
wi(n + 1) = wi(n) + pfi(n)és(n), 0<i<L, (3.42)
ag(n+1) = ag(n) — pg(n — k)ee(n), 1<k<M. (3.43)
If the statistics of the input signal are known beforehand, the parameters of the

lattice predictor can be precomputed so that there is no need to make this block
adaptive. Otherwise the predictor coefficients p; can be updated by means of, e.g.,
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Lattice predictor

L

All-pole filter 1/A(z) All-zero filter A(z)

Figure 3.5: Block diagram of the first structure proposed for on-line implementation
of the IXN algorithm (IXN-1).

the gradient adaptive lattice (GAL) algorithm [46]. The predictor equations are,
fore=1,2,...,L,

ao(n) = Bo(n) = u(n),
ai(n) = aj—1(n) + pifi-1(n — 1),
Bi—1(n — 1) + p;c;(n),

®
S
!

where a;(n) is the ith order forward prediction error. The adaptation of the pa-
rameters p; according to the GAL algorithm is

pi(n+1) = pi(n) — plai(n)Bi-1(n — 1) + Bi(n)ai-1(n — 1)],
where each coefficient p; is updated in order to minimize the combined forward-
backward prediction error power E[a?(n) + 82(n)].

In the following analysis we assume that either the lattice predictor is fixed or it
has achieved convergence. Then, the stationary points of the on-line IXN algorithm
(3.42)-(3.43), which will be referred to as IXN-1 for convenience, are given by

Elfi(n)e,(n)] =0, 0<i<L,  E[j(n—kle(n)]=0, 1<k<M. (3.44)
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Observe that
Bo(n)

Br(n)

= ALCLﬁ(n),

where

Ay = diag(og,++,05,)
and Cr, u(n) were defined in (3.25) and (3.18) respectively. Therefore the first
L + 1 equations in (3.44) can be written as

ALCLE[ﬁ(n)éo(n)] = 07541 = E[ﬁ(n)éo(n)] =0741.

On the other hand, e.(n) is computed by means of (3.41), or alternatively e.(n) =
B(n)T Aw, where 5(n) was defined in (3.29), and

A:diag(JgNH,---,JgL), W =[wyy1 - wp L.
Then the last M conditions in (3.44) can be compactly rewritten as HAW = 0y,
where H is the matrix defined in (3.31). In view of Theorem 3.4 and Lemma 3.8
it follows that in sufficient order cases, if one takes L > N + M and the input
signal is AR(L + 1), then the conditions E[wi(n)é,(n)] = 0,1, HAW = 0j; imply
that the only stationary point of the IXN-1 algorithm (3.42)-(3.43) corresponds to
identification of the unknown system.

What can be said about the convergence properties of this stationary point? If
we group the filter parameters in the vector

Od:[wo .« wL al .. aM]T

then the on-line algorithm (3.42)-(3.43) is seen to have the form 04(n+1) = 04(n)+
pFq(04,u,d), where

Fy(04,u,d) = Br(n)eo(n)

The associated ODE is

Hd(t) =F [Fd(0d7 u, d)]adzﬂd(t) :
We must then check the eigenvalues of the feedback matrix

_ dE [Fd(eda u, d)]
= 0,

Sd(e*)
0=0.
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where 6, is the stationary point corresponding to the identification of the unknown
system. Taking the corresponding derivatives and noting that e.(n) vanishes if
0 = 6., the matrix S4(6,) turns out to be

—A% 0 ANGT
Sq¢0.)=| o —A° AHT |, (3.45)
0 —HA 0

where H is the matrix obtained after substituting ¢(-) by d(-) in (3.31), and

d(n —1)
G-F | o) - By b (3.46)
d(n — M)

Now we can state:

Lemma 3.9. Assume that the orders N and M of the model numerator and de-
nominator match those of the unknown system. If L > N + M and the input u(-)
is an autoregressive process of order not exceeding L+ 1, then all the eigenvalues of
the matriz Sq(0s) given in (3.45) have strictly negative real parts.

The proof is given in Appendix B. This result ensures local stability of the
IXN-1 algorithm (3.42)-(3.43).

The second structure

A different possibility is to implement the numerator B(z) directly as a tapped
delay line, therefore disposing of the lattice predictor of the previous section. In
that case, however, it becomes necessary to include the auxiliary filter C(z) in order
to compute the equation error e.(n) as in (3.40), i.e.

L N
ee(n) = Z byu(n — k) — Z cxu(n — k).
k=0 k=0

This second structure, shown in Figure 3.6, is computationally less expensive than
the first architecture of Figure 3.5 since the filter C'(z) requires N+ 1 multiplications
and N additions, in contrast to 2L — 1 multiplications and 2L — 1 additions required
by the lattice predictor (recall that L > N + M). On the other hand the memory
requirements of the two versions are identical: Both of them use L + 2M delay

elements z~ 1.

While the adaptive numerator B(z) is updated in order to decorrelate the filtered
error é,(n) and the first L + 1 lags of the input signal u(-), the coefficients of A(z)
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and the auxiliary filter C(z) are updated in order to minimize E[e?(n)] using a
standard LMS-like algorithm. The procedure can be summarized as follows:

bi(n 4+ 1) = bj(n) + pu(n —i)éy(n), 0<i<L, (3.47)
0<j<N, (3.48)
1<k<M. (3.49)

All-pole filter 1/A(z) All-zero filter A(z)

Figure 3.6: Block diagram of the second structure proposed for on-line implemen-
tation of the IXN algorithm (IXN-2).

The stationary points of this second on-line version (3.42)-(3.43) of the IXN
algorithm, labeled IXN-2, are given by

Elu(n —i)e,(n)] = 0, 0<i<L, (3.50)
Elu(n —jlec(n)] =0, 0<j<N, (3.51)
E[g(n —k)ee(n)] =0, 1<k<M. (3.52)

Egs. (3.51)-(3.52) indicate that A(z), C(z) minimize the equation error variance
E[e?(n)]. Straightforward manipulation of these equations paralleling the analysis
in section 3.4.2 leads to Hb = 0 M, which is the same characterization of stationary
points found for the off-line IXN method in section 3.4.2. Hence, in sufficient order
cases, if L = N + M and u(-) is AR(N + M + 1), then the conditions (3.50) ensure
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that H is nonsingular by Theorem 3.3, which in turn implies that the only stationary
point of the on-line IXN-2 algorithm (3.47)-(3.49) corresponds to identification of
the unknown system.

It is natural to ask now whether the auxiliary filter C(z) is really necessary in
this architecture. That is, the error signal e.(n) could be computed in a simplified
way similar to (3.41), namely

L
ee(n) = Z biu(n —1).

1i=N+1

If this is done, then there is no need for C(z). An analysis similar to the one in
section 3.4.2 shows that, for . = N 4+ M, the uniqueness of the stationary point of
such algorithm relies on the invertibility of the matrix

g(n—1)
E : [un—N—=1)---u(n—L)] . (3.53)

j(n — M) B(2)/A(2)=H(2)

However, this matrix can be singular in certain cases. Consider for example the case
N =M =1 in which L = N + M = 2 is taken. Suppose that the unknown system
is FIR of first order, given by H(z) = 1.01 — 0.25z~!, and that u(-) is a third-order
AR process with Sy, (2) = 1/[g(2)q(z )] and q(z) = (1 — 0.252 2)(1 — 0.2z 1).
Then the matrix in (3.53) becomes singular, since

E[ij(n — Du(n — 2)]p)/ae)=n() = (# "H(2),2 )y =0.
The failure of this simplified approach is due to the fact that the functions
{z7" 27" and {pna(2), -, pu(2)

need not span the same subspace. Therefore in general the auxiliary filter C(z) is
needed for the computation of e.(n) in the IXN-2 algorithm.

In order to test local convergence of the stationary point 6, corresponding to
identification of the unknown system, one can compute the feedback matrix of the
linearized ODE associated to the algorithm (3.47)-(3.49), which turns out to be

—E [6(n)u(n)T] 0 E [a(n)d(n)T]
Sa(0:) = | E[u(n)u(n)T] —E [u(n)u(n)7] 0 ) (3.54)
—E[d(n)u(n)"] E[d(n)u(n)”] 0

where d(n) = [d(n — 1) --- d(n — M) |7, and u(n), u(n) have been defined in (3.16)
and (3.18). The parameter vector is now given by
Whether the eigenvalues of S;(60,) lie in the Re A < 0 semiplane remains an open
issue. In all the simulations performed with the IXN-2 algorithm, the stationary
point turned out to be convergent; the stable character of the matrix S4(6.) is
therefore advanced as a conjecture.
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nfn)
u(n) +
H () d(n)
(2) A
p%g(gf(l:%gr + €o (n) All_zero €o (n)
_<: lattice A(z) [
Bo()]-Bn ()] B4 ()] - Br(n)]
Linear Linear
combiner combiner
o) All-pole | | 4(m)
i lattice 1/A(z)
Auxiliary e s-l(n)
B(zju(n) | lattice G(z) |,

Figure 3.7: Block diagram of the first structure proposed for on-line implementation
of the IXN algorithm (IXN-1) in lattice form.

Lattice implementation

So far it has been assumed that the recursive part of the adaptive filter is
implemented in direct form, for both the IXN-1 and IXN-2 on-line algorithms. Using
the approach of Chapter 2, it is possible to reformulate the adaptive algorithms in
terms of the reflection coefficients of a lattice structure. Namely, one just needs to
substitute the update formulas for the a; parameters (3.43) or (3.49) (which are in
fact identical) by

singg(n +1) =singg(n) — psg(n)ee(n), 1<k <M, (3.55)

where the signals

_ 04() B()
Osin ¢y, A(2)

sk(n) = Gr(2) B(2)u(n) u(n), 1<k<M,

are generated with the aid of the structure of Figure 2.4. The block A(z) required in
order to compute the filtered error e,(n) is implemented as an FIR lattice by taking
advantage of the fact that the reflection coefficients for the IIR lattice 1/A(z) and the
FIR lattice A(z) are the same. The block diagrams of the resulting configurations
are shown in Figures 3.7 and 3.8.

Although the stationary points of the lattice variants are the same as those
of the direct form versions, it is not possible to apply Lemma 2.2 in these cases
since the corresponding direct form feedback matrices do not satisfy in general
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n(n)
u(n) b+ dm

All-zero
lattice A(z)

> €o (n)

Tapped delay All-pole
line B(z) lattice 1/A(z) 9(n)

|| Tapped delay| + Auxiliary :
line C(z) T‘ lattice G(2) |, ;\ ()
ec(n)

Figure 3.8: Block diagram of the second structure proposed for on-line implemen-
tation of the IXN algorithm (IXN-2) in lattice form.

Sa(6.) + SE(6,) < 0. Nevertheless, as the following result states, it is still possible
to show local stability of the IXN-1 lattice algorithm; The proof can be found in
Appendix B.

Lemma 3.10. Assume that the orders N and M of the model numerator and de-
nominator match those of the unknown system H(z). If L > N + M and the input
u(+) is an autoregressive process of order not exceeding L + 1, then the stationary
point 6, corresponding to the identification of H(z) is locally convergent for the
on-line IXN-1 lattice algorithm, given by (3.42) and (3.55).

3.4.5 Simulation examples

In this section we present the results obtained from several computer simula-
tions of the IXN on-line adaptive algorithms. We consider a system identification
configuration in which the unknown system is a third-order filter given by

1408271 —0.5272 4+ 1.5273

H(z) = 1—152"14+1.3272 —0.56273" (3.56)

In the first example, the input u(-) is an AR(7) process generated by the all-pole
filter 1/q(z) with

q(z) = (14+0.2271 +0.6272)(1 — 0.25272)(1 — 0.5z~ + 0.5272)(1 + 0.2z71) (3.57)

when driven with unit variance white noise. The pole-zero plot of H(z) and the
plots of Sy, (e’”) and Re {1/A(e?*)} are shown in Figure 3.9.

Weset N=M =3 and L = N + M = 6 in the adaptive filter, whose recursive
part was implemented in normalized lattice form and adapted by means of (3.55).
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Figure 3.9: (a) Pole-zero plot of the system used in the simulations. (b) Power spec-
tral density of the AR(7) input signal (solid) and real part of 1/A, (/%)
(dashed).

First we tested the original algorithm from [76] that uses the output error e,(n)
in the update term of the coefficients of B(z). The value of the stepsize y was 1074,
and the reference signal d(-) was free of additive noise in this case. The numerator
B(z) was implemented as a linear combination of the backward prediction errors
Bi(n), which were generated by a fixed lattice predictor matched to ¢(z). The
reflection coefficients of this predictor are

[p1 --- ps] =[—0.0577 0.6455 —0.0095 0.0782 0.0639 —0.0665 |.

Figure 3.10 shows the evolution of the adaptive filter coefficients. Although these
migrated initially towards a vicinity of the correct values, they failed to converge.
The reason for this is that, as can be seen in Figure 3.9, the denominator A, (z)
of the unknown system does not meet the SPR condition and, in addition, the
input power spectral density is significant in the range of frequencies in which
Re {1/A.(e?*)} < 0. This illustrates a well known fact: that although in general the
SPRness of 1/A,(z) is only a sufficient condition for convergence, if it is not satisfied
one can usually find input signals that destabilize the corresponding algorithms.

Next we used the filtered error €,(n) in the update of the feedforward param-
eters, as proposed in section 3.4.3. The reference signal d(-) is now corrupted by
additive white noise 7(-) with variance 0727 = 0.2, which gives an SNR of 17 dB in
d(-). Convergence of IXN-1 to the correct parameter values is achieved, supporting
the previous analysis. The results are shown in Figure 3.11.

The second structure, which trades the lattice predictor for the auxiliary filter
C(z), was also tested in the same scenario. The results are shown in Figure 3.12. It
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Figure 3.10: Parameter evolution in the original IXN on-line algorithm (output error
update term). The dashed lines indicate the correct values. p = 1074,
SNR = oo, AR(7) input.

is seen that convergence of the lattice version of IXN-2 to the correct values takes
place.

Finally, we present a case in which the input signal does not meet the autore-
gressive constraint. The unknown system H(z) is the same as above, but now the
input signal is an ARMA(8) process generated by the filter

Py = 08+ 0.4z 6 +0.4z 8
(2) = 1-0.42"8

driven by unit variance white noise. The first reflection coefficients of the lattice
predictor matched to this ARMA(8) process are

[p1 -+ pe] =[0 —0.2368 0 0.0594 0 —0.3507].

The additive disturbance was generated by driving a first-order FIR filter with
transfer function 0.6 + 0.48z~! with unit variance white noise, yielding an SNR of
18 dB. Figures 3.13 and 3.14 show the parameter evolution of the IXN-1 and IXN-2
algorithms respectively. It is seen that, although in this case IXN-2 is considerably
slowed down due to the presence of the measurement noise, convergence to the
correct values still takes place.



3.4. The Interpolation Expanded Numerator method 85

Reflection coefficients Feedforward parameters
1 T T T T 1.6 T T T T
0.8 -
0.6
0.4
) 0.2 ]
E E
g o 5
s s
< <
—o.8 sin @ 4
710 260 4&)0 660 860 1000 o 260 460 660 8&)0 1000
= 10° iterations = 10° iterations
Figure 3.11: Parameter evolution with the on-line IXN-1 algorithm (fixed lattice
predictor, filtered error update term). p = 10~*, SNR = 17 dB, AR(7)
input.
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Figure 3.12: Parameter evolution with the on-line IXN-2 algorithm (without pre-

dictor, with auxiliary filter C(z), and filtered error update term).
p=10"% SNR = 17 dB, AR(7) input.



86 Chapter 3. Iterative off-line identification methods
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Figure 3.13: Parameter evolution with the on-line IXN-1 algorithm (fixed lattice
predictor, filtered error update term). p = 107*, SNR = 18 dB,
ARMA(8) input.
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Figure 3.14: Parameter evolution with the on-line IXN-2 algorithm (without pre-
dictor, with auxiliary filter C(z), and filtered error update term).
p=10"* SNR = 18 dB, ARMA(8) input.
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3.4.6 Conclusions

We have presented an analysis of the interpolation expanded numerator (IXN)
system identification method for colored input signals. Both off-line and on-line
(in direct form and lattice implementations) approaches were discussed. The main
advantages of the IXN method can be summarized as follows:

e The presence of measurement noise in the reference signal does not bias the
stationary points of the algorithm, irrespectively of the spectral characteristics
of the disturbance. This is in contrast with other approaches such as the
Equation-Error or the Steiglitz-McBride methods.

e The uniqueness of the stationary point in the sufficient order case provided
that the input signal is an autoregressive process of order not exceeding N +
M + 1 (the number of parameters in the model). In contrast, the Mean-
Squared Output Error cost function is known to be unimodal in the sufficient
order case only when the input signal is white or a first-order AR process.

Finally we must emphasize that all the results obtained here apply only in the
sufficient order case, i.e. it is assumed that the order of the model matches that
of the unknown system H(z). When this assumption is not valid, the algorithm
suffers from the drawbacks of Padé-like interpolation methods: the reduced-order
approximant may not exist (and then the question of convergence becomes irrele-
vant) or in case it does exist, it may correspond to an unstable transfer function, in
which case the on-line algorithm is pushed towards the stability boundary, where
it locks up. Different approaches are needed when dealing with the reduced-order
case. As discussed in chapter 1, the Steiglitz-McBride method is an attractive al-
ternative since it usually provides good approximations to the unknown system in
undermodeled situations. In the next section we present a new scheme which bor-
rows from both the Steiglitz-McBride method and the Expanded Numerator (XN)
method of section 3.3.

3.5 The Steiglitz-McBride/Expanded Numerator
method

In this section we present a new system identification method which can be seen
as a modification of the Expanded Numerator (XN) scheme of section 3.3, in which
the equation error step is performed with prefiltering, similarly to what is done in
the Steiglitz-McBride method. We refer to this approach as the SM/XN method.
The off-line procedure is also iterative in nature, and it is illustrated in Figure 3.15.
It can be summarized as follows:
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Unknown system n(n)
u(n) + d
H() O )
" +
O— eoln)
— a0 B*(z) j(n)
1 1
AR (2) AR (z)

\_ Ck+1) () SO A1) ()

Figure 3.15: Block diagram illustrating the off-line SM/XN iteration.

1. At iteration k, the estimate A¥)(z) is available. Find B%**1)(z) as the solution
to the following minimization problem:
2]

2. Let §(n) = [B%*1(2)/A®)(2)]u(n), and find the coefficients of the filters
C*+1D(2) (degree N) and A**1(2) (degree M) by solving the equation error
minimization problem

B(z)
AR (2)

B*+1(2) = argmin E ”d(n) - u(n)

B(z)

{A(k-l—l) (Z), C(k+1) (Z)} = arg A(njucn( )E

subject to a monic constraint on A(z).

3. Discard the filter C(*t1)(2) and repeat the process.

Observe that the first step is identical to that of the XN off-line iteration, i.e.
the adaptive filter numerator is computed at each step in order to minimize the
output error variance (a quadratic minimization problem). The disturbance term
n(-) cannot bias the iteration, a feature in common with the XN and IXN methods.
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Also, in order for the method to evolve, the order L of B(z) should again exceed
the order N of the auxiliary filter C(z).

In order to guarantee stability of the intermediate transfer functions, one can
apply Theorem 3.1 to conclude that if the input signal u(-) is an autoregressive
process of order not exceeding N — M + 1 (assuming N > M — 1), then the monic
polynomials A%)(z) constructed by the SM/XN iteration are minimum phase.

The question of what the length of the expanded numerator should be is ad-
dressed by the following result, whose proof can be found in Appendix B.

Lemma 3.11. Assume H(z) = B.(z)/A«(2) with B.(z), A«(z) coprime polyno-
mials of orders N and M respectively, and that L > N + M. If the input signal
u(+) is an autoregressive process of order not exceeding N + 1, then any stationary
point B(z)/A(z) of the SM/XN iteration for which B(z) has order N (or less) must
satisfy B(z)/A(z) = H(z).

This suggests that the order of B(z) should be no less than N + M, similarly
to what was found for the IXN method (see Lemma 3.4).

3.5.1 Stationary points

The analysis of fixed points of SM/XN can be carried out analogously to the
corresponding discussion for IXN presented in section 3.4.2. Let B(z)/A(z) be a
SM/XN stationary point, and §(n) = [B(z)/A(z)]u(n). Define the filtered signals

1 1

uf(n) = mﬂ(n), gr(n) = M:&(n), (3.58)

z

and let {p;(2)}32, be the Szegd polynomials associated to the process us(-). Also
let Bfx(n) = pr(z)us(n) be the kth normalized backward prediction error. One can
expand B(z) over the Szegd polynomials:

L
B(2) = bipk().
k=0

By analogous computations to those in section 3.4.2, one finds that at any SM/XN
fixed point the relation Hff)l — 0, must hold, where b’ = [by,q -+ b} ]T and the
matrix Hy is given by

grln=1) | i
Hy=FE : [Bf,N+1(n) -+ Brr(n)] ¢ - (3-59)
gg(n — M)

Note the structural similarity between H; and the matrix H that appeared in the
analysis of the IXN method.
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In the case L = N + M, Hy is M x M square. If it could be guaranteed to
be invertible, then H ff)l = 0js would imply b=0 M, and then in view of Lemma
3.11 one would have B(z)/A(z) = H(z) provided that the AR(N + 1) condition on
u(+) holds. This is the outline of the proof of the following result, which is given in
Appendix B.

Theorem 3.5. If L = N + M, the input u(-) is an autoregressive process of order
not exceeding N + 1, and the unknown system satisfies H(z) = By (z)/As(2) with
B, (z), A«(z) coprime polynomials of orders N and M respectively, then the off-line
SM/XN iteration has a single fized point given by B(z)/A(z) = B«(2)/A«(2).

Observe that Theorem 3.5 requires L = N + M. This is in contrast with
the corresponding result for the IXN method (cf. Theorem 3.4) for which L >
N + M was sufficient. The main difficulty that one encounters when trying to
generalize Theorem 3.5 to L > N + M is that the matrix H; remains a function
of the coefficients of the denominator A(z), and hence the resulting equations are
nonlinear. We believe that if L > N+ M, the SM/XN stationary point still remains
unique, although we still lack a formal proof at this time.

3.5.2 On-line implementation

In the same way in which the on-line SM, XN, IXN algorithms are derived from
their off-line counterparts, we can devise an on-line form of the SM/XN method in
order to update the blocks A(z), B(z), C(z) of the adaptive system. The direct
form version is given by the following update rules:

bi(n 4+ 1) = b;j(n) + puys(n —i)ey(n), 0<i<L, (3.60)
cj(n+1) = ¢j(n) + pur(n — j)ec(n), 0<j<N, (3.61)
ap(n +1) = ar(n) — pgr(n — k)ee(n), 1<k<M, (3.62)

where the filtered signals u(-), §7(-) are generated as in (3.58), and the error signals
eo(+), ee(-) are given by

eo(n) =d(n) —j(n),  ec(n) =g(n) — C(2)uy(n).
The block diagram of this implementation is shown in Figure 3.16.

The stationary points of this on-line SM/XN algorithm (3.60)-(3.62) satisfy

Eluf(n —i)es(n)] = 0, 0<i<L, (3.63)
Blug(n—fe.(n)] =0, 0<j<N, (3.64)
E[gs(n —k)ee(n)] =0, 1<k< M. (3.65)

Egs. (3.64)-(3.65) indicate that A(z), C(z) minimize the equation error variance
E[e?(n)]. Straightforward manipulation of these equations leads to H ff)l = 0y,
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Figure 3.16: Block diagram of the on-line direct form implementation of the SM/XN
algorithm.

which is the characterization of stationary points found for the off-line SM/XN
method. Thus in sufficient order cases, if L = N + M and u(-) is AR(N + 1), then
the only stationary point of the on-line SM /XN algorithm (3.60)-(3.62) corresponds
to identification of the unknown system. The feedback matrix of the linearized ODE
at this stationary point is given by

—E [uy(n)us(n)"] 0 E [ag(n)ds(n)"]
Sq(0s) = E [us(n)as(n)’] —E [up(n)us(n)’] 0 ,  (3.66)
—E[ds(n)us(n)T] E[df(n)us(n)T] 0

where the vectors uy(n), ug(n), ds(n) are given by

ay(n) = [up(n) up(n—1) --- Uf(n—L)]T,
ur(n) = [ur(n) up(n—1) --- up(n — N) ]T,
= [ds(n) df(n—1) --- dg(n — M)],

with df(n) = [1/A(2)]d(n), and A(z) = A.(z) (the denominator of the ‘unknown’
system H(z)) to be taken everywhere. Observe the similarity in the structures of
this matrix and the corresponding feedback matrix for the IXN-2 algorithm given in
(3.54). Again, whether the matrix S4(0,) is stable in general is left as a conjecture
at this stage, although all simulation evidence suggests that this is the case.

The lattice version of the SM/XN on-line algorithm is obtained by implementing
the recursive part of the adaptive filter 1/A(z) in normalized lattice form, and
substituting (3.62) by

singy(n +1) =singy(n) — psg(n)ec(n), 1<k<M, (3.67)
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— s1(n
All-pole ug(n) Tapped delay y(n) Auxiliary :1( )

lattice 1/A(z) line B(z) lattice G(z)

— sar(n)

+

Tapped delay C)
line C(z) ee(n)

Figure 3.17: Block diagram of the on-line lattice form implementation of the SM /XN
algorithm.

where now the signals

0A(2) (n), 1<k<M,

sp(n) = Gi(2)9(n) = oo

are again generated by the structure of Figure 2.4, but now driven by §(-). The
block diagram is shown in Figure 3.17. The feedback matrix of the linearized ODE
corresponding to this lattice SM/XN algorithm is S;(6,) = F7 (0,)Sq(6,)F(0,), with
F(6.) given by

Ip., 0 0
F(Q*) == 0 IN+1 0
0 0 D@

and D(0,) the Jacobian with ¢, jth element da;/0sin ¢;.

3.5.3 Simulation results

We present now several computer simulations of the SM/XN on-line adaptive
algorithm. The system to be identified is the third-order H(z) given in (3.56). We
took N = M = 3 in the adaptive filter, and L = N + M = 6. The input signal u(-)
was an AR(4) process generated by the all-pole filter 1/¢g(z) with

q(z) = (1-0.2271 +0.627%)(1 — 0.5272)
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Figure 3.18: Parameter evolution with the on-line SM/XN algorithm. p = 1074,
SNR = 19 dB, AR(4) input.

when driven with unit variance white noise. This setting is in the hypotheses of The-
orem 3.5, so that the uniqueness of the stationary point given by B(z)/A(z) = H(z)
is ensured. In the simulation, additive white noise 7(-) with 0,27 = 0.3 was introduced
in the reference signal; the resulting SNR is 19 dB. Figure 3.18 shows the parameter
evolution of the lattice SM /XN algorithm in this environment. Convergence to the
correct parameters is observed.

For comparison purposes, we also include the results obtained with SM/XN in
an identification setting with the same H(z) but with an AR(7) input signal whose
coloring filter 1/q(z) is given by (3.57), and with additive white noise with 072] =0.2.
Although this setting does not meet the requirements of Theorem 3.5, the algorithm
successfully converges to the correct parameter values as shown in Figure 3.19. The
results obtained by IXN-1 and IXN-2 in this scenario were shown in Figures 3.11
and 3.12 respectively.

3.5.4 Conclusions

In this section we have presented and analyzed a novel system identification
method, termed Steiglitz-McBride/Expanded Numerator since it is inspired from
these two schemes. We discussed both off-line and on-line versions of SM/XN.
Similarly to the IXN method, the presence of an additive disturbance (white or
otherwise) in the reference signal does not bias the stationary points of SM/XN. In
sufficient order settings, it was shown that the stationary point is unique provided
that the order of the overparameterized numerator is taken as L = N + M and that
the input signal is an autoregressive process of order not exceeding N + 1, where N
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Figure 3.19: Parameter evolution with the on-line SM/XN algorithm. p = 1074,
SNR = 17 dB, AR(7) input.

and M denote the number of zeros and poles, respectively, of the system to identify.

The convergence properties of the algorithm in reduced order cases strongly
depend on the value of L, the order of the ‘overparameterized’ numerator B(z).
Note that at any stationary point, B(z) is optimized (in terms of output error
variance) as a function of the denominator A(z). This means that B(z) satisfies

z) z 7k
<H(z) - iéz;, o >u —0, 0<k<L. (3.68)

We say then that B(z)/A(z) lies on the ‘reduced error surface’ Ji, ps(a) which is
defined as the value of the output error variance E[e2(n)] with e,(n) = [H(z) —
B(z)/A(2)]u(n) + n(n) when B(z) has order L and satisfies (3.68). Observe that

Jr,m(a) is a function of the denominator A(z) alone, whose coefficients are com-
prised in the vector a = [a; --- apr |7

In addition to (3.68), at any stationary point H ff)l = 0j7 must also hold.
Consider the case in which L = N 4+ M. Then Hy = H¢(a) is M x M square. Two
classes of stationary points appear:

1. Those for which H¢(a) is invertible. In that case the corresponding vector b
must be zero.

2. Those for which Hy(a) is singular. In that case the corresponding vector b
need not be zero.

Although the possibility of having the SM/XN algorithm converge to a setting
for which H¢(a) becomes singular cannot be discarded, this has never been observed



3.5. The Steiglitz-McBride/Expanded Numerator method 95

H,@) H,()

reduced error surface
N w

reduced error surface

[y

2 : : : 0.55
[} (]
g15 \ | &
5 ! 5 05
%) \ / %)
5 \ / S
5] 1 \ / 53
3 \ ; o
S \ y 8045
gos S e 2
0.4 -
-1 -05 0 05 1 -1 -05 0 05 1
a1 al
Figure 3.20: Plots of J; 1(a) (solid) and J51(a) (dashed) for several reduced-order
cases.

in computer simulations. Therefore, let us focus on the solutions satisfying b=0 M-
This condition means that at the fixed point, the numerator B(z) has degree N and
not L. Since it also satisfies the optimality conditions (3.68), it follows that

JN,M(a) = JN+M’M(a), (3.69)

i.e. any candidate stationary point must lie in the set of those points at which the
reduced error surfaces computed using numerators of order N and N + M touch
each other (note that Jy as(a) > Jyim,m(a) for all a). Figure 3.20 shows several
examples, in which the input u(-) was unit-variance white noise, N = M = 1, and
the system H(z) was successively taken as

054274272 Hy(z) = 14271+ 272
T 1406z 10322 2 T 11062 — 0322
14272 14zt 4224273
3(2) = T3 1) = 170017 0852 1 0453

Hl(Z)

For H(z) = Hi(z), (3.69) has a single solution at a; = —0.61, relatively close to
the global minimum of J;; which is located at a; = —0.49. For H(z) = Hj(z),
however, the solution of (3.69), although still unique (a; = —0.81), is seen to be
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near a local minimum and far from the global one. For H(z) = H3(z), J1,1 and Jo;
do not intersect in |a1| < 1, and therefore no stationary point exists. Finally, taking
H(z) = Hy(z) shows that it is also possible to have several solutions, three in this
case. Of these, a1 = —0.79 and a; = 0.9333 turn out to be locally convergent while
a1 = 0.25 is repulsive.

When L > N + M, in general the SM/XN algorithm may have fixed points at
which the last L — N coefficients of the numerator B(z) are nonzero. However, in
view of the preceding examples, it cannot be expected that these stationary points
(if any exists) provide any meaningful reduction of the output error variance besides
the fact that the zeros of the model are optimized as a function of the poles.



Chapter 4

HYPERSTABLE ALGORITHMS WITH
POLYPHASE AND SUBBAND STRUCTURES

We turn our attention in this chapter to adaptive IIR filtering algorithms based
on hyperstability concepts, and in particular to two novel implementations that
provide a means to relax the Strict Positive Real (SPR) condition that this family
of algorithms requires for convergence: The polyphase structure and a decimated
subband configuration. The net effect of these implementations is that the roots of
the effective polynomial that must be made SPR are pulled towards the interior of
the unit circle in the complex plane, by an amount that increases with the polyphase
expansion factor or the decimation factor. It is well known that the closer the roots
to the origin, the more likely the polynomial is to be SPR. This is the feature that
makes the subband and polyphase structures appealing for the implementation of
hyperstable adaptive schemes.

4.1 Polyphase structures

Hyperstability based algorithms are usually developed under a model reference
approach. Along this line, let the input-output description of the system to be
identified be given by

y(n) = H(z)u(n) = u(n) (4.1)

where B,(z) and A.(z) are coprime polynomials of degree N and M respectively.
For simplicity, we shall assume throughout this chapter that N = M, as the case
N # M does not involve any substantial modification of the development to follow
and it would only make the notation more involved. Let {2;}¥, be the roots of the
denominator A,(z), and from these define the polynomial

M P-1 -
Liz) =[] —ze 727, (4.2)
i=1 k=1

97
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where P is the so-called polyphase expansion factor. Observe that

M P—1
:HH 1—26JM _1)
i=1 k=0
M

Hl—z z-

=1
= T.,(z") (4.3)

only contains powers of z~! which are multiples of the polyphase factor P. The
P-fold polyphase form of H(z) is obtained as
Bi(2)Li(2) _ Fu(2) _ fox+ frez™" 4+ fupaz™™0

H = = = d . 4.4
) = L) " T(P) ~ 14tnr P d F a7 (44)

Observe that this polyphase form is unique since L,(z) is uniquely given by H(z)
and P. As a consequence of the overparameterization introduced, the number of
parameters of the P-fold polyphase form is M P + M + 1, which increases linearly
with P.

4.1.1 Polyphase HARF

Based on the considerations above, one can use the polyphase form for the
adaptive filter, i.e.,

H(z) = F(z) _ fo+ fiz 4 for 2+ + fupz MP
CT(2P) T 14tz P 4 tgz 2P oty ME

(4.5)

Now we are in a position to develop the polyphase form of the Hyperstable Adaptive
Recursive Filtering (HARF) algorithm. To do so, define the parameter vector 6(n)
and the regressor vector 1(n) as

C fo(n) ] Cum) ]
f1 (n) u(n —1)
o) = | Mf(’(;" = | MY
( ) —z(n — 2P)
_ tM'<n) _ —a(n— MP) |

where z(n) is the a posteriori estimate given by z(n) = 8(n + 1)T¢(n). With
{ck}}L, suitable constants, the filtered a posteriori error is

e(n) = [y(n) —z(n)] + Y exly(n — k) — z(n — k)]. (4.6)
k=1
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The corresponding a priori quantities are the estimate §(n) = 6(n)T(n) and the

error
m

e(n) = [y(n) = §(n)] + Y cxly(n — k) — z(n — k)]. (4.7)
k=1
Note that it is assumed that the unknown system output y(n) is directly available,
i.e. the noiseless case. The polyphase form of the HARF algorithm can be written
as

On+1) = () + 1 (’7‘1 T e (4.8)

The following result applies now.

Lemma 4.1. Let C(z) =1+ Y 1, ckz™*. If the transfer function C(z)/Ts(27) is
SPR, i.c. if the system C(z)/T(2F) is stable and causal and

Re{%}>0 Vw, (4.9)

then the algorithm (4.8) is asymptotically stable, that is, e(n) — 0 as n — oo.

The proof can be found in Appendix B. The choice of the compensating filter
C(z) is open to the algorithm designer in order to satisfy the SPR condition (4.9).
Note that in principle C(z) could be IIR, i.e. m = co. On the other hand, if (4.9) is
satisfied, then C'(z) has no zeros in |z| > 1 [105]. The problem of the compensating
filter design when some a priori knowledge about H(z) is available was extensively
studied by Mosquera: The interested reader is referred to [86] and the references
therein.

The interesting point of Lemma 4.1 is that the transfer function that should be
made SPR is C(z)/T.(2"). Note that

1 1
is SPR &

T—* ) T.02) is SPR

and that the roots of Ty (2) are z; for stable H(z), |z| < 1 so that |z| — 0 as
the polyphase expansion factor P increases. For example, if H(z) is the discrete-
time transfer function obtained by sampling a continuous-time system with a very
small sampling interval, the roots z; will tend to cluster near the point z = 1 in
the complex plane, as discussed in section 1.1.1. Under these conditions, 1/A4,(z) is
very unlikely to be SPR. The transformation z; — zZP performed by the polyphase
implementation tends to pull the roots away from this problematic region.

Figure 4.1 shows how the SPR region in root space for a second-order system
varies with P. Observe that this SPR region is stretched and covers more and more
of the unit disk as P is increased.

As shown in [86], it is possible to derive a lower bound for the polyphase expan-
sion factor required in order to make T,(z") SPR. in terms of an upper bound of
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Real Real

Figure 4.1: Variation of the SPR region with the polyphase expansion factor P for
a second-order system.
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the magnitude of the poles of the unknown system H(z). If |z| < p <1 for i =1,
..., M, then T,(z") will be SPR provided that

log(sin 577)

P>
log p

Therefore, even if the compensating filter is set to C(z) = 1, the SPR condition can
always be satisfied with a sufficiently high value of P.

Although convergence of the output error €(n) to zero is guaranteed if the SPR
requirement is met, parameter convergence to the true vector 6, is not: persistent
excitation conditions on the input signal are needed. In particular, one needs that
for some S,

Jj+S
0<aI< Z P(n)h(n)T < asl < oo, v j. (4.10)

n=j
This yields convergence of 6(n) to 6, and exponential convergence of (n) to zero
[2]. In the standard algorithm [i.e. (4.8) with P = 1], (4.10) is satisfied provided
that the spectrum of the input signal u(-) (or its power spectral density) is nonzero
at least at 2M + 1 different frequencies in [0, 27) [2]. For the polyphase form, (4.10)
holds if the psd of the input signal u(-) is nonzero at least at M P + M + 1 points
(the number of parameters). This can be shown using the same arguments as in

[2]; loosely speaking, assume that 6 has converged to a fixed value, so that we can
write e(n) = [H(z) — H(z)]u(n) = 0. Since

B2 Fl) _ BTG - FRAR)
H(z) = H(2) = 205 ~ 70y — TP

A~

the transfer function H(z) — H(z) has at most (P + 1)M zeros. If u(-) has nonzero
frequency content at least at M P+M+1 points, then e(n) = 0 implies H(z) = H(z).
The number M P + M + 1 increases linearly with P, hence the price to pay for
relaxing the SPR condition is a stronger persistent excitation requirement on the
input signal. We must also note that the number of coefficients of the adaptive filter,
and therefore the computational load associated to the algorithm, is proportional
to P as well.

4.1.2 Polyphase SHARF
When noise is present in the reference signal, i.e. only d(-) is available with

d(n) = y(n) +n(n),

the stepsize p in the HARF algorithm has to be kept small. This leads to ‘slow
adaptation’, under which the algorithm can be simplified [53, 65]:

0(n+1) = 0(n) + pyp(n)e(n), (4.11)
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with 9(n) now simply given by
p(n) = [u(n) u(n —1) --- u(n — MP) —§(n — M) --- —j(n — MP)]".
As before, §j(n) = 6(n)T4(n), and now the error signal is simply
e(n) = C(2)[d(n) — §(n)],

a filtered version of the output error. It can be readily verified that

e(n) = s(n) + C(2)n(n),

with s(n) = 6(n)T4¢(n), 6(n) = 6, — O(n) and 6, the vector comprising the pa-
rameters of the P-fold polyphase form of H(z). For slow adaptation, we can link
the convergence properties (in mean) of the algorithm to those of the associated
ordinary differential equation. Following steps similar to those in [105, sec. 9.4],
the ODE for (4.11) is found to be given by

6 =—M(6)(¢ —0.),

with
M(O) = B [v(0n) - 70 ()" .

Observe that the disturbance 7(-) does not contribute to the ODE. This is because
n(-) and the input signal u(-) are independent processes, and the vector 9(-) contains
solely filtered versions of u(-).

Note that if M (0) +M()” is positive definite for all §, then global convergence
of the ODE is guaranteed. The following result gives conditions for this.

Lemma 4.2. If C(z)/T.(z") is SPR, the input signal u(-) is persistently exciting
of degree at least 2MP + 1, and H(z) has degree MP or M, then M(0) + M(6)”
18 positive definite.

Proof: Let v =[vg --- vyp wy --- wpr |7 be a nonzero vector. Then

1 2w

vIM() + M(6) v = 2v"M(O)v = —

Syy (€7“)Re {%} dw, (4.12)

with S, (e/%) the psd of the process x(n) = vI1(n). Therefore, if C(z)/Ti (") is
SPR, the quantity in (4.12) is positive provided that x(-) does not vanish identically;
we must therefore find conditions under which this cannot happen. For fixed 8, x(n)
is given by

PM M A
x(n) = [Z ez F 4 ZwkszH(z)] u(n). (4.13)
k=0 k=1



4.1. Polyphase structures 103

Since the psd of u(-) is nonzero at least at 2M P + 1 points, if x(n) = 0 for all n
then the transfer function in brackets in (4.13) must be zero. Therefore

-1 ~MP

P4 vo+viz "+ +umyp2
z T H(z) = . 4.14
() wy +wez—F + - +wpyz (M-DP (4.14)

Since H(z) is causal, this implies v; = 0 for 0 < i < P — 1. Thus

. -14 ... —(M-1)P

A(z) = vp +vpy12” + -+ UMPZ _ V(zI)J ’ (4.15)
wy +woz P + -+ wp = (M-DP W (zF)

showing that the degree of H(z) is (M — 1)P at most. If deg H(z) = M, then
H(z) = B(z)/A(z) with A(z) and B(z) coprime polynomials of degree M; if

B(z) _ V(2)

A(z)  W(zP)

holds, then every root p; of A(z) must also be a root of W (z’). But then {piej% }kP;ll
must be roots of W (z") as well, since

WD) e = W™ = W) =0
z:piej P

Since A(z) has M roots, W(z") must have M P roots. This is impossible since

deg W (z) < (M - 1)P. ]

Some remarks are in order now:

1. The proof required that H(z) have degree M or M P. It is reasonable to expect
that during adaptation, deg H(z) = M P, and upon convergence, deg H(z) =
M = deg H(z). However, H(z) may take the form (4.15) at some point along
its trajectory, yielding M(0) singular. If by chance M(0)[6 — 0,] = 0, then
6§ = 0. Nevertheless any perturbation will destroy the specific structure (4.15),
and convergence of 6 toward 6, will continue.

2. The persistent excitation degree required now on the input signal is 2M P+ 1
rather than M P+ M +1. Suppose that the latter is the actual degree. Passing
from x(n) = 0 for all n to (4.14) is no longer valid; but even if x(n) = 0 for
all n without (4.14) being true, this can cause problems only if  assumes
again a very special structure which will be lost with any small perturbation.
Simulations show that persistent excitation degree of MP + M + 1 yields
convergence, as for algorithm (4.8).

3. The SPR condition has been used here to ensure convergence of the ODE,
which in turn implies algorithm convergence only in a probabilistic sense. This
is in contrast to the algorithm (4.8) for which the SPR condition guarantees
asymptotic stability.
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4.1.3 Simulation results

It is possible to implement the polyphase structure in lattice form by noting
that the reflection coefficients associated to the transfer function (4.5) are all zero
except for sin¢rp, 1 < k < M, because the denominator T'(z") depends only on
2P . Following the guidelines of section 2.4 one obtains the corresponding adaptive
algorithm, in which the recursive part 1/7(z") is implemented in normalized lattice
form and the parameter update becomes

filn+1) = fj(n) + pu(n — j)e(n), 0<j<MP, (4.16)
singgp(n + 1) = singgp(n) — psgp(nle(n), 1<k <M, (4.17)

where the signals

0A(z) |

() = Gyl -B(@u(m) = ~5 = T

(n), 1<k<MP,

are generated by the structure of Figure 2.4, driven by —B(z)u(n).

Next we show the simulation results obtained with this lattice polyphase version
of SHARF in a system identification setting. The input signal was white with unit
variance, and the unknown system was third-order and given by

B 14+05271 —0.42724+0.62"3
0 1—-2.342"1 42097272 — 0.7273

H(z) (4.18)
Figure 4.2 shows the pole-zero plot as well as Re {1/T(e/*)} for several values of
the polyphase expansion factor P. It is seen that for P = 1 the SPR condition is not
satisfied. Thus the standard SHARF algorithm with C(z) = 1 could be expected
to present convergence problems, even in a noiseless environment. This is indeed
the case, as can be seen in Figure 4.3.

For P = 2, the corresponding denominator is not SPR yet, but the range of
frequencies in which the SPR condition is violated is much smaller than in the
case P =1, and the algorithm successfully converges to the true parameter values.
For P = 3 the SPR condition is already satisfied. The evolution of the reflection
coefficients is shown in Figure 4.4. Additive unit-variance white noise was included
in the reference signal, yielding SNR = 20.6 dB. Observe that convergence is faster
in this case using P = 2 than P = 3. This is likely attributable to the fact that
the number of parameters of the adaptive filter increases linearly with P (since the
numerator has degree M P). A larger number of adaptive coefficients results in a
decrease in convergence speed, similarly to the FIR case [46]. Thus, there seems to
be a trade-off in the choice of P between the satisfaction of the SPR condition and
convergence speed.
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Figure 4.2: (a): Pole-zero plot of the system used in the simulations. (b), (c), (d):
Real part of 1/T,(e’*) for P = 1,2, 3 respectively.
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4.2 Subband structures

Consider the system identification configuration of Figure 1.1 and let e(n) =
d(n) — g(n) be the output error. It is possible to obtain an equivalent subband
configuration, as proposed in [98] for the FIR case. To do so, the reference signal d(-)
and the adaptive filter output §(-) are split into subbands, decimated, substracted
and finally combined using an adequate filterbank to form the error signal e(-). This
is shown in Figure 4.5, where now P denotes the number of subbands, and Ry(z),
Qr(z), 0 < k < P —1, are the transfer functions of the analysis and synthesis filters
respectively. It is assumed that the corresponding filterbanks have the perfect
reconstruction property [126], so that they only introduce an overall delay of §
samples. The sequences eg(-) shown in Figure 4.5 represent the error signals in
each subband.

Write H(z) = B(z)/A(z) with A(z) and B(z) polynomials of degree M. Sim-
ilarly to the development in the previous section, one can find a polynomial L(z)
such that A(z)L(z) = T(2F) with T(z) having degree M. This allows us to write

- B()LE)
") = 10010)
_F)
T(zF)
_ = Z_ka(ZP)
= TED)

where Fi(z) has degree M for kK = 0 and M — 1 otherwise. We can use this
representation together with the noble identities [126] to move the block H(z) in
Figure 4.5 past the decimators. The resulting configuration is shown in Figure 4.6
for the case of P = 2 subbands.

This configuration avoids the use of cross filters (a device usually required in
subband adaptive filters in order to avoid aliasing [41]) at the expense of having
multiple copies of the filters Fj(z) and 1/T(z) (one copy per subband).

4.2.1 Subband HARF

In order to derive a HARF-like adaptation algorithm for the two-band configu-
ration, let us write

Fo(2) = foo+ forz ' + -+ + fomrz™™,
Fi(z) = fio+ fuz '+ + finz™,
T(z) =1+tz -+ tyz M,

and collect the adaptive filter coefficients in the parameter vector

0(n) = [ foo(n) for(n) -+~ forr(n) fro(n) fua(n) -+ fim(n) ti(n) -+ tar(n)]".
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Figure 4.6: Equivalent configuration for the two-band case.
With wgo(+), uo1(-), u10(-), u11(-) as in Figure 4.6, define also the regressor
vectors
to(n) = [ugo(n) - ugo(n — M) ugi(n) -+ ugr(n — M) —zo(n—1) --- —zo(n — M)]7,
P1(n) = [uio(n) --- uo(n — M) ugi(n) - upr(n — M) —z1(n—1) --- —z1(n — M)]%,
where the a posteriori estimates zo(n), z1(n) are now given by

zo(n) = 0(n + 1)y (n), z1(n) = 0(n+ )T (n).

We proceed now to develop and analyze two HARF-like adaptive schemes based
on this subband decomposition. For the first algorithm, the filtered a posteriori
error signals are defined as follows:

ei(n) =[di(n) — zi(n)] + > ckldi(n — k) — zi(n — k)],  i=0,1,
k=1

where dy(n), di(n) are the subband reference signals after decimation, as shown
in Figure 4.6. The corresponding a priori quantities are the estimates §;(n) =
6(n)T4;(n), i = 0,1, and the error signals

ei(n) = [di(n) — §u(n)] + > _ckldi(n — k) —zi(n— k)], i=0,1,
k=1
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The first adaptive algorithm is as follows. With «g, a1 positive constants, define
the signals

P(n) = agho(n) + argpi(n),
E(n) = apeo(n) + are1(n),
é(n) = ageg(n) + azei(n)

The update formula for the filter coefficients is then

L
O(n+1)=0(n)+ — _
1+ pap(n)"4p(n)
In the case of having P > 2 bands, the update (4.19) remains the same; the only
difference is that 1(n), &(n), é(n) are formed as linear combinations of the corre-
sponding signals in the P subbands, with weights «ag, ..., ap_1. The following
result applies to this P-band case.

B(n)é(n). (4.19)

Lemma 4.3. Assume that the output disturbance n(-) is absent. Let Ty(z) be de-
fined as in (4.8) and C(2) = 1+ > pv, ckz~F. If the transfer function C(z)/Tx(2)
is SPR, then the algorithm (4.19) is asymptotically stable, that is, E(n) — 0 as
n — 0.

See Appendix B for the proof. Observe that with this subband structure, the
SPR condition is on the transfer function C(z)/Tx(z), while for the polyphase ar-
chitectures of section 4.1, the SPR requirement was on C(z)/T.(2"). While having
1/T.(z) SPR is equivalent to 1/T%(2") SPR, this difference may affect the design
of the compensating filter C(z).

Note that the result of Lemma 4.3 does not guarantee that ¢;(n) — 0 individu-
ally. This drawback can be overcome by redefining the adaptation rule, as we show
now. In addition, this second adaptive algorithm offers the possibility of using dif-
ferent compensating filters in different subbands. Thus, let the filtered a posteriori
error signals be now given by

ei(n) = [di(n) — zi(n +Zczk (n—k)—zi(n—k)], i=0,1,...,P—1,
while the a priori errors are now
ei(n)Z[d( _yz +Zczk n— —wi(n—k)], iZO,l,...,P—l.

Again with «; positive constants, the update formula of the second algorithm is as
follows:

“1Tp

P-1
O(n+1)=0(n) +p |T+p Y aih(n)y] (n) Y api(n)ej(n)| . (4.20)

i=0 j=0
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Matrix inversion in (4.20) can be avoided by defining the matrices
Ay=1, A=A, 1+ uak_1¢k_1(n)¢£_1(n) for k > 0.

The matrix appearing in the algorithm (4.20) is then A;l. Using the matrix in-
version lemma, one finds that this matrix can be recursively computed without
inversion as follows:

B po A
1+ pogp] (n) Ag  pp(n) "

At =L A=A Lapr(n)[A Yok ()],

fork=0,...,P—-1

Application of the multivariable version of the hyperstability theorem to algo-
rithm (4.20) gives the following result, whose proof is given in Appendix B.

Lemma 4.4. Assume that the output disturbance 7)(-) is absent. Let Ty(z) be de-
fined as in (4.3) and Ci(z) = 1+ Y0 jciwz™, 0 < i < P — 1. If the transfer
functions Ci(z)/T«(z) are SPR fori=0,1,...,P — 1, then the algorithm (4.20) is
asymptotically stable, that is, €;(n) = 0 as n — o0, for 0 <i < P —1.

Thus, for this second algorithm, each C;(z)/Ty(z) must be SPR in order to guar-
antee convergence for all inputs. Hence the ability to have different compensating
filters in the different subbands does not seem to be very useful, since it would suf-
fice to find one C(z) such that C(z)/Tx(z) is SPR and take C;(z) = C(z) for all i.
However, this added funcionality could be helpful when one takes into account the
frequency domain characteristics of the input signal u(-). As discussed in [1, sec.
2.6], the fullband (P = 1) HARF algorithm will be asymptotically stable if the real
part of C(e/?)/T,(e/*) is positive just for those frequencies of 8(n + 1)T4)(n) with
the most energy, where 6 denotes the parameter error vector. For small stepsize
values, the frequency content of 8(n + 1)T4)(n) is effectively determined by that of
u(-). This fact is not taken into account when using the hyperstability theorem,
since this only gives sufficient conditions for convergence with all classes of inputs.
Similarly, in the P-band case, the real part of C;(e/¥) /T (e’*) need be positive only
for the frequencies of O(n+1)T1;(n) with the most energy. Again, for small stepsize
values, the frequency content of this scalar product is effectively determined by that
of u;(-), defined as the signal obtained from R;(z)u(n) after decimating by a factor
of P.

For example, consider an input signal u(-) with psd Sy, (z) as shown at the top
of Figure 4.7. Also shown are the psd’s of the signals uo(-) and u; () obtained in
the two-band case, assuming ideal (brickwall) analysis filters Ry(z) and R;(z). It is
seen that if a single compensating filter C(z) is used for both subbands, it should
be designed in order to have Re {C(e/*) /Ty (e?)} > 0 for |w| < 3m/4. On the other
hand, if different filters Cy(z) and C4(z) are used, it suffices to have

Co (ejw) i Gy (ejw) ™ 3m
Re{T*(ejw)} >0 for |w| < %, Re T, (c7%) >0 for T < |w| < .
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Figure 4.7: Input power spectral density example (two-band case).

Depending on the information that is available about the unknown system, the
design of Cy(z), Ci(z) in order to satisfy these requirements could be easier than
that of a single C(z).

The subband implementations of the HARF algorithm do not reduce the com-
putational complexity of the scheme with respect to the full-band design, but it
has the potential of improving the convergence rate. This is because the choice
of the constants «; adds flexibility in order to emphasize the contribution of the
different subbands to the parameter update. In addition, the choice of the number
of subbands P provides a means to relax the SPR condition in the same way as for
the polyphase structure of section 4.1.

4.2.2 Subband SHARF
Under slow adaptation, the algorithm (4.19) simplifies to the following form:
O(n+1) = 0(n) + pyp(n)é(n), (4.21)
where now the regressor vector is defined as follows (in the two-band case):

P(n) = [to(n) -+ Go(n — M) Gy(n) -+ Gy(n — M) —j(n—1) -+ —g(n — M)]",
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Figure 4.8: SHARF configuration for the two-band case.
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Figure 4.9: Generation of the noise component 7(-).

with g(n) = 8(n)T4(n) and e(n) = C(z)[d(n) — y(n)]. The signals d(n) and @;(n)
are generated as shown in Figure 4.8.

It is readily verified that the filtered error &(n) satisfies

e
e(n) = T(2)

s(n) + C(z)n(n)

where 5(n) = 0(n)T9(n), O(n) = 6, — O(n) as usual is the parameter deviation
vector, and 7)(-) is generated from the output disturbance 7(-) as shown in Figure
4.9.

The corresponding ODE for the simplified algorithm (4.21) is found to be
6 =-M(9)(6 - 0.),
where now the feedback matrix M(6) is given by

C(z)
T (z)

M(0) = E |1(n) - p(m)"|.

Again, the disturbance 7(-) does not make any contribution to the ODE, since
it still is independent of the input process u(-). Now one would like the matrix
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Figure 4.10: Generation of the process x(n).

M(9) + M(0)T to be positive definite for global convergence of the ODE. With
v=[vy - vyp wy - wpr ]t (4.22)

a nonzero vector, then

1 2w

_ jw O(ejw)
vIM(6) + M(0)T]v = ), S¢x(e?)Re {T*(ej‘”) } dw, (4.23)

where now Syy (/%) is the psd of x(n) = vI'4(n). Thus, if C(2)/T(2) is SPR, then
(4.23) will be positive assuming that x(-) does not identically vanish. If we let

M
Vo(z) = Zviz_l, (4.24)
i=0

(k+1)M
Vi(z) = Z vz, k>0, (4.25)
i=kM+1

P-1
V(z) = > 2 *Vi(D), (4.26)
k=0

M

W(z) = Z wiz ", (4.27)

then it is readily checked that x(n) is generated as shown in Figure 4.10. Now if
u(+) is persistently exciting of degree 2M P +1 or higher, the arguments in the proof
of Lemma 4.2 show that the process [V (z) — W (2F)H (z)]u(n) cannot be identically
zero. Let x(n) be the input to the P-fold decimator in Figure 4.10, and note that
if u(-) is stationary then so is x(-), and therefore if x(-) does not vanish identically,
neither will x(-). If the analysis filters R (z) are FIR with degree L, then x(-) cannot
be identically zero provided that u(-) is persistently exciting of degree 2M P+ L+1.

We proceed now to discuss the simplification of the second subband scheme
(4.20). For small y, the term I+ NZZP:_()I aii(n)ypl (n) in (4.20) can be approxi-
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mated simply by I, so that the resulting algorithm reduces to

P1
O(n+1) =0(n) +p Y aipi(n)ei(n), (4.28)
i=0

where now the error signals are simply given by e;(n) = C;(z)[d;(n) — §;(n)]. The
signals d;(n) and §;(n) = 6(n)T4;(n) are generated as shown in Figure 4.6. Observe
that the update term for this second subband algorithm can be seen as the ‘average
of the products’ 1;(n)e;(n) across the subbands, while that for the first scheme
(4.19) is the ‘product of the averages’ ¥ (n)é(n).

With s;(n) = (8« — 0(n))T4;(n), it is readily verified that the errors across the
subbands satisfy

ei(n) = =22 si(n) + Ci(2)mi(n), 0<i<P—1,

where 7;(n) is the signal that results after decimating the filtered noise R;(z)n(n)
by a factor of P. These noise signals do not contribute to the associated ODE,
which can be written as

P—-1
0=— [Z M,-(e)] (6 — 0,),
=0

where the matrices M;(0) are given now by

Ci(2)
T.(2)

M,(6) = B [1itn) - ()T

A sufficient condition for global convergence of the ODE is that M;(6) + M;(6)" be

positive definite for all 0 < ¢ < P — 1. Again, with v a nonzero vector as in (4.22),
one has

1 2m

_ jw Ci(ejw)
vIM;(6) + M;(0)T]v = = J; Syixi (€7“)Re {T* (&) } dw, (4.29)

with Sy, (67%) the psd of xi(n) = vI'9;(n). Therefore if C;(2)/T,(z) is SPR, then
(4.29) will be positive assuming that x;(-) does not identically vanish. Defining
V(z), W(z) as in (4.24)-(4.27), it is readily seen that x;(n) is obtained by decimating
the signal [V (z) — W (2")H(2)]|Ri(z)u(n) by a factor of P. Assuming that the
analysis filters are FIR of degree L, it follows that x;(-) cannot be identically zero
if the input signal u(-) is persistently exciting of degree 2M P + L + 1, which is the
same requirement as for the first simplified subband scheme.
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Figure 4.11: Magnitude response of the analysis filter bank used in the simulations.

4.2.3 Simulation results

We tested the two subband implementations of SHARF (4.21) and (4.28) in an
identification setting in which the unknown system H(z) is given by (4.18). We
considered P = 2 subbands, with the analysis filters Ry(z), R1(z) FIR of degree 19,
taken from [126, design example 5.3.2] and shown in Figure 4.11. The adaptive filter
denominator 7T'(z) was implemented in normalized lattice form and the adaptation
of the reflection coeflicients was carried out following the guidelines of section 2.4.
The input signal was white with unit variance, and additive white noise was added at
the output of H(z) so that the SNR was 20.6 dB. The compensating filters were set
at C(z) = 1 in all cases. As seen in section 4.1.3, the fullband version of SHARF is
not convergent in this setting due to the violation of the SPR requirement. The two-
band implementations, on the other hand, successfully identify the system H(z).
The evolution of the reflection coefficients for different values of (ag, @1) are shown
in Figures 4.12 and 4.13. Observe how convergence is sped up if the low frequency
band is given more weight than the high frequency band (a¢ > 1), and that the
adaptive process slows down in the reverse situation. This could be expected as
the system H(e’“) in (4.18) has most of its energy content located in the lowpass
region.

The behavior of the two subband implementations is similar, although the pa-
rameter trajectories are not identical. One disadvantage of algorithm (4.28) is that
it requires multiple copies of the adaptive filter (one per subband) and therefore
is computationally more expensive than algorithm (4.21). Also note from Figure
4.8 that for algorithm (4.21) the analysis filterbank can be collapsed into a single
filter with transfer function ZkP;Ol oy R (z), while this is not the case for algorithm
(4.28). On the other hand, algorithm (4.28) offers added flexibility in that it allows
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Figure 4.12: Evolution of the reflection coeflicients in the two-band SHARF imple-
mentation (4.21) for different subband weights. C(z) = 1, u = 1074,
SNR = 20.6 dB.

for different compensating filters in each subband, as discussed in section 4.2.2.

4.3 Conclusions

In this chapter two related schemes have been proposed with the goal of re-
laxing the SPR condition on hyperstability based adaptive algorithms. The first
one is based on overparameterization of the adaptive filter by using a polyphase
implementation. The second one uses a subband approach in which the input and
reference signals are processed by an analysis bank and then decimated. In both
cases the polynomial on which the SPR requirement falls is mapped from A, (z)
(the denominator polynomial of the unknown system) which has roots {2}, to
another one with roots {27 }M, where P is either the polyphase expansion factor
(in the first approach) or the decimation factor (in the subband configuration). As
P is increased, these roots are pulled towards the interior of the complex plane and
the SPR condition is more likely to be satisfied. With the subband implementa-
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Figure 4.13: Evolution of the reflection coeflicients in the two-band SHARF imple-
mentation (4.28) for different subband weights. C(z) = 1, u = 1074,
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tion, an additional degree of flexibility is added through the capability of assigning
different weights and/or compensating filters to different subbands. This has the
potential of speeding up convergence if some kind of knowledge about the frequency
response of the unknown system is available a priori.
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Chapter 5

ADAPTIVE IIR FILTERS FOR CHANNEL
EQUALIZATION

Recently there has been considerable interest in the use of adaptive recursive
filters for channel equalization purposes, for two reasons: they have the potential
to outperform conventional FIR equalizers (in terms of mean squared error), and
they provide a means for unsupervised initialization of decision feedback equalizers
(DFEs). These conclusions were obtained under certain assumptions (known chan-
nel order in one case, and unconstrained equalizer structure in the other) that need
not be satisfied in practice. In addition, the channel equalization context is quite
different from the more familiar system identification configuration, and there is no
systematic approach to the adaptive IIR equalization problem available in the liter-
ature. In this chapter we develop such a framework and investigate how imperfect
modeling and a constrained equalizer structure affect the conclusions drawn from
the ideal case.

Up to this point it has been assumed that the input and reference signals were
real valued, and that the adaptive filter had real coefficients. In digital communica-
tions it is common to find modulations of the in-phase and quadrature components
of the carrier which are usually represented in the baseband discrete-time equiva-
lent model using complex arithmetic. For this reason, in this chapter we allow the
signals to take complex values, and the filters to have complex coefficients. The
superscripts (-)* and (-)! will denote conjugation and conjugate transposition re-
spectively. With this, the weighted inner product induced by a psd Sy, (2) is given

by
19N = 5 § Sl f (g (1722,

the path of integration still being the unit circle in the counterclockwise direction.

We begin with a review of the minimum mean-squared error (MMSE) uncon-
strained equalizers, for both the linear and DFE configurations. This will show
the connection between the two solutions which motivated the use of an IIR linear
equalizer to initialize the DFE structure. Then we examine the situation in the
more realistic case of a finitely parameterized equalizer. Two candidate algorithms
for the adaptation of the recursive part will be discussed.

119
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Throughout this chapter we consider the discrete-time baseband equivalent
model of a digital transmission system sampled at the symbol rate:

u(n) = C(z)s(n) + n(n),
where

e 3(-) denotes the sequence of transmitted symbols, which is assumed white

with variance E[|s(n)|?] = o2;

e (C(z) is the channel transfer function;

2.

e 7)(+) is the channel noise, which is assumed white with variance E|[|n(n)|?] = o0

e u(-) is the received signal.

s(n) - g(n) Al
C(z) 'é-l_ H(z) jr L 3(n—9)

Figure 5.1: Linear equalization.

5.1 Unconstrained MMSE equalizers: a review

5.1.1 Linear equalizer

In a linear equalization configuration, the received signal u(-) is fed to the equal-
izer, which is a linear filter with transfer function H (2). The goal is to minimize the
variance of the error e(n) = s(n — 8) — H(z)u(n), where § is the associated delay.
If the filter is assumed to be unconstrained (that is, the impulse response of H(z)
is allowed to span the whole set of integers from —oo to 4+00), then the optimum
linear equalizer (MMSE-LE) is given by (see e.g. [66])

: 250 (1/2")
Hip(z) =05z SO (5.1)

Here Sy (2) is the psd of the observed signal u(-), given by

Suu(z) = 02C(2)C*(1/2*) + 0727
= 7 F(2)F*(1/2"), (5.2)
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with F(z) the monic minimum phase spectral factor. Hence (5.1) can be rewritten
as
1 _s02C*(1/2") 1
VA =
F(z) VF(1/z) | F(z)
Observe that H r.u(2) can be seen as the series interconnection of a whitening filter

1/F(z) (since the signal [1/F(z)]u(n) is white) and a block with transfer function

Prp(z) = ﬂ%, (5.4)

Hip(z) = - Prp(2). (5.3)

which in principle is noncausal. The presence of the whitening filter is a feature
that we will encounter as well in the constrained equalizer case.

—— 02) O P(2) — + ]—
 channel O()

Figure 5.2: Decision-feedback equalization.

5.1.2 Decision feedback equalizer

The DFE architecture, shown in Figure 5.2, includes a forward filter P(z) and
a strictly causal feedback filter Q(z) so that the equalizer output is computed as
P(2)u(n) — Q(z)5(n — &), where §(n — §) is the last hard decision produced by the
slicer. Due to the presence of the slicer in the feedback loop, the DFE is a nonlinear
device. Nevertheless, if it is assumed that the equalizer is working properly so that
the decisions are correct (§(n) = s(n) for all n), then the DFE output becomes a
linear function of the filters’ coefficients. Assume that the filters are unconstrained,

l.e.
o0

o
P(z) = Z iz F, Q(z) = Zq};z_k.
k=—o00 k=1

In that case the expression for the MMSE DFE is (see e.g. [66])

. o o2C*(1/z%)
Pprp(z) = 2 5W, (5.5)
1+QDFE(Z) = F(Z), (56)

that is, the optimum feedback filter is obtained directly from the spectral factor-
ization of the psd of the received signal. Observe that

PDFE(z) = pLE‘(z)
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uln) 10 Pun(e) | — $(n=9)

DFE DFE

1 IZECEISN

LE LE

Figure 5.3: Switching from the MMSE LE to the MMSE DFE.

Therefore, if one could approximate the unconstrained MMSE LE and extract
its two components Ppx(z) and 1/F(z), then the unconstrained MMSE DFE could
also be approximated by merely throwing the switches in Figure 5.3 to DFE mode.
The key observation is that the whitening filter 1/F(z) appearing in the MMSE
LE provides the feedback filter for the MMSE DFE. This fact is the basis of the
scheme suggested by Labat, Macchi and Laot in [62] for equalizer adaptation:

e In startup mode, the switches are set in the LE position and the equalizer
coefficients are updated blindly. The recursive part is adapted in order to
whiten its output, while for the forward part the Constant Modulus Algorithm
(CMA) could be used (among other choices).

e An estimate of the MSE is computed during adaptation by smoothing the
instantaneous squared error between the input and the output of the slicer.
When this MSE estimate falls below a threshold level, it is assumed that the
equalizer has achieved a sufficient reduction of the intersymbol interference
(ISI) so that the device is switched to DFE operation mode.

e In DFE mode, the equalizer coefficients are updated following a decision di-
rected (DD) MSE minimization criterion, which is based on the assumption
that the hard decisions at the slicer output are correct. This adaptation cri-
terion is also unsupervised.

e It could happen that, due to sudden changes in the channel, an error burst
takes place at the slicer output. Due to error propagation in the DFE, this
could lead the DD algorithm to a local minimum at which the assumption of
correct decisions is violated. To avoid this situation, the equalizer is switched
back to LE mode whenever the MSE estimate leaps above the selected thresh-
old.
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5.2 Finitely parameterized equalizers

The discussion in the previous section assumed that the equalizers had an infi-
nite number of coefficients, and in addition the forward filters could be noncausal.
Practical implementation, on the other hand, imposes finitely parameterized causal
filters. Thus, the question arises of how the relation between the MMSE LE and
the MMSE DFE is affected when one considers equalizers under these constraints.

5.2.1 Linear equalizer

As discussed in section 1.1.6, Mulgrew and Cowan derived in [87] the expression
of the MMSE LE with associated delay § under the only constraint that it be causal.
This expression is given by

L [ o)
Hip(z) = F(z) [Z 6’)’2F*(1/z*)]0+
= ﬁ : [pLE(Z)]O-l-’ (5.7)

where as before F'(z) denotes the monic, minimum phase spectral factor of the input
signal psd Syy(2), [-Jo+ extracts the causal part of its argument, and Ppg(z) was
given in (5.4).

Observe that, as in the unconstrained case, the MMSE LE consists of a whiten-
ing filter 1/F(z) followed by another block which in this case is causal. A key
observation [87] is that if the channel transfer function C(z) is FIR of degree L, i.e.

C(z) =cy+ c’{z_1 + -4 cZz_L,

then F'(z) can be taken as a polynomial of degree L, and the transfer function
[PLe(2)]os is FIR of degree §. This means that the causal MMSE LE is finitely
parameterized since it can be realized by a transfer function with L poles and §
zeros. Note that, despite the apparent similarity, the causal MMSE LE (5.7) does
not equal the causal projection of the unconstrained MMSE LE (5.3).

5.2.2 Decision feedback equalizer

Let us assume that the channel C(z) is FIR with degree L, and that the forward
and backward filters of the DFE have N 4 1 and M coefficients respectively:

N M
P(z)=) mz" Q&)= g
k=0 k=1

Collect these coeflicients in the vectors

p=[popi-pn]",  a=[q - qul]"
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Then, assuming that all past hard decisions are correct, the MMSE DFE with
associated delay 0 is given by (see e.g. [11])

0'2 -
CAsCt+ 11
(&)

S

q; = D}CTP& (5.9)

Py = Cey, (5.8)

where ey, is the kth unit vector (counting from zero), C is the (N +1) x (L+ N +1)
channel matrix, which is Toeplitz and given by

et
C= . , (5.10)
¢kt
Dj is an (L+N+1) x M Toeplitz matrix whose first column is 541 if 0 < § < L+ N
and 0if 6 > L+N;and A5 = I—D(;ng. The MMSE achieved by the DFE (5.8)-(5.9)
is
o2(1 - p}Ce(s).

Observe from (5.9) that the MMSE feedback filter coefficients coincide with a
portion of the overall channel-feedforward filter combination. Specifically, if we
define this overall system as

G(2)=C()P(z) =D giz* = g=lgog - gran]’,

then C'p = g, so that the feedback filter is optimized in terms of P(z) when
9k = gs+k, kK = 1,..., M. In other words, the feedback filter is canceling as much
postcursor IST as it can. If M+ 6 > L+ N, then all the postcursor ISI is eliminated.
Concerning the feedforward filter, we see that the role of the matrix A in (5.8) is
to mask the ISI contribution of the channel-feedforward filter combination in the
DFE window when finding the optimum p, since the ISI in this window will be
taken care of by the feedback filter.

In general, the optimal feedback filter 1 + Q5(Z) parameterized by q; need not
coincide with the minimum phase spectral factor F(z) of the psd Sy,(z), unless
the forward filter is sufficiently long and the delay ¢ is sufficiently large (since as
N — oo, then it is reasonable to expect the forward filter to approximate the
unconstrained solution). In fact, for finite N, 1+ Qs(z) need not even be minimum
phase. For example, for high values of the SNR so that the noise can be neglected,
assuming that § < N and L < M, the choice

Ps(z) = =27°, Qs(z) = =C(z) — 1

1
*
Co Co
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results in a zero (i.e., minimum) MSE value, since C(z)P5(z) — 279Qs(z) = 279 so
that this DFE removes all ISI. However, since

A 1
1+Qs(2) = < C(2),
o
the roots of the feedback filter coincide with those of the channel. If the channel is
nonminimum phase, so will be 1+ @Qs(z). As noted in [11], this could result in two
problems for the switching scheme of Labat, Macchi and Laot [62]:

1. It could happen that at the moment of switching from LE to DFE mode, the
parameters of the equalizer are not close enough to the desired minimum of
the DD cost function so that convergence to a bad minimum could take place.

2. If during DD adaptation in DFE mode the feedback filter becomes nonmini-
mum phase, and due to quick time variations in the channel a switch to LE
mode occurs, the resulting recursive equalizer will be unstable.

The first problem appears to be difficult to solve without resorting to training
signals, or increasing the length of the forward filter [11]. As for the second, it can
be alleviated by the fact that one of the candidate algorithms for the adaptation
of the recursive part (the PLR algorithm to be discussed later on) enjoys a so-
called ‘self-stabilization’ property [81] that could push the coefficients back into the
stability region. In addition, the observation noise has the effect of pushing the

~ 2
unstable roots of 1+ Q5(z) towards the stability region. To see this, let A = %} and

note that for low SNR values (i.e., high ), we can approximate CA;CT+ AT = AL,
so that (5.8)-(5.9) become

1 1

p; ~ ~Ce;, q;~<DiCiCe;,
A A

which tend to the zero vectors as the SNR decreases. Hence, by continuity argu-

ments, we have the following:

Lemma 5.1. If the signal to noise ratio is sufficiently small, then the optimal feed-
back filter 1 + Qs(z) parameterized by qs in (5.9) is minimum phase.

To illustrate this discussion, consider a simple first-order channel (L = 1) given
by C(z) = sin® + e/¥ cos¥z~!. Suppose that § = N = M = 1. Then one can solve
(5.9) in order to find the feedback coefficient ¢;:

sin cos 9 (sin 9 + \) —jo
) _oain? 2 € ’
(sin®®d + A)(1 + A) — sin” ¥ cos? ¢

q1 =

Figure 5.4 represents the magnitude of ¢; as a function of the channel parameter
9 and the SNR 1/A. It is seen that for SNR below a critical value (approximately
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Figure 5.4: Magnitude of the feedback coefficient ¢; as a function of the channel
zero and the SNR.

12.7 dB), one has |g1| < 1 for all 9 so that 14 Q) (2) is minimum phase. For X below
this threshold, a nonminimum phase feedback filter can result for some values of 4.

An alternative proof of Lemma 5.1 is given in Appendix B for the particular
case in which § > L with L the channel length. One should be aware, however,
of the fact that as the SNR decreases, the original assumption of all past decisions
being correct is likely to be violated.

5.2.3 Implications

In view of the preceding discussion, it seems that the switching scheme of [62]
may fail unless (i) the length of the feedback filter, M, is chosen to be no less than
the channel length L, and (ii) the length of the forward filter, N, is ‘sufficiently
large’. As seen in section 5.2.1, the numerator of the causal MMSE LE has order
equal to the associated delay, thus it is reasonable to select § = N. However, it
must be noted that the use of blind algorithms such as CMA for the adaptation of
the forward block in the LE does not allow selection of the system delay attained at
convergence (in fact, different delays are often associated to different minima of the
CM cost [54]). In our opinion, blind initialization of a finitely parameterized DFE
in the absence of any kind of knowledge about the channel length remains an open
(and difficult) problem. In the remainder of the chapter we focus on the adaptation
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of the LE structure.

5.3 Blind algorithms for linear recursive equalizers

Consider the LE configuration shown in Figure 5.1. As discussed in section
5.2.1, if the channel C(z) is FIR of degree L and H(z) is only constrained to be
causal, then the MMSE solution has § zeros and L poles. Let the equalizer transfer
function be e . N

H(z) = B(z) _ bo-l-blz_ +---+sz_ '
A(z) 1+4afz7'+---+ajzM

In this section we shall assume that the system delay § is matched to the order of
the numerator IV; a procedure to achieve this goal will be presented in section 5.3.7.
On the other hand, one would like to have M equal to the channel length, although
depending on the situation this may not be realistic. Let

be the output of the recursive part (which is assumed to be placed before B(z)
for reasons that will become clear soon) when driven by the received signal. If we
define the vectors

x(n) = [z(n) z(n —1) --- z(n — N) |7, b=[by b ---by]7, (5.11)

then the error can be written as e(n) = s(n — 6) — b{x(n). Thus, the optimal value
of b is b, = R;lpm, where

R, = E[x(n)x(n)'],  p, = Els*(n — 6)%(n)]. (5.12)

Thus assuming that N = ¢ and that B(z) is optimized as a function of A(z), one
obtains a ‘reduced error surface’ of the form

Jred = E[le(n)|*Jo=b, = 02 — pLR; D, (5.13)

Observe that for a given delay value 4, Jyeq is a function of A(z) alone, although
in a pretty complicated way since both R, and p, have a nonlinear dependence on
the coefficients of A(z). Now, if C(z) is FIR with degree L < M (the ‘sufficient
order case’), it follows from [87] that Jieq is minimized when z(-) is white, i.e. the
optimum A(z) is the minimum phase spectral factor of Sy,(z). This observation
provides a blind criterion for the adaptation of 1/A(z), since no training signal is
needed for the whitening of z(-). Note that direct minimization of Jy.q does not
lend itself to blind adaptation; however, two unsupervised schemes are available in
order to whiten z(-), as described next. As a side benefit, this whitening approach
allows one to decouple the adaptation of A(z) from that of B(z).
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5.3.1 Two blind algorithms for the recursive part

The first approach is the minimization of E[|z(n)[?] via a stochastic gradient
descent; we refer to this as the Output Variance Minimization (OVM) criterion.
Defining the filtered signal

1 1
zf(n) = A(z)m(n) = 20)

and the vectors
_ T _ T
a_[al"'aM] ’ Xf(’n)—[l'f(’n—l).’L‘f(’n—M)] )
the OVM algorithm can be written as follows:
a(n +1) = a(n) + puxs(n)z*(n). (5.14)

The second possibility is to use the approximation zs(n) ~ z(n), which leads to
the pseudolinear regression (PLR) algorithm proposed in [62]:

a(n+1) = a(n) + px(n)z*(n), (5.15)

where
x(n) = [z(n —1) -+ z(n — M)]T. (5.16)

The PLR approach disposes of the additional postfilter 1/A(z) that the OVM algo-
rithm requires for the computation of zs(-), and therefore it is computationally less
costly. Also, PLR presents improved stability behavior due to its ‘self-stabilization’
property [81, ch. 15], so that stability monitoring is usually not necessary. This
is not the case for OVM, which may easily become unstable when the optimum
filter has poles close to the unit circle. In that case, it is desirable to implement
the recursive filter 1/A(z) in normalized lattice form. The corresponding adaptive
algorithm can be easily obtained following the guidelines of chapter 2.

It is interesting to note that, although the reduced cost Jyeq is a function of the
selected system delay ¢, neither the OVM nor the PLR criteria are sensitive to the
value of d since they are based on the spectral properties of the received signal u(-)
alone. The problem of delay selection is thus transferred to the numerator B(z) of
the equalizer, as we shall see in section 5.3.7.

5.3.2 Stationary points

We proceed now to analyze the stationary points of OVM and PLR. Ideally,
these stationary points should provide minimization of Jyoq. In general they can be
characterized as follows. Let V(z) = 2™ A*(1/2*)/A(z) be the all-pass function
associated with A(z), and for any function f(2) = Yo . fxz %, let [f(2)]4+ =
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fiz7' + foz72 4 --- denote the operator extracting the strictly causal part. The
stationary points of the algorithms are the solutions of

E[x¢(n)z*(n)] =0) (OVM), E[x(n)z*(n)] =03 (PLR),

or alternatively,

z_ 1 Suu(2) -

< Z:M A(Z)’A(z)A*(l/z*)> = Ou, (5.17)
zjl 1 Suu(z) 3

< z:M A(z) A(z) >— 0 (5.18)

With these, one can invoke the Beurling-Lax theorem [105, ch. 3] to conclude that
1/A(z) is a stationary point of OVM or PLR if and only if it satisfies, for some
causal function g(z) = 3°5° ) gx2~F with 3°|gx|? < oo,

[A(z)A(zl)]+ =z V(z)g(z)  (OVM) (5.19)
Suu() =2 'V (2)g(z
[ Az) L =z V(z)g(z)  (PLR) (5.20)
Observe that S
W = Sﬂm(z)a

the psd of the process z(-). Thus (5.19) shows that at any OVM stationary point,
the strictly causal part of the resulting psd S;;(z) is causally divisible by the allpass
function associated to A(z). On the other hand, (5.20) is the z-domain statement
of the conditions

Elz(n — k)z*(n)] = 0, 1<k<M, (5.21)

that must be satisfied at any stationary point of PLR. These can be seen as an
approximation to the whiteness conditions E[z(n — k)z*(n)] = 0 for all & > 0.

From (5.19) and (5.20) we immediately see that the stationary points of the
two algorithms do not necessarily coincide. Recall that our principal concern is the
minimization of Jyeq as given in (5.13); let us consider the sufficient order case first.

5.3.3 The sufficient order case

If the channel C(z) is FIR with degree L < M, then u(-) is a moving average
process of order L, or MA(L). Then as stated above, Jieq i minimized if z(-) is
white. In this situation, the following result applies:
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Theorem 5.1. If u(-) is an MA process of order L < M, then both (5.19) and
(5.20) have a unique minimum phase solution A(z), which is the minimum phase

spectral factor of Syy(2). In addition this A(z) is a locally convergent stationary
point of both the OVM algorithm (5.14) and the PLR algorithm (5.15).

Uniqueness of the stationary point of OVM is a consequence of the results from
[4]; local convergence is guaranteed since this stationary point is a minimum of
E[|z(n)|?] and OVM is just a gradient descent of this cost. That the stationary
point of PLR is also unique was proven in [72]. Local convergence was shown
in [94] by examining the eigenvalues of the feedback matrix of the corresponding
linearized ODE.

Thus in sufficient order settings both OVM and PLR present a single stationary
point which coincides with the minimum of J..q. This is somewhat surprising since
the cost E[|z(n)|?] associated to OVM is not a quadratic function of the coefficients
of A(z). Also, Theorem 5.1 shows that it suffices for the all-pole filter 1/A(z) to
kill the autocorrelation coefficients of z(-) with lags 1 through M (the goal of the
PLR approach) to ensure that all positive lags are zero.

Theorem 5.1 reveals an additional advantage of the blind criteria over direct

(nonblind) minimization of the cost Jyeq, since Jyeq is a highly nonquadratic function
of A(z) and could present local minima.

5.3.4 Reduced order case: OVM

When u(-) is not MA(L) with L < M, no 1/A(z) with degree M or less exists
that completely whitens z(-). In that case there is no simple description for the
global minimum of the reduced cost Jyeq in (5.13). Nevertheless, the cost E[|z(n)|?]
can still be seen as a proxy to J.q, as we now discuss.

Consider the case § = 0 (recall that § is the system delay). Then R, =
E[|z(n)|?], p, = E[z(n)s*(n)] are both scalars. The reduced error surface becomes

_ 2 _ (Blz(n)s"(n)])? _
Jred — Ug EHCE(’H,)P] , ((5 0)

Note that, since the sequence of transmitted symbols s(-) is white, the term E[z(n)s*(n)]
does not depend on A(z) at all:

Thus
o

ha=0t (1- %), 6=0)

so that minimizing Jyeq is equivalent to minimizing E[|z(n)|?], which is the OVM
criterion.
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When § > 0 this is not strictly true. However, note that

2 _ |Ipall?

Jeed =02 —piR, 'p, < 0% — , (5.22)

Amax

where Ay is the largest eigenvalue of R;. Thus in order to decrease J.oq, it makes
sense to make Apax as small as possible; and since

trace(R;)

e = Blla(w)?)

Amax 2>
by making E[|z(n)|?] small one could expect to decrease Amax. This argument is
loose since the vector p, depends on A(z) as well for § > 0. The examples in
section 5.3.6 will illustrate this point. We should note that in reduced order cases,
unimodality of the OVM cost E[|z(n)|?] is not guaranteed in general.

5.3.5 Reduced order case: PLR

The first question that arises about the behavior of the PLR algorithm in un-
dermodeled settings is the existence of stationary points. This issue is not trivial
since PLR does not correspond to the minimization of any meaningful cost. To this
purpose, we present a new approach which reveals the stationary points of PLR as
fixed points of an off-line iterative scheme. First observe that for fixed A(z), the
signal z(n) satisfies

z(n) = u(n) —a'x(n),

where x(n) was defined in (5.16). Therefore the conditions (5.21) can be rewritten
as
E[x(n)x(n)'a = E[x(n)u*(n)]. (5.23)

Note that this equation is not linear in a since the vector x(n) depends on a, though
it suggests the following iterative off-line process:

1. At iteration 7, let a = a; = a(i) a(i) T be fixed and let
1 M

x(n) = [#(n—1) -+ z(n— M)]"

with
M .
z(n) = u(n) — Z ag-z)a:(n —7)- (5.24)
j=1
2. Let )
a1 = E [x(n)x(n)f] Efx(n)u*(n)].

3. Iterate Steps 1 and 2 until convergence.
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Clearly, at any fixed point of this iteration, (5.23) is satisfied, so that these fixed
points coincide with the stationary points of the PLR algorithm. This iterative
process is reminiscent of the Steiglitz-McBride method for system identification
discussed in section 3.2, as Figure 5.5 illustrates. Let A;(z) be the polynomial
associated to the vector a; obtained at the ith iteration, and let z(n) be as in

(5.24). Define
M

#/(n) = u(n) = Y azaln - j),
Jj=1
where now the coefficients a; are variables to be determined. Then the components
of the vector a; 1 for the next iteration are given by those a; that minimize the
variance E[|z'(n)|?]. Note that at any stationary point A;,1(z) = 4;(2) = A.(2)

one has )
'(n) = u(n) = z(n),

Ai(z)
in the same way as the ‘distorted’ equation error in the Steiglitz-McBride identifi-
cation method reduces to an output error at any stationary point.

u(n) Ail(z) - z(n)
xl(n) W - Ai+1(z) -1

Figure 5.5: Block diagram illustrating the iterative off-line interpretation of the PLR
algorithm.

The following result holds now:

Theorem 5.2. If the psd Sy, (2) is bounded and nonzero for all |z| = 1, then the
iterative method above admits a fized point a, corresponding to a minimum phase
polynomial A,(z).

See Appendix B for the proof. Observe that any small amount of white mea-
surement noise in the received signal u(-) will yield its psd Sy, (z) # 0 for all |z| = 1.
Theorem (5.2) then shows that under these mild conditions the PLR adaptive al-
gorithm admits at least one stationary point inside the stability region. It does not
inform, however, of how many of these points there are, or whether an attractor
point always exists among these. Based on simulation evidence, we conjecture that
the stationary point of PLR is always unique and attractive even in reduced order
cases, although a formal proof is not available at this time.

As an example, consider the undermodeled case in which the length of the
channel is L = M + 1. In that case the received signal u(-) is an MA(M + 1)
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process, so that we can write Sy,(z) = F(z)F*(1/z*) where F(z) is a minimum
phase polynomial with degree M + 1. At any minimum phase PLR stationary
point, (5.20) must be satisfied; i.e.

F(z) _
F*(l/z*)] =27V (2)g(2) (5.25)
|:A(z) +

for some stable and causal g(z). As shown in [105, prob. 8.4], the left-hand side
in (5.25) is a rational function of degree not exceeding that of F'(z)/A(z), and any
pole of this function is a pole of F(z)/A(z). Therefore we can write

F(z) * Z* _ Zfl q(z)
[A(z)F 1/ )L‘ ()

where ¢(z) is a polynomial of degree not exceeding M. Thus

M A*(1/2%)

A ) = e S

A(z)

Since all the roots of z=™ A*(1/z*) lie outside the unit circle, none of them can be
canceled out by a pole of g(z) (since g(z) is causal and stable). Therefore every root
of z7M A*(1/z*) must be a root of ¢(z), and then g(z) must reduce to a constant:

9(2) = go-
Now note that Sy, (2)/A(z) = Szz(2)A*(1/2*), and that the psd Sy, (z) satisfies

Sex(2) = ZMTIR* (1/2*) 4+ 02 + 2~ MTVR(2),

where R(z) = ro + 712 1 + -+ is a causal function. This is because at any PLR
stationary point the autocorrelation coefficients with lags 1 through M of z(-) are
zero. Therefore

Suu(z)
A(z)

= Spz(2)A*(1/2")
= MR (1/2*)A*(1)2*) + 02 A*(1/2*) + 2~ MV R(2) A* (1) z*),
so that the strictly causal part reduces to z~(M+Y R(z)A*(1/z*). Hence

fMA* 1/2*
z_(M+1)R(z)A*(1/z*) — Z_lgoz ( /z )

A(z) 7
which shows that
70
—rg=E *(n— M —1 =
90 7o [IE(TL).’L' (n )]7 R(Z) A(Z)
Therefore the psd of z(-) must take the form
P M+ roz—(M+1)
Spa(2) = =L 4 o2 , 5.26
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and consequently, since F(z)F*(1/z*) = Syu(z) = Szz(z)A(2)A*(1/2*), we can
write

F(2)F*(1)2*) = riz[2M A(2)] + 02 A(2) A*(1/2%) + roz Lz MA*(1/2%)].  (5.27)
Equating the coefficients of =% in (5.27) for K = 0 and k = M + 1, we see that

ro = E[z(n)z*(n — M —1)] = Elu(n)u*(n — M — 1)], (5.28)

u\n 2
o2 = Bllel') = 1 sy o < Bl (5:29
=1 a;

i.e., the autocorrelation coefficient of lag M + 1 of z(-) matches that of u(-). This
coefficient can be seen as a measure of the degree of undermodeling. Eq. (5.29)
shows the variance reduction from the input to the output of the filter, and it holds
in all cases (not only for a channel of length M + 1) at any PLR stationary point.

The relation (5.27) shows that A(z) is trying to approximate in some sense
F(z) in that 02A(z)A*(1/z*) tries to match F(z)F*(1/z*), with the additional
‘tails’ weighted by 7. This shows some degree of robustness of the PLR solution,
since for small |rg|, 02A(z)A*(1/2*) will be close to F(z)F*(1/z*), so that z(-)
will be close to white (see also (5.26)). Observe that, because of Theorem 5.2, the
polynomial equation (5.27) admits a minimum phase solution A(z) of degree M for
any minimum phase F'(z) with degree M + 1. Whether this solution is unique (as
we conjecture) is not immediately obvious from (5.27).

5.3.6 Some examples

We recall that the final assessment of the quality of the filter 1/A(z) obtained
by either the OVM or the PLR schemes should be the reduction of the cost Jieq
given in (5.13). To this purpose, in this section we present several reduced order
examples. In order to ease the visualization of the results, we shall consider the
case in which the signals and the filter coefficients are real-valued. In that case, it
is possible to show the uniqueness of the PLR stationary point for M = 1 in all
reduced order cases:

Lemma 5.2. If the signal u(-) and the coefficients of the filter A(z) are real-valued,
and if M = 1, i.e. A(z) =1+ a1z ', then the minimum phase stationary point of
PLR 1is unique.

The proof is included in Appendix B. Again, whether this result also holds true
for all orders M > 1 in undermodeled scenarios is left as a conjecture at this point.

In all the following examples the variances of the transmitted symbol sequence
and of the channel noise were taken as o2 = 1 and 072] = 0.1 respectively.
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Figure 5.6: Performance of OVM and PLR for Example 1. Top: variation of the
global minimum of Jye¢q and the OVM and PLR stationary points with
the channel pole p. Bottom: Normalized excess error for both methods
as a function of p.

Example 1

Let M = 1, and consider a channel of the form C(z) = Tlrl’ with [p| < 1.

With a value of § = 1 for the system delay, one has the following;:

o Jieq is unimodal for |p| < @ and bimodal for @ <|p| <L

e The OVM cost function E[|z(n)|?] presents a single minimum, which is the
solution of a?p(1 + a1p) = a1 + p with |ai| < 1.

e The unique stationary point of PLR is a; = —p.
Figure 5.6 shows the variation of the global minimum of J,¢q and the OVM and
PLR solutions as a function of p, together with the normalized loss

Jred - Jmin

;
Jmin
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where Jpin is the value of Jieq at the global minimum. For p = 0 we recover
the sufficient order case. The degree of undermodeling increases with |p|, with a
corresponding degradation in performance.
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Figure 5.7: Performance of OVM and PLR for Example 2. Top: variation of the
global minimum of Jye¢q and the OVM and PLR stationary points with
the third channel tap ¢q. Bottom: Normalized excess error for both
methods as a function of q.

Example 2
Let M =1 again, but now let the channel be second-order FIR given by
Clz) =142z '4q22

In that case the reduced cost Jyeq for 6 = 1 is unimodal for all values of g, and the
same is true for the OVM cost. Figure 5.7 shows the variation of the minimum of
Jred, the OVM and PLR solutions, and the normalized excess error, for |g| < 2. In
this example both the OVM and PLR stationary points remain close to the global
minimum of Jyeq for ¢ > 0. For ¢ < 0 the performance loss is larger, even though
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the OVM and PLR solutions still ‘track’ the minimum of Jyeq. For ¢ = 0, the
sufficient order case is recovered.
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Figure 5.8: Contours of the OVM cost and the reduced error surface Jeq (6 = 1,2, 3)
for Example 3. ‘o’ denotes the PLR stationary point, while ‘X’ denotes
the OVM minimum.

Example 3

Let now M = 2, and consider the fourth order FIR channel
Cz) =142 +1.5272 405272+ 0.227%.

Figure 5.8 shows the contour plots of the reduced error surface Jyeq for § =1, 2, 3,
(for 6 = 0 we know that minimizing Jyeq is equivalent to minimizing the OVM cost),
together with those of OVM, which in this case is unimodal, and the PLR stationary
point. The plot is made in the stability domain |k;| < 1 where k; = a1/(1 + a2),
ko = ag are the reflection coefficients of the lattice parameterization of A(z). It is
seen that for § > 1, Jyeq becomes multimodal. Even though OVM and PLR do not
exactly minimize Jy.q, they lie acceptably close to the global minimum so that they
still provide good performance.
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These examples suggest that even in reduced order cases, the OVM and PLR
approaches might be able to provide an acceptable reduction of the cost J.eq. In this
sense OVM seems to be more robust than PLR which can present a considerable
normalized excess loss if the degree of undermodeling is large. Incidentally, it would
be very useful if a method to quantify the degree of undermodeling were available.
With C(z) = ¢ + cjz=! + - - - the channel transfer function, one could think of a
criterion of the form

_ ZE“;MH |cx|?

T lal
The degree of undermodeling would be small for a value of v¢ close to zero and
large for y¢ close to one. However, if one looks at Example 2 above, it is seen that
this indicator ¢ is insensitive to the sign of the parameter ¢, while for some reason
the performance of PLR and OVM changes drastically with a sign change in ¢ as
can be seen in Figure 5.7.

5.3.7 Adaptation of the numerator B(z)

So far we have considered the adaptation of the recursive part of the equalizer,
1/A(z), which is located upstream in the receiver configuration. Observe that in
the ideal case of a noiseless minimum phase FIR channel with length L < M, this
recursive portion of the equalizer, be it adapted via either the OVM or the PLR
algorithms, will completely remove the ISI once it has converged. In less idealistic
cases this will not be so, and the numerator B(z) will still be needed in order to
achieve an adequate level of performance.

The previous development hinged on the assumption that B(z) had been opti-
mized as a function of A(z) in terms of the MSE

Jse(b,8) = Ells(n — 8) — §(n)[’] (5.30)

where §(n) = [B(z)/A(z)]u(n) is the equalizer output; we have made explicit the
dependence of the MSE with the delay § for reasons that will become clear soon. In
blind equalization the channel input s(n — ¢) is not available, and therefore direct
minimization of the MSE is not feasible. Consequently, a different strategy must
be adopted.

It has long been recognized that blind adaptation of a symbol spaced transversal
equalizer cannot be carried out based on second order statistics alone if the channel
is mixed phase (that is, if it contains zeros inside and outside the unit circle), which
is the usual situation. This is so because the power spectral density of the received
signal, which conveys the second-order information, is insensitive to the phase of the
channel frequency response C(e’“); however, this phase distortion must be corrected
since it affects ISI considerably. Observe, however, that the OVM and PLR criteria
for blind adaptation of the recursive part of the equalizer use only second order
information. This is not a contradiction: the recursive portion 1/A(z) compensates
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the channel magnitude distortion but does not provide phase correction, which is
left to the numerator B(z). Thus any blind criterion for the adaptation of B(z)
must be based on statistics of order higher than two. One possibility, suggested
by Labat, Macchi and Laot [62] is to use the Godard(2,2) or Constant Modulus
Algorithm (CMA) [44, 125], a popular method for blind adaptation of adaptive
FIR equalizers. CMA adjusts the coefficients of B(z) in the negative (stochastic)
gradient direction of the so-called CM cost function

_ Ells(m)[]

Ton(b) = FI(n)* ~)°]  where 7= F7 T

(5.31)
Hence, with z(n) = [1/A(z)]u(n) the output of the recursive prefilter, and §(n) =

,]CVZO biz(n —k) = b'%(n) with the (N 4 1)-dimensional vectors b, (n) as defined
in (5.11), the CMA update rule can be written as

b(n + 1) = b(n) + p(y — [§(n)[*)7* (n)x(n). (5-32)

We will refer to the stationary points of CMA, which are the minima of the CM
cost (5.31), as ‘CM receivers’.

Observe from (5.31) that the CM cost Joy does not depend on the phase of the
equalizer output 9(n), and therefore if b is a CM receiver so is e/®b for any real
¢. This means that CMA attempts to recover the transmitted symbol sequence
up only to a rotation in the complex plane. This issue is usually not a problem if
differential encoding of the symbol stream is used prior to transmission [42].

Since different values of the system delay can result in drastic differences in
MSE performance, it is convenient to introduce, for fixed A(z), the ‘amalgamated’
MSE cost function

Ja(b) = min E|s(n — ) — 9(n)?] (5.33)

which is optimized in terms of the delay §. In general, Ja(b) is a multimodal
function of b with its different minima (‘Wiener receivers’) being associated to
different values of § [54].

Recent work [135] has shown that under certain conditions, a CM receiver exists
in a neighborhood of a Wiener receiver. Thus it can be expected that, by using
CMA, the forward block B(z) of the equalizer will converge (in mean) to a setting
reasonably close to a minimum of Jp. However, since a priori selection of the system
delay ¢ is not possible in blind equalization, it is conceivable that this convergent
point could yield a high residual MSE or equivalently a small ISI reduction. In
other words, convergence to a poor local minimum could take place.

This problem has been addressed, among many others, by Tong et al. in [25,
124]. There a reinitialization strategy for transversal equalizers adapted via CMA
is proposed, which exploits the aforementioned relation between CM and Wiener
receivers. The objective of the scheme is to attain the global minimum of Ja. Here
we present a procedure which is in the spirit of [25, 124], but assuming that a
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recursive whitening prefilter is included in the equalizer and preceding B(z). As
will be shown, this results in a much simpler reinitialization mechanism amenable
to online implementation.

To begin, observe that the output of the prefilter 1/A(z) can be written as

B C(z)u n 1
N C(z) .
~ A u(n) for high SNR.

If the degree of A(z) is no less than that of the channel, then after convergence of
the adaptive algorithm (OVM or PLR) used for the adaptation of A(z), the signal
z(-) will be white. If the SNR is high, then

V(z) = o) _ ifu*z"“ (5.34)
A(z) ¢ '
k=0

is approximately an allpass system: A(z) will cancel the minimum phase roots of
C(z) and will place poles at the conjugate reciprocals of the zeros of C(z) outside
the unit circle. Under these conditions, the task of the forward filter B(z) is to
equalize an effective allpass channel V(z). Now let us take a look at the expression
of the MSE for a given delay §:

Jusg(b,8) = E[|s(n — §) — bix(n)[?]
= o2 + b E[x(n)x(n)']b — 2Re {bTE[i(n)s*(n - 5)]}

0.2
o2 (1 + Z2b'b — 2Re {bTv(;}) , (5.35)

S

where v = E[X(n)s*(n — §)]/o? and the last line follows from the fact that
E[x(n)x(n)'] = 021 since z(-) is white. In addition, whiteness of s(-) also gives

E[z(n —i)s*(n—9)] = Z viE[s(n —i— k)s*(n — 8)] = o2v}_,,
k=0

so that the vector vy is just
Y5
vl
ve=| 1. (5.36)
U5 N
Since the variance of z(-) is given by o = o7 Y ;2 [vx|* + 07k, where

1 [ 1

=— | —d
or Jo AP

KA
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the minimizer of (5.35) is readily found to be

vs
2 *
o 1 V51
bs = —2vs = ) , 5.37
AL v 5l (537)
V5_N

where \ = 0,2; /o2, Thus the Wiener receivers for different values of the system
delay ¢ are related in a fairly simple way to the coefficients of the effective allpass
channel V(z), and they are related to each other by simple shift operations. This
observation is the key to our reinitialization scheme.

The minimized value of the MSE for the delay ¢ is

a3 Shos v Vsl
Juse(bs, 0) = o2 (1 - a—;v}v(5> =02 (1 - ] : (5.38)

T AKka + ZEO:O |IU/<2|2

Therefore, for a given number of coefficients N + 1 in the forward filter B(z), the
optimal delay is the one for which the vector vs has the largest norm. Observe that

if § < N, then
4

N
v:gv(g = Z lug|* < Z log|* = V}LVVN.
k=0 k=0
Therefore the optimal delay satisfies 6 > N. This is intuitively appealing, since
for 6 < N the Wiener receiver by has its last N — § coeflicients equal to zero, an
indication of the fact that not all the equalization potential of the filter is being
exploited to full extent.

Finding the optimal value of § amounts to finding the position of a window
of size N + 1 that captures the maximum energy in the impulse response of the
effective allpass channel V(z). We propose the following rule of thumb:

Let M be the order of the recursive prefilter 1/A(z), which should be
chosen to be no less than the length of the channel C'(z). Choose the
order of the forward block B(z) to be N > 2M, and the associated
system delay as § = N.

Of course, N should be as large as possible within design constraints. The guideline
above follows from the observation that if V'(z) is allpass with degree p and its first
coefficient v has ‘significantly large’ magnitude, then (5.38) seems to be minimized
for § = N provided that N > 2p. (This can be readily verified for p = 1, i.e., for
V(z) = (a1 +2 1)/(1+a}z1)). Observe that in practice p is not known since pole-
zero cancellations will take place in C(z)/A(z) at the minimum phase roots of C(z).
Nevertheless, one has p < M, so that taking p = M gives a worst case scenario for
the above rule of thumb. On the other hand, note that if V(z) contains a factor
of the form z™™ then its impulse response is effectively shifted by m samples and
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therefore the window vy, ..., vy may fail to capture most of the energy of V(z);
hence the requirement that |vg| be ‘significantly large’. This is not a problem in
practice since any factor z~ "™ in the effective channel (or, similarly, having the first
m coefficients of its impulse response with very small magnitudes) can be regarded
as an overall delay which can be eliminated by redefining the symbol sequence
s(n) = s(n —m).

Now if B(z) is adapted via CMA it is not possible to control the value of
the associated system delay to which the algorithm will converge, so that there is
no guarantee that this delay will be § = N as desired. However, in view of the
structure of the Wiener receivers shown in (5.37), it is reasonable to adopt the
following reinitialization scheme:

1. Use a ‘center spike’ initialization for B(z), for example

b — 1, for k = N/2,
¥~ 0, otherwise.

2. Run CMA with this starting point for a given number of iterations. It is likely
that B(z) converges to a point near a Wiener receiver with associated delay
d < N:
boc[vf v, vy 0. 0],

Then we can shift out the last N — § zeros and reinitialize CMA with
boc[0--0vfv}, - v5]"

This can be done by detecting the coefficient in b with the highest index
whose squared magnitude exceeds a certain percentage of b'b.

3. With this reinitialization it is expected that CMA will converge to a CM
receiver in the vicinity of the Wiener receiver with delay § = N. But since in
principle this cannot be guaranteed, it may be useful to store a performance
measure associated to each CM receiver as a safeguard in order to detect
situations in which the MSE actually worsens after reinitialization. In view
of (5.38), this measure could be simply the squared equalizer norm b'b.

This strategy is efficient and much simpler to implement than that from [25],
since it does not require on-line estimation of the autocorrelation matrix of the
received signal nor solving a set of equations to find the next starting point. These
features are achieved as a result of the input z(-) to the forward block B(z) being
white, due to the operation of the recursive prefilter 1/A(z).

A simulation experiment

In order to show the validity of the reinitialization strategy described above, we
present now a simulation example. A sequence of symbols drawn from a 16-QAM
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Figure 5.9: Zeros and impulse response of the channel used in the simulations.

constellation is sent through an FIR channel C(z) with impulse response

C(z) = (0.1 —j0.12) + (0.43 + j0.87)z~" + (—0.12 + 50.34) >
+(0.15 + 50.45)273 + 0.227* + (=0.33 — 50.22)27° + (0.13 + 0.08) 2~ 5.

The zero distribution and impulse response of C(z) are plotted in Figure 5.9. This
channel is mixed phase since it has roots both inside and outside the unit circle.

White Gaussian noise was added at the channel output so that the SNR was
19 dB. The order of the prefilter 1/A(z) was M = 6, and the transversal equalizer
B(z) had N + 1 = 16 taps. The initial setting was A(z) = 1 and B(z) = 2z~ 7, and
the stepsize for the PLR and CMA algorithms (which are run simultaneously) was
g = 1074, The recursive prefilter successfully converges to the inverse of the mini-
mum phase spectral factor of psd of the received signal. The CMA reinitialization
subroutine is executed periodically every 10,000 iterations, and it shifts out the last
coefficients of B(z) whose squared magnitude is 10% below the average, i.e.

N 2

9 > k=0 bk
- qx &=k=0TF 5.39
[Bif” < 0.1 x N+1 (5.39)

Figure 5.10 illustrates the evolution of the equalizer taps. The reinitialization
routine is only executed twice, since beyond that point the last tap b} never satisfies
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Figure 5.10: Magnitude of the coefficients of the transversal equalizer B(z) adapted
with CMA. (a) After 10,000 iterations. (b) After 20,000 iterations. (c)
After 30,000 iterations. (d) After 100,000 iterations.

the condition (5.39). At iteration 10,000 the last four coefficients are shifted out,
and then after iteration 20,000 three more taps are also shifted out.

It is seen how the shifting strategy successfully leads the equalizer to the optimal
system delay. The scatter diagrams of the received and equalized symbols are shown
in Figure 5.11 for the iterations 50,000 through 100,000. Clearly the blind equalizer
has opened the eye.

Next we reduced the order of the recursive prewhitener from M =6 to M = 4
and repeated the experiment with the same channel and an SNR of 32 dB. In that
case the order of A(z) is less than that of the channel C(z), so that the signal
z(+) fed to the transversal equalizer B(z) will no longer be white. Nevertheless, the
PLR algorithm obtains an acceptable setting after convergence, as can be seen from
the pole-zero and Bode plots of the cascade C(z)/A(z) shown in Figure 5.12. The
maximum peak-to-peak deviation of the magnitude response is seen to be below
5 dB. The reinitialization scheme is also applied to the transversal equalizer B(z),
with the results shown in Figure 5.13.
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Figure 5.11: Scatter diagrams. (a) Received signal. (b) Equalizer output.

5.4 Conclusions

In this chapter we have analyzed the adaptive IIR filtering problem in the chan-
nel equalization context. There are two main reasons to use recursive equalizers:
they have the potential to reach a lower MSE than their FIR counterparts, and
they could be used in order to blindly initialize a DFE configuration (This strat-
egy, however, may be very sensitive to equalizer length). The recursive part of the
equalizer should be placed upstream in the receiver structure, and ideally it should
whiten the received signal. This can be achieved by means of two different algo-
rithms: OVM and PLR. These two approaches are blind and based on the second
order statistics of the received signal. They seem to provide a certain degree of
robustness to channel order mismatch. The existence of stationary points of the
PLR algorithm in reduced order cases was shown with the aid of an off-line iterative
interpretation of this scheme.

Any blind algorithm for the adaptation of the nonrecursive part of the equalizer
has to be based on higher order statistics, like CMA. The relation between CM and
Wiener receivers, together with an analysis of the Wiener solutions with different
associated system delays for white input signals, provided a computationally simple
and efficient procedure for reinitialization of CMA in order to seek the system delay
with smallest MSE.
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Figure 5.12: Pole-zero and Bode plots of the series C(z)/A(z) after convergence of
the PLR algorithm with M = 4 and SNR = 32 dB.
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Chapter 6

CONCLUSIONS AND OPEN PROBLEMS

In this thesis several aspects of the adaptive recursive filtering problem have
been discussed in detail. An important issue that must be taken into consideration
when implementing an adaptive system of this kind is to guarantee stability of the
IIR filter. Because of this, we have focused on normalized lattice realizations since
these structures are inherently stable even when they become time-varying. Besides
the usual system identification configuration, the adaptive equalization setting using
recursive structures has also been considered. The contributions of our work are
summarized next.

6.1 Contributions

The derivation of adaptive algorithms for IIR filters in lattice form was con-
sidered in Chapter 2. Although several computationally efficient lattice versions
of the Equation Error, Output Error, Steiglitz-McBride and hyperstability based
algorithms have been previously proposed, it was shown that most of them may
present convergence problems even in ideal system identification configurations for
which their direct form counterparts do not. In order to overcome this drawback, a
systematic approach to the derivation of a lattice variant from a given direct form
algorithm was presented, based on the analysis of the associated differential equa-
tion. The resulting scheme is fairly general and efficient, and it preserves the local
convergence properties of the direct form algorithms in sufficient order settings, in
contrast with previous approaches.

Chapter 3 provides an analysis of several off-line system identification schemes
which serve as starting points to the development of on-line adaptive algorithms
for TIR filters. These methods attempt to circumvent the bias problem of the
Equation Error (EE) method and the multimodality of the Output Error (OE)
cost function by constructing a sequence of ‘distorted’ EE problems (which are
quadratic and therefore easily solved) which are iterated until convergence. The
‘distortion’ of each EE problem depends on the solution to the previous one, and
typically involves the inversion of the estimate of the denominator polynomial of
the unknown system’s transfer function. As a consequence, the iteration may break
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if this polynomial is not minimum phase. We have provided conditions on the input
signal that ensure the minimum phase property of the EE estimate, for both the
monic and quadratically constrained approaches.

The standard example of an iterative off-line scheme is the Steiglitz-McBride
(SM) method, which has become popular due to the good behavior of the estimates
that it provides in reduced order cases. This feature has been analyzed recently
with the aid of a lattice off-line variant of the SM iteration, which has the same set
of stationary points as the original direct form version. We have shown that, on the
other hand, the convergence properties of the two variants can be quite different:
a convergent point of the direct form SM iteration need not be convergent for the
lattice iteration.

Another iterative off-line procedure is the interpolation expanded numerator
(IXN) method, which makes use of an overparameterized numerator in the model.
This scheme is not biased in the presence of output measurement noise, and it was
known to have a unique stationary point, corresponding to the unknown system, in
sufficient order cases with white inputs. It has been shown in Chapter 3 that unique-
ness is still preserved for a wider class of inputs (autoregressive processes of certain
order), provided that the order of the numerator of the model is above certain
threshold value. With colored input signals, the corresponding on-line algorithm
was modified in order to preserve local convergence of the stationary points. The
approach derived in Chapter 2 can be used to derive a lattice adaptive algorithm
based on the IXN method.

Chapter 3 also presented a novel iterative off-line scheme: the Steiglitz-McBride
/ expanded numerator (SM/XN) method, which is also based on an overparameter-
ized numerator and incorporates elements from the SM method. Uniqueness of the
stationary point of the SM/XN iteration in sufficient order cases was shown, again
under an autoregressive condition on the input signal and a length condition on the
model’s numerator. On-line adaptive algorithms based on the SM/XN concepts
were also derived for both direct form and lattice implementations.

A new look at the family of hyperstability based adaptive identification algo-
rithms was presented in Chapter 4. Convergence of these schemes requires a strictly
positive realness (SPR) condition on the denominator of the transfer function of the
system to be identified, which may be hard to determine since this denominator is
unknown. In addition, the set of SPR denominators is only a small subset of the set
of minimum phase denominators, which places stringent constraints on the appli-
cability of these algorithms. We have presented two related ways to relax the SPR
condition. The first one is based on overparameterization of the adaptive filter by
using a polyphase realization, while the second is a subband approach in which the
input and reference signals are filtered by an analysis bank and then decimated.
In both cases the net effect is that the roots of the polynomial on which the SPR
requirement falls are pulled toward the interior of the unit circle, by an amount that
increases with the polyphase expansion factor or the decimation factor. This makes
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the SPR condition more likely to be satisfied. The price to pay is a strongest per-
sistence of excitation requirement on the input signal, which is related to a greater
number of adaptive parameters (a consequence of overparameterization).

Motivated by recent interest in the application of adaptive recursive filters to
the equalization problem in digital communication systems, this setting was con-
sidered in Chapter 5. Two algorithms for the adaptation of the recursive part of
the equalizer were discussed in detail. The first one (OVM) attempts to minimize
the variance of its output through a stochastic gradient descent. The second (PLR)
attempts to decorrelate the output signal up to a lag equal to the filter order. Both
approaches have the advantages of being unsupervised (no training signal is needed)
and based on second order statistics of the received signal. In addition, in sufficient
order cases both algorithms converge to the minimum of the MSE cost, at which the
output signal becomes white. In reduced order settings the situation becomes more
involved, although OVM and PLR seem to provide a certain degree of robustness
to channel order mismatch. It was shown that the PLR approach can be thought of
as an off-line iterative scheme, which admits a stationary point in all cases provided
the SNR is finite, regardless of the degree of undermodeling.

Assuming that the recursive portion of the equalizer is capable of whitening its
output, we considered the issue of blindly adapting the nonrecursive part, which
is driven by this white signal, via the constant modulus algorithm (CMA). By
examining the structure of the (nonblind) Wiener FIR equalizers for the different
system delays when the input signal is white, and exploiting recent results which
present conditions for the existence of CMA stationary points in a neighborhood of
Wiener equalizers, we developed a procedure to reinitialize CMA in order to find
the system delay with smallest MSE. This strategy is computationally much simpler
than similar approaches that have been proposed for CMA based FIR equalizers
without a prewhitener.

6.2 Open problems

The problem of adaptive recursive filter still poses a challenge to signal process-
ing and control researchers. Application of these devices to practical systems is still
impeded by an incomplete understanding of their properties, especially in under-
modeled scenarios. In identification settings, an algorithm with global convergence
to a valid solution regardless of input coloring, undermodeling, and output measure-
ment noise is simply not known. Although we have provided some results for several
issues concerning adaptive IIR filters, many questions still remain unanswered.

For example, our approach to the development of lattice algorithms does not
inform of whether the stability properties of stationary points are preserved in
reduced order cases, except for stochastic gradient descents such as the Equation
Error and the Output Error methods. In this respect, further study of the properties
of the associated ODEs and their feedback matrices is clearly needed. This is
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also true for the IXN-2 adaptive algorithm, whose local convergence properties in
sufficient order cases still have to be determined.

Several results generalizing questions such as stability and uniqueness of the
estimates for off-line identification methods to colored inputs were restricted to
autoregressive processes. The main reason is that the Szegd polynomials associated
to these processes satisfy a nice shift property. It is reasonable to ask whether other
orthonormal bases with special properties exist that could allow further results with
other kinds of colored signals. Other questions related to Szegd polynomials have
also been left open along the thesis. For example, if H(z) is a transfer function
with M poles and N zeros, is it completely determined by the first N + M + 1
coeflicients of its expansion over the Szego polynomials associated to an arbitrary
power spectral density?

In order to relax the SPR condition for hyperstability based algorithms we have
considered the use of overparameterization in a structured fashion, in particular
through polyphase structures. It could be interesting to investigate different ways
to overparameterize the adaptive filter that could result in a more efficient relaxation
of the SPR requirement.

Concerning the application of recursive filters to equalization problems, perhaps
the most challenging issue is the development of a valid strategy for blind initial-
ization of a DFE under filter length constraints. It is also of interest to develop
the structure of the optimal DFE under the only constraint of causality. Based on
Kalman filtering ideas, it is expected that this filter be of finite order. This could
facilitate the development of new cold start-up schemes based on the corresponding
structure.

Although we have provided some evidence for the robustness of the solutions
provided by the OVM and PLR algorithms in reduced order cases, theoretical jus-
tification of this claim is still lacking. To this end, the first step could be the
development of a meaningful measure of the degree of undermodeling for the equal-
ization setting.

An interesting open line of research is the analysis of blind, higher order statistics
based adaptive algorithms such as CMA for FIR equalizers, when the input to the
filter is white. As we have shown, this property can be exploited in order to devise a
simple reinitialization strategy, but it could also provide simplifications in the fairly
involved convergence analysis of these algorithms.

Finally, we should note that our focus has been on single input single output
(SISO) equalization settings. The applicability of recursive equalizers to commu-
nications systems with spatial diversity and/or fractionally sampled, resulting in
single input multiple output (SIMO) configurations, surely deserves further consid-
eration.



Appendix A

RECURSIVE COMPUTATION OF THE
JACOBIAN D(0)

The Jacobian D(f) can be easily obtained by exploiting the structure of the
recursions (1.14)-(1.15), as shown by Cruces in [18]. The i, jth element of D(6)
is Ja;/0sin ¢;. Taking partial derivatives with respect to sin¢; in (1.14-1.15), one
obtains:

. dal ,
i>k: asin¢j_0, i=1,...k; (A.1)
_ da¥) 1, =k
J=k: dsingy, a,(C]:l), i< k; (4.2)
9o 0, i=k;
I<k: L = o (k=) ) (k=1) A3
O'sin ¢ {%T%+s1n¢kg(:§—;’@,z<k. (A-3)

These relations can be expressed in matrix form. Let Dy be the k x k matrix with
the 4, jth element given by Bagk)/a sin ¢;; then in view of (A.1)-(A.3), for k = 1,
--, M — 1 one has

(k)

ay,
D; + %MD,
Dy = kil SRR w | (A4)
aq
0 - 0 1

where J; is the k X k exchange matrix with ones in the antidiagonal and zeros
elsewhere. The recursion starts with D; = 1, and it yields D(0) = Dy.
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Appendix B

PROOFS

B.1 Proof of Lemma 2.1

Write S;(6) as the sum of two components P(0), Q(6):
_ dBPa(n)e)

S:(0) a0,
dx;(n) de(n)
=F E
e+ [0
=P () —Q()
At a stationary point 6, the matrix P(6,) is given by

P = 5 |2 o) i { 4 RO et}

0
Let RY (6) be the kth row of R(#). Then

e <o 40
P(0.) =R(0.)E [ ddgn -e(n):| +E : e(n) p . (B.1)
! Ox T dRy4+am+1(6)
Xd (n) d0, 9*

Observe that the second term in the right-hand side of (B.1) is zero: Its kth row is

dRy (0)
* d0l

E [xj(n)e(n)]

*

and E[x4(n)e(n)]s, = 0 since 6, is a stationary point. Therefore, applying the chain
rule,

dxg4(n) e(n :| déy
0

dby . - de, ;
- R | e -e(n)L F(6.). (B.2)
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On the other hand, the matrix Q(#) is given by

Q) = B [x(n) 5 | = ROE [xa(w) 55 | P0),

where again we have used the chain rule. Hence, the matrix S;(6,) = P(6.) + Q(6,)
reduces to

$,(0.) = R(0,)E [d):ldg(:)e(n) +x4(n) dgé;”)]e F(0.)
_R(g*)dE[Xu(li(g;)e(n)] F(0.)
0+
which is (2.25). -

B.2 Proof of Theorem 3.1

First note from (3.5) that if Ry, + Ry, is singular then the smallest achievable
error variance is zero. This means that perfect modeling is possible: 7(-) must be
identically zero and the optimum model is H,(z) = H(z), which is assumed stable.
Therefore, assume that R, + R/, > 0. In view of Lemma 3.1, it suffices to show
that the displacement matrix of R,, + R, /, is positive semidefinite. Note that since
R, is Toeplitz, this displacement matrix is

A = |—Rm] — Rfqu +|—Ry/u - Ry/uJ .
0

Let {pr(2)}32, be the Szegd polynomials associated to u(-). Consider shifted ver-
sions of H(z) expanded over the Szegd polynomials as

o0

2H(z) =Y Wpi(z), b = (2T H(2), pe(2)),
k=0

with [ > 0. It is shown in [104] that, with 0 <4, 7 < M, the 4, jth element of the
matrix Ry, 1s

Ryp)ij= Y. hPnY. (B.3)
k=N+1

If u(-) is AR of degree N + 1 or less, then py 1(z) = 2z 'pp(z) for all k > N + 1
(see Appendix C for a review of the Szegd polynomials and their properties). As a
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consequence, for £ > N + 1 one has

This together with (B.3) implies that for 1 <14, 7 < M,

(Ry/u)ij — Ryju)i-1,j-1 = hs\zf)+1h%).|_1,

and therefore A = hh’ > 0 where h = [hg\Ple h%\f_)l ]T. Stability of the mini-

mizer follows from Lemma 3.1. n

B.3 Proof of Lemma 3.2

First we shall prove that by reflecting an unstable zero with respect to the unit
circle, the cost J(a) cannot increase if A > 0. Let a, solve (3.6). Suppose that the
corresponding polynomial A,(z) has a root at z = zp with |zg| > 1:

Ai(z) = (1 = 227 1)C(2),

and let )
Ai(2) = (5 — 2 1)C(2)
be the polynomial obtained by reflecting zy with respect to the unit circle.

Since Q is symmetric, Toeplitz and positive definite, it can be thought of as the
autocorrelation matrix of some process z(-) with psd Sy;(2), so that

1 [~ ) .
alQa, = / S (€9)| Ay (1) 2. (B.4)
™ —T
Also observe that
- 1— zpz~!
A(2) = A,(2)V(2)  with  V(z) = % (B.5)
-

Since V() is all-pass with unit magnitude on the unit circle, we have |A,(e/?)|?> =
|A,(e’)2. In view of (B.4), this implies that alQa, = a.Qa,, where &, is the

vector of coefficients of A,(z). Thus a, satisfies the original constraint.

Let now ¢ be the coefficient vector of C(z). Since

ofi]=[2 e=a(-42):
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one has
J(ay) = ct (RJ + |zo|2[R -z R — z(’)“R]) c,

J(a,) = |z|%c! (RJ + L[R — %LR — ziofﬂ) c,

|z0[?
which give J(a,) = J(ax) + (1 — |20|?)cf Ac.
If A > 0, then for |z| > 1 we have J(a,) < J(a.). Since a, minimizes .J,
equality must hold, i.e. J(a,) = J(a,).

Let A = J(a,), and let Q = LL” be the Cholesky factorization of Q. Then it
can be shown that X is the smallest eigenvalue of L='RL~7. If X is simple, then
the minimum of the cost J is unique, so we have a contradiction. If A\ is multiple
then J(a,) = J(a,) is possible. However, by reflecting the zero inside the unit circle
the cost does not change, which means that a polynomial without roots outside the
unit circle can be found in the solution set.

To see that A > 0 gives strict stability, consider the family of polynomials with
a zero at z = re?, with 6 some fixed angle:

A (z) = g(r)(1 —re’®21)C(2).
The normalization factor

g(r) = [(1+r*)a—2rf] "2,

o=

1 ™ . .
_ Jw Jwy|2
a = o ] Szz(e?)|C (') ]"dw,
8= 2i S (699 C(e7%) 2 cos(w — 0)dw
™ —T

is chosen so that, with a, the coefficient vector of A,(z), aIQaT =1 is satisfied for
all r > 0. The cost J along this radial line can be written as

J(a,) = alRa,
= ¢*(r) {J@)r + ¢! [R] = r(R] + [R) +r*[R] c}

It can be readily verified that

dJ(a,) _ cfAc
or - 2(a—pB)’
which is strictly positive if A > 0, since
1.
a;Qa;
2(a — B) = L= > 0.
( ) 9%(1)

This precludes the possibility of a root on the unit circle. |
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B.4 Proof of Lemma 3.4

Let
Bl (Z) BQ(Z)

- A(2) - Ay(2)
be two rational transfer functions, with B;(z) having order N, and monic A;(z)
having order M, ¢ = 1,2. Assume that

Hl(z)

and Hy(z)

(H1(z) — H2(2),pr(2))u =0, k=0,1,...N + M, (B.6)
where {py(2)}32, are the Szego polynomials associated to u(-). Then

Hy(2) — Ha(2) € Kniarv1 = span{pe(2) } iz n 4 ar41-

The fact that u(-) is AR(N + M + 1) implies that x4 ar41 is a right shift invariant
subspace (see Appendix C). Therefore, the function

f(2) = A1(2) A2(2)[H1(2) — Ha(2)]

belongs in Kyip+1- But f(z) = Bi(2)A2(z) — B2(z)Ai(z) is a polynomial of
degree not exceeding N + M, and therefore it belongs in the orthogonal complement
ICJ%I+M+1 = span{pg (z)}kN:bM Then

f(2) € Kngms1,  f(2) € KNparga = f(z) =0,

which implies Hi(z) = Ha(z). [

B.5 Proof of the MA(1) case with N =0, M =1

Let Syu(2) = q(2)q(z7!) with ¢(2) = go + q127". Then Syu(2) = qoq12z + (g8 +
@) + qoq12~ 1. Normalizing E[u?(n)] = 1 gives ¢ + ¢ = 1, so we can equate
qo = sind, g1 = cosd. Now if we define sinp = %sin 21, we obtain

Suu(z) =singpz + 1+ singpz L.

The Szego polynomials py(z) and p;(z) associated to this psd are

—sinp + 271
po(z) =1,  pi(z) = T eosp
Let H(z) = b/(1 — az™!) be a transfer function with N = 0 zeros and M = 1 pole.

Then

(H(2),po(2))u = (H(2),[po(2)Suu(2)]+)
= % - E a(l + sinpz)dz

= b(1 + asiny),
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and

(H(2);p1(2))u = (H(2), [P1(2) Suu(2)]+)
1 b(cos? pz + sin pz?) ;
27j ?{ cos p(z — a) d

ab(cos? ¢ + asin )

cos ¢
Suppose that Hi(z) = by /(1 — a1z ') and Hy(z) = by/(1 — azz 1) satisfy
(H1(2); pk(2))u = (H2(2), pk(2))us K =0,1.
Then (note that cos ¢ # 0 since |sinp| = |sin29|/2 < 1/2),

b1 (1 + a1 sing) = ba(1 + agsiny),
a1by ((:os2 ¢ +ajsing) = agbg(cos2 ¢ + agsinp). (B.8)

—
w
oo
~

Define f(a) = cos? ¢ + asin ¢, and divide (B.8) by (B.7) to obtain
aif(a) axf(ag)
flar) +sin*p  f(ag) +sin’p

Since |sin | < 1/2, one can check that f(a) > 0 for |a| < 1. Therefore f(a1)f(a2)+
sin? @ > 0, so that we must have a; = a. This in turn implies by = by in view of
(B.7), and therefore Hi(z) = Hy(z). ]

= (f(a1) f(ag) + sin p)(a; — az) = 0.

B.6 Proof of Lemma 3.5

For convenience, let Ry be the (k + 1) x (k + 1) autocorrelation matrix of the
process u(-). Then Ry, = Ry, and Ry, can be partitioned as

RLz[RN P ]

PT Ry _n11

As shown in Appendix C, the matrix Cy, in (3.26) satisfies I = CLR;CL. On the
other hand,

Ci R Ctf =
CnRyCE CyRyBT + CyPAT
BRyCY + APTCY BRyBT + BPAT + APTBT + ARy n AT |

and this must equal the identity matrix. Hence,
CyRyBT + CyPAT =0 = RyBT + PAT =0

since Cy is nonsingular. The result of Lemma 3.5 follows immediately. m
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B.7 Proof of Lemma 3.6

We can write the matrix H as

- (2) T
H < | BE [T
z M pr(z) u
Since the interpolation conditions (3.15) hold at every iteration k, one has
Bk+1) (z)
(2) - AR() € Kr+1 = span{pi(2)};21 ;-

Since u(-) is AR(L + 1), the subspace Kp41 is right shift invariant (see Appendix
C), so that

— B(k+1) z .
z (H(Z) — W(z()) S ICL+1 for all ¢ Z 0.

Hence for all 4 > 0 and for 0 <[ < L,

Bt (4 »
e e = R,
which shows that
T
z7! pN+1(2)
([ o[
z—M pL(2) "
which depends only on H(z) and the psd of u(-), Syy(2) - n
B.8 Proof of Theorem 3.3
From the proof of Lemma 3.6, we can write H as
o1 Py (2) T 1L,N+1 liN+2 1L
tant1 toni2 to Tor
H= .| H(z), : = . S (B.9)

trM,N+1 tM,N+2 - tM,L
where t;; = (2 *H(z),p;(2))u. Write now H(z) as

B, (z) box + braz 14+ bN*ZfN e ,

H(z)=
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Note that to, = hj, for all £ > 0. Expanding B, (z) over the Szegd polynomials, one
can also write , , ,
_ bO*pO(z) + bl*pl(z) ++ bN*pN(z)
14+az7 + - +apyzM ’
Since B,(z) = H(z)A«(z), one has for all j > 0

(Bi(2),pj(2))u = (H(2)Ax(2),pj(2))u

H(z)

M
— (H @), 05 (2 + 3 00l H(2), 0 ()
=1

This reads as

M
! *9 = = bl
hj—|-iglai*tij —_{ J’ iSN.

For 0 < 5 < L, these equations can be written in matrix form as follows:

O ti0 t20 " -+ tmpo a1x hg
/ !
t t <o 1 a h
1x 1,1 02,1 M,1 2% 1
= . . . . . -I' . bl (B]‘O)
by ti,n toN o tMN an« Ry
!
ti,N+1 t2,N+1 * tMN+1 a1x% b1
t t t h
1,N+2 toN42 oo N2 a2y N2 (B.11)
i, tor -0 tmL an« b’

The matrix in (B.11) is HY. Now suppose that H” does not have full column rank.
Then there exists a vector

a1« Q1x
A2+ A2«

Ay, = . 7é . = Ax
aMx A M *

satisfying (B.11). Let b, = [b), ... by, ]” be the vector obtained in the left hand
side of (B.10) after substituting a, by a, in the right hand side. Then we can write

S [ to0  tio  twmp
b, to1  ti1 - tmd
*
: . L . .
by, _ ton tin o TmN O1x (B.12)
0 to,N+1 t1,N+1 - TN+ : ’ '
} ) ) anr.
0 to, tin o tmr
- x -




B.8. Proof of Theorem 3.3 161

where the elements from ‘X’ on down are unknown quantities. Since the kth column
(counting from zero) of the matrix in (B.12) comprises the coefficients of z =% H(z)
in the expansion over the Szego polynomials, (B.12) can be written in the z-domain
as

B.(z) + O(2) = H(2)A«(2), (B.13)

where
Bi(2) = bypo(2) + b1,p1(2) + -+ + by, pn (2),
A*(z) =1+ (_741*2_1 + 4+ dM*z_Ma

and O(z) is a function whose Szego expansion involves only pi(z) with & > L, i. e.
O(z) € Krt1 = span{pg(2) }32 ;- Substituting H(z) = B.(z)/A«(2) in (B.13),

B.(2) + O(2) = %é*(z) & Ai(2)Bi(2) + Ai(2)O(2) = Bi(2)As(2),

that is, B B
Ay (2)0(z) = [B(2)As(2) — As(2) Bi(2)]

which is a polynomial of degree not exceeding N + M < L, and therefore belongs
in the orthogonal complement K1 +1 = span{py(2)}f_,. But since the input signal
is autoregressive of order not exceeding L + 1, the subspace Ky is right shift
invariant (see Appendix C), so that

O(Z) S ICL_H = A*(Z)O(Z) S }CL—H-
Therefore
A(2)0(2) € K41, Au(2)0(2) € KTyq = A.(2)0(z) =0,

hence O(z) = 0 since A,(z), being a monic polynomial, cannot be identically zero.
Thus (B.13) reads as

but since B.(z) and A.(z) are coprime, this implies B,(z) = B.(z) and A.(z) =
A.(2), a contradiction since it was assumed that a, # a,. Therefore the matrix HT
must have full column rank. -

Remark: In the case N = M, Theorem 3.3 can be linked to Kronecker’s theorem
[105], which states that the Hankel form of H(z),

h1 h2 h3

h2 h3 h4... ) S B
PH: h3 h4 h5 R with H(Z) :thz k,

- e k=0
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has rank equal to the McMillan degree of H(z), which is M provided that H(z) has
no pole-zero cancellations; in that case, [['g]as, the M x M principal submatrix of
Ty, is nonsingular. Observe that, if N = M and u(-) is a white process, then H
reduces to
hyv hargr -+ hp—a
hyv—1 hv -+ hrp—o
H= : : :
hi  hy -+ hi—m
Denote by [A]xs the M x M principal submatrix of a matrix A. If L > N+ M = 2M,
then the determinants of [H]ps and [I'g]|a are seen to coincide. By Kronecker’s
theorem,

deg H(z) = M = [I'y]n nonsingular
= [H]as nonsingular
= H has full row rank,
which is the core of the proof of uniqueness of the IXN fixed point for white input
signals and L = N + M = 2M given in [76].
Consider now the doubly infinite matrix 'y given by
tMm,M+1 tv—1,M+1 tM—2,M+1 "

tvma2 tvr—1, M2 T2, M2t
tvm,m+3 tv—1,M+3 tam—2,M+3 " -

=

q= with t,'j = <z_iH(Z),pj(Z)>u.

For white u(-), this matrix reduces to the Hankel form I'yy. Then, it is reasonable
to ask whether rank 'y = M = deg H(z) also holds.

Suppose u(-) is an AR process of order L+1 or less, where now L is an arbitrarily
large integer. Then the M x L — M matrix H given in (B.9) after taking N = M
has full row rank M, in view of Theorem 3.3. Note that after reversing the order of
the columns of H”, one obtains the principal (L — M) x M block of T'yy. Therefore
the first M columns of Ty are linearly independent, which means that

rank Ty > M.

This is true for all integers L and therefore for all AR processes u(-) of any order.
On the other hand, writing A,(z)H(z) = By(z) one finds that for all k¥ and all
1 >0,
(2" AL (2)H(2),pi(2))u = (2" Bu(2), pi(2))u

that is,

M:

<zkH(z),pi(z))u + Zag.* . <zka'H

z p] pz(z»u
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or equivalently,

M
togit Y ity k= Z (2*p;(2), pi(2)u- (B.14)

i=1

For k = 0 and i > M, we have (z¥p;(2),p;(z )u = 0if 0 < j < M. Then (B.14)
shows that the M + 1st column of the matrix I'z is a linear combination of the first
M columns. What can be said about the remaining columns?

Suppose u(-) is AR of order M+1 (not 2M+1), so that Sy, (2) = ¢?/[q(2)q(z™1)]
with ¢(z) a minimum phase polynomial of degree not exceeding M + 1. Without
loss of generality, assume that the constant c is chosen so that q(z) = z=Mpy(271).
Then for all k > 0,: > M and 0 < j < M,

(#91(2) 2D = (#03(2),2 0l
- () ey

EIE)

o 2N
- (#ne) I5) =

because the causal part of zkpj (z) is a polynomial of degree not exceeding j—k < M,
and the first M coefficients of the impulse response of z7*/q(z) are zero. Hence, for
allk >0, > M,

M
kit Y ahti ki =0,
i=1
which shows how all the columns of 'y are linear combinations of the first M
columns. To sum up, we have shown that if u(-) is AR of order M + 1 (or less),
then rank 'y = deg H(z).

However, this is not necessarily true if () is AR of order m with m > M + 1.
We show a counterexample here. Let M = 2, and let u(-) be AR of fourth order,
with ¢(z) = 1 — pz~*, and let H(z) = 1/(1 — az~?). Assuming |a|,|p| < 1 it is
straightforward, although rather tedious, to show that

with
f=———, y=d+p-pid
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Assuming p,a # 0, it is clear that (i) the first two columns are linearly indepen-
dent; (ii) the third column is a linear combination of the first two; (iii) the fourth
column, however, is not a linear combination of the first two. Therefore in this
case rankTCy > M.

B.9 Proof of Theorem 3.4

Let {pr(2)}32, be the Szegd polynomials associated to u(-). Let

A(z) l1+az7t+---+ayz™M pars

be a stationary point of the IXN iteration. The interpolation conditions on the
numerator B(z) ensure that

- B
= (GOme) —HEnE =t  0<k<L (1)
u
and, since u(-) is AR(L + 1), this implies that

<z_i%’w(z)>u = (¢T'H(2),pj(x))u =tij, 120, 0<j<L, (B.16)

as was shown in the proof of Lemma 3.6. Now since B(z) = H(z)A(z), one has
that for all j > 0,

(B(2),pj(2))u = (H(2)A(2), p;(2))u-
Taking (B.15) and (B.16) into account, this gives

M
Wy =hj+> aity, 0<j<L. (B.17)
=1

This constitutes a linear constraint on the coefficients of B(z) and A(z). In addition
we must have .
by 11
H| : | =0y, (B.18)
b,

as shown in Section 3.4.2, with H given in (B.9). If we define h’ = [h, --- A} 0% 17
and the coefficient vector 6 = [b) -+ b} a1 --- ap |7, we can write (B.17)-(B.18)
in matrix-vector form as

Ingg 0 —-GT

0 I, xn-HT|6=N (B.19)
0 H o0
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where
tip t11 - BN
tao to1 --- ton

tmo tm1 - tuN
Observe that (B.19) is linear in 6. Uniqueness of the stationary point follows if one

shows that the matrix in (B.19) is invertible. This we proceed to do. Clearly, it
suffices to show that
[

H 0
is invertible. Let v be a vector such that Av = 0f,_y . Partition v = [v] vI'|T
where v, vy have sizes (L — N) x 1 and M X 1 respectively. Then Av = 01,y
reads as

V] = HTVQ, HV1 = OM

These give
HH v, = 0,,,

which implies vy = 0y since rank(HH”) = rank H = M by Theorem 3.3. Then
vi = H vy = 0;,_p so that v = 0r_n~N+M,1-e. A isinvertible so that the stationary
point of the IXN method is unique. That this point is given by H(z) = H(z) follows
since H(z) clearly satisfies (B.19). n

B.10 Proof of Lemma 3.7

Suppose that M is singular. Then there exists an (L + 1) x 1 vector b, # 07,41
such that Mb, = 0z,1. Then E[a(n)ij(n) = 0r,1 where §x(n) = H,(z)u(n) =
[B«(2)/A(2)]u(n) with B,(z) the polynomial formed from the coefficients of b,. We
can rewrite this as (H,(z), 27 %), =0, 0 < k < L or equivalently,

~

<H*(z)apk(z)>u = O, 0 S k S L

where py(z) are the Szegd polynomials associated to u(-). Hence H,(z) € K41 =
span{px(2) }32 1,1, which is a right shift invariant subspace since u(-) is AR(L + 1).
Thus X R

H*(Z) € ICL_H = B*(Z) = A(Z)H*(Z) S }CL—i—l-

But since By(z) is a polynomial of order not exceeding L, it belongs in the orthog-
onal complement K7 1 = span{py (z)}ﬁzo. Thus

which implies b, = 07,41, a contradiction. n
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B.11 Proof of Lemma 3.8

The conditions (3.39) imply that the function f(z) = A(z)H(z) — B(z) belongs
to Kr+1, which is a right-shift invariant subspace. Therefore ¢g(z)f(z) € K41 for
any causal and stable g(z). Taking g(z) = 1/A(z), we see that

ADF @) = H:) - 5 €Ki

i. e. B(z)/A(z) matches the first L + 1 coefficients of the expansion of H(z) over
the Szegd polynomials so that E[a(n)e,(n)] = 0r41. n

B.12 Proof of Lemma 3.9

Since S(6.) in (3.45) is block triangular, we have

~2 ~
: . . —A" AH"
S(6.)) = eig(—A3 . :
cig(5(6.)) = eig(—-A%) | elg( M )
One has eig(—A%) = {—a%o, e —O'%N}, which are negative. For convenience, let

H = HA. Then we just need to show that the eigenvalues of the matrix

<2 =T
g=|AH
-H 0
have strictly negative real parts. Note first that, for any v = [v] vI |7, one has

viS'v = [v] v]]

~2 ~T
_A~ H [vl] = —v{[ﬁvl <0,
-H O V2

with equality if and only if vi = 0z_n. Now let (A, v) = (A + jA;, v, + jv;) be an
eigenpair of S’. Then

S'v=J\v = vis'v = avlv,
where the superscript 1 indicates the conjugate transpose. Since
visty = (vI = w18 (v, + jvi)

= (vIS'v, + vI'S'v;) + j(vIS'v; — vIS'v,),

and
AvTv) = A (vIv) + i (viv),

one has that
M (viv) =vIS'v, + vI'S'v; <0,
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showing that A, < 0. Suppose now that A\, = 0. Then
vZS'vr = V;IS,VZ’ =0,
and this implies that the eigenvector v is of the form
[
vV =
V2
for some M x 1 vector vo. Since S'v = Av, one has
H v, _ |:0LN:|
O Avy |7
which gives vo = 0ps because in view of Theorem 3.3, H” (and therefore I:IT) has

full column rank. But then v = 0, a contradiction since v is an eigenvector. This
completes the proof. |

B.13 Proof of Lemma 3.10

The parameter vector for the lattice structure is

0= [wp -+ wg, sing; -+~ singpr|”

bl

and the algorithm given by (3.42) and (3.55) takes now the form 6;(n + 1) =
Hl(n) + pF) (ela u, d)7 where

Fi(6;,u,d) = Br(n)é,(n)

| —[Gu(2) B2)u(n)]ec(n) |

For local stability, the eigenvalues of the feedback matrix

_ dB[R(6;,u,d)]

8u(6.) de,

0=0.

must lie in the Re A < 0 semiplane, with 8, denoting the stationary point corre-
sponding to the identification of H(z). Now S;(6,) turns out to be

—A% 0 ANGTD(8,)
Si6.)=| o -A>  AH'D@.) |, (B.20)
0 -D(.)THA 0
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where D(0,) is the Jacobian matrix of the lattice to direct form transformation
evaluated at the stationary point (refer to Appendix A for more on this matrix),
and H, G are given in (3.31) and (3.46) respectively. Note that the matrix S;(6.)
in (B.20) has the same structure as S4(6.) in (3.45) upon substituting G and H by
D(0,)T G and D(6,)TH respectively. Therefore, by mimicking the proof of Lemma
3.9, the eigenvalues of S;(f.) are seen to have strictly negative real parts since D(6,)
and H have full row rank under the hypotheses of the lemma. m

B.14 Proof of Lemma 3.11

Let us(n) = [1/A(z)]u(n). Observe that if u(-) is AR(N + 1), then uy(-) is
AR(N +M +1). Let {px(z)}72, be the Szegd polynomials associated to the process
uf(-), and define F(z) = H(z)A(z). The output error e,(n) = d(n) — 9(n) can be

written as

col) = |H(:) = 523 | ) + 9t

= [F(2) = B(2)]us(n) +n(n).

Therefore, if we expand F(z) and B(z) over the Szegd polynomials as

[e's) L
2)=Y fipe(2),  B(2) =) Hpi(2)
k=0 k=0

we see that
L [es)
Z fk - b, Z (fk:) na
k=0 k=L+1

so that the optimality conditions on B(z) read as bj, = f;, 0 < k < L. Therefore
F(z) — B(z) = H(2)A(z) — B(z) € K11 = span{pi(2) }; 1 41-

Since uf(-) is AR(N + M +1) and L > N + M, Kr41 is a right shift invariant
subspace. Therefore g(z)[H(z)A(z) — B(z)] € Kr+1 for all causal and stable g(z).
In particular, if we take g(z) = A.(z), we obtain

B,(2)A(z) — Ax(2)B(z) € Krp41.

But this function is a polynomial of degree not exceeding N + M < L (because
by assumption, B(z) has degree N or less). Hence it belongs in the orthogonal
complement K7, = span{pi(z)}£_,. Thus

B.(2)A(z) = A:(2)B(2) € K41 [ | K1 = {0},
which implies B,(z)A(z) — A«(2)B(z) =0, i.e. B(2)/A(z) = B«(2)/As(2). n
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B.15 Proof of Theorem 3.5

Since u(-) is AR(N + 1), we can write Syyu(2) = 1/[q(2)g(z71)] with ¢(2) a
minimum phase polynomial of degree N + 1 (or less). For convenience, let H(z) =
H(z) — B(z)/A(z) be the error transfer function obtained at an SM/XN stationary
point. The proof takes three steps.

Step 1: The optimality conditions on the numerator B(z) imply

- ﬁ B ﬁ(z) z k B
<H(z), e >u - < R A(Z)q(2)> —0, O0<k<N+M. (B.21)

In view of this, we can invoke the Beurling-Lax theorem [105, sec. 3.1] to conclude
that H(z)/q(z) must be causally divisible by the all-pass function

I e G | B e (G
A(2) q(2)

ie. H(z)/q(z) = g(z)V (2) for some stable and causal g(z). Therefore

V(z)

H(z) = g(z)e v AT (B.22)

Now one has that, for all positive k,

<ﬁ(z)’i>u:i Az dz

A(z) 2mj | A(2)q(2)q(z 1) =
1 f el )N AG)()
= 2m7{ A DA @z D)
B g(z ZN—|—M—|—kd
- 2m ANz 7
= 0. (B.23)

The second line in (B.23) comes from (B.22), while the last line follows because the
integrand is devoid of poles inside the unit circle. Therefore if the conditions (B.21)
hold for 0 < kK < N + M, then they also hold for all Kk < N + M.

Step 2: As a consequence, if f(z) = Y 3%, fiz ™" is a causal, stable function, then
for all K < N 4+ M one has

(e i), = L5005,
>

#e ),
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In particular, for f(z) = 1/A(z), one has

f{ —k
< (2) = > —0, k<N+M,
U

A(2) " A(2)

or equivalently, with us(n) = [1/A(2)]u(n),

A~

<H(z),z_k>uf - <Jj§2,z—k>w . E<N+M (B.24)

Step 3: Observe that the matrix Hy given in (3.59) can be written as

z pnia(2) "
(] | B@ |
f ;M A(z), . 7
z pm(2) |1,

where p(z) are the Szegd polynomials associated to the process uf(-). Let C be
the M x (N + M + 1) matrix of coefficients of py11(2), -..pn+um(2) such that

py+1(2) s
. — C .
pN+m(2) —(N+M)
Using this and (B.24), we can write
- 1 T
olBw | A
H; = : ct
d < ul AR >
_Z - Z_(N+M)
uf
- 4T
- 1
z Z_l
A )] ] e
_Z_M- Z_(N+M)
L 1w
[ 2] [ pvia(2) 1"
- < .| H(2), : > _ (B.25)
| 27 M ] Lovm(2) |7,

Since uf(-) is AR(N + M + 1), we can apply Theorem 3.3 to conclude that the
last matrix in (B.25) is nonsingular. Therefore H; is nonsingular. Because the
stationary point must satisfy Hff)l = 0y, it follows that b = 0ps. By using
Lemma 3.11 we conclude that B(z)/A(z) = H(z). [
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B.16 Proof of Lemma 4.1

To verify the stability of (4.8) we proceed in two steps. First, the relation
between the a posteriori error e(n) and the signal s(n) = 6(n + 1)T4(n) is found.
Here O(n) = 6, —6(n) with 6, the parameter vector of the unknown system H (z). Tt
is shown that £(n) and s(n) are related by a linear time-invariant transfer function.

Second, it is shown that £(n) and s(n) satisfy a Popov inequality of the form

Z s(n)e(n) < ¢, (B.26)

for all S > 0 and some constant ¢ independent of S. Therefore by virtue of the
hyperstability theorem [97, 105], if the transfer function from s(n) to e(n) is SPR,
the closed-loop system is asymptotically stable, giving £(n) — 0.

To begin, let us add and substract the term Ekle tg«z(n — kP) to the quantity

MP M
y(n) —2(n) = 3 freuln — k) = 3 tiay(n — kP)
k=0

MP ! M
- ka(n + 1u(n — k) + Ztk(n +1)z(n — kP),
k=0 k=1
in order to obtain
MP M
y(n) —a(n) = D [fre = feln+ Dluln — k) = Y [t — tr(n + D]z (n — kP)
k=0 k=1

M
= trfy(n — kP) — z(n — kP)]

k=1
=0(n+1)Ty(n) — Ztk*[y(n — kP) — z(n — kP)].
k=1

Therefore we see that y(n) — z(n) = [1/T.(2F)]s(n) or

e(n) = T?((,:I)’)S(n)' (B.27)

It just remains to show the Popov inequality (B.26):

1. Given the definitions of ¢(n) and e(n) in (4.6) and (4.7) respectively, and the
update formula (4.8), it is easily verified that

e(n)

) = T ) Tom)




172 Appendix B. Proofs

so that one has

B(n+1) = 6(n) — pp(n)e(n),

and therefore

s(n) = 0(n + 1) (n) = 6(n)"p(n) — pyp(n) 4 (n)e(n),

or

s(n)e(n) = 8(n) 9 (n)e(n) — wp(n) P(n)e?(n). (B-28)
2. Now express the parameter error vector norm as
O(n+1)"0(n +1) = 8(n)"8(n) + p*9(n) 9(n)e’ (n) — 2u8(n) p(n)e(n),
so that

B(n) p(n)e(n) = i[é(n)Té(n) —0(n+1)T0(n+1)] + %¢(H)T¢(n)82(n)-

(B.29)
3. Putting (B.28) and (B.29) together, one gets
s(m)e(mn) = 5= 10(n)"Bn) = B(n-+ 1) (0 + 1)] = Fab(a) "y (m)e()
4. Summing these from 0 to S,
S 1. ) . . s
D stm)en) = 5-1000)7000) ~ 65 + 78S +1)] = 5 3 p(n) (n)e(n)
n=0 n=0
1 . -
< ﬂ9(0)T9(0) =,
which proves the result. |

B.17 Proof of Lemma 4.3

As usual, introduce the parameter error vector 6(n) = 6, — (n), with 6, the
parameter vector of the unknown system H(z). Also let us define the auxiliary
signals s;(n) = 8(n + 1)T4p;(n), 0 < i < P — 1. Using standard manipulations (see
e.g. the proof of Lemma 4.1 above), one can show that these signals are related to
the a posteriori errors via




B.18. Proof of Lemma 4.4 173

Similarly, the relation between the a priori and a posteriori errors is

e
) = T T

so that one has

O(n +1) = 0(n) — pp(n)e(n).

If we define
5(n) = agso(n) + -+ + ap_1sp-1(n),
then
s(n) = 0(n+1)"p(n) = 0(n)"(n) — pp(n) " (n)e(n),

5(n)e(n) = 8(n) P(n)e(n) — up(n) 4 (n)e* (n). (B-30)
The relation (B.30) leads to the Popov inequality
S
ey < LT - o2
nE_:OS(n)E(n) < 2u0(0) 0(0)

which holds for all S. Since

if this transfer function is SPR then the closed-loop system is asymptotically stable
by virtue of the hyperstability theorem [97, 105], thus giving &(n) — 0. [

B.18 Proof of Lemma 4.4

Let O(n) = 0, —0(n), with 6, the parameter vector of the unknown system H (z),
and define s;(n) = (n + 1)T4;(n), 0 < i < P — 1. As in the proofs of Lemmas
4.1 and 4.3 above, one can show that these signals are related to the a posteriori
errors via

ei(n) = T*'(z) siln), 0<i<P-—1.

Define now the vector

P-1 -1 [p-1
n) = [T+p ) ai%/fi(n)?ﬁiT(n)] [Z ajtpj(n)e; (n)} ; (B.31)

i=0 j=0

so that the algorithm can be written as 8(n+ 1) = 0(n) + u®(n). Observe that the
difference between the a priori and the a posteriori errors in the ith subband takes
the form

ei(n) —ei(n) = zi(n) — gi(n)
= [6(n + 1) — 0(n)]"¢i(n)
= p®T (n)i;(n). (B.32)
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Now note that, from (B.31),

n) Y asi ()l (m)®(m) = 3 aji;(n)e;(n).
i=0 =0

Substituting (B.32) in this and simplifying, we obtain the alternative expression of
®(n) in terms of the a posteriori errors

P—-1

O(n) = Y aithi(n)ei(n),

i=0
which is useful for the analysis.

In order to obtain a Popov inequality, observe that

si(n) = 0(n + 1) 9i(n) = 0(n) yi(n) — p®(n)" i(n),

so that )
si(n)ei(n) = 0(n) i(n)ei(n) — p®(n) yi(n)ei(n).

Multiplying this by «; and then summing over the P subbands gives

Zazsz = 0(n)"@(n) — p®(n)" ®(n). (B-33)

Now express the parameter error vector norm as
O(n+1)T0(n +1) = 0(n)T0(n) + p2®(n)T®(n) — 2uf(n)T®(n),
so that

6(n)T®(n) = i[é(n)Té(n) —On+1)To(n +1)] + g@(n)T(D(n).

Substituting this into (B.33), and then summing over n from 0 to S, yields the

desired result:
P—

S
Z ;s <, (B.34)

0 ¢=0

,_\

where ¢? = ||0(0)||2/2u is independent of S. Therefore we can represent the adaptive
algorithm by the feedback loop of Figure B.1, where the nonlinear time-varying
block satisfies the multivariable Popov inequality (B.34), and F(z) is a P-input
P-output transfer function matrix given by

F(z) = diag ( Co(j) IR aP—lc;:(lz()z) ) .
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so(n) €o(n)
F(z)
sp-1(n) ap-1ep-1(n)
Nonlinear
time-varying

Figure B.1: Feedback loop describing the subband HARF algorithm (4.20).
The multivariable version of the hyperstability theorem states that if F(z) is
SPR, meaning now that it is stable and causal and
F(e?) 4+ F(e')!  is positive definite for all w,
where (-)' denotes the conjugate transpose, then the vector
e(n) = [ageo(n) -+ ap_1ep-1(n)]"

satisfies e(n)Te(n) — 0 as n — co. This in turn implies that &;(n) — 0 for all i as
long as «; > 0. Noting that F(z) is SPR if and only if ¢;Ci(z)/T«(z) is SPR, the

lemma is proved. |

B.19 Proof of Lemma 5.1 for 6 > L

Let the equalizer output (input to the slicer) be

A~

Gj(n) = P(2)u(n) — Q(2)s(n — d),
where it is assumed that past decisions are correct. The error signal is given by
e(n) = s(n—8) = §(n) = [1 + Q(2)]s(n — 6) — P(z)u(n),

which closely resembles the expression of the equation error (with a monic con-
straint) given in (1.28). Let us define the signal vectors

u(n) = [u(n) u(n —1) --- u(n - N) ],
s(n) =[s(n—20) s(n—0—-1) --- s(n—30 — M)]%,

so that e(n) = q's(n) — pfu(n), with g = [1 T ]T. Now let

Ru, = Elu(n)u(n)], Ry = E[s(n)s(n)l],  Rus = Elu(n)s(n)'].
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Then E[|e(n)|?] is minimized with respect to p if p = Ry, Rysq, which gives the
reduced cost function
Efle(n)’] = J(q) = a'Ry/q,

with the matrix R/, given by R/, = Rgs — RLSR;&RM. In view of Lemma 3.1, it
suffices to show that Ag = [R,/, — R,/,] is positive semidefinite. Note that since
R, is Toeplitz, one has Ar = —Ap; = —([M — M), where M = R ,R_'R,.
Observe that

>k % 3

f& 05¢1 f(S-I—M

R.. — o2 C-1 G CirMm—1
us — - . .

S ?

k * *
C—nN C-nN+1 " Cs+M-N
Ry, = azCCJr + O'%I,

where C is the channel matrix defined in (5.10). If the SNR is sufficiently small,
then we can approximate R, = O'%I, so that R;& R oo, 2I. In that case with
0 <14, 7 < M the i, jth element of the matrix M is

4

g

(M)ij = —5 D CsrickChij ke
M k=0
Thus for 1 <3, j < M,
ot .
(Anm)ij = M)ij = (M)i-1j-1 % —5(Co+iCh4j — Co+i-N-1C54j-N-1)-
n

In addition, since § > L the channel coefficients satisfy c5,; = 0 for £ > 0. Thus

4
~ 05 X
(An)ij R =—5C5+i-N-1C51j-N-1-
7
This gives A N—a—gccT<0 withc:[c c ceec ]T
M~ —ggeet <0, 5—N C5—N+1 S—N+M—1]" - m

B.20 Proof of Theorem 5.2

Define the function F : CM — CM as
F(a) = Ex(n)x(n)"]"' Ex(n)u" (n)],
with x(n) = [z(n —1) --- z(n — M)]T and z(n) = [1/A(2)]u(n), with A(z) the

polynomial associated to a. Then the iterative method can be written as a; 11 =
F(a;). Introduce now the map k = L(a), where k = [ky -+- kps |7 is the vector of
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reflection coefficients (lattice parameters) associated to the polynomial A(z). The
stability domain becomes the following convex open subset of CM:

D={k : |ki<lfori=1,...,M }.

We can define the function G : D — CM™ as the composition G = Lo F o L™!.
Thus the iteration can be reparameterized in lattice coordinates as k;11 = G(k;).
Observe that the iteration may break if k; is outside D.

Let 0D denote the boundary of D. As the vector of lattice parameters k ap-
proaches 9D, at least one root of the corresponding polynomial A(z) approaches
the unit circle. In that case the diagonal entries of the matrix E[x(n)x(n)!] become

7

because Sy, (z) > 0 on the unit circle is assumed. On the other hand the conjugated
components of the vector E[x(n)u*(n)] are given by

Ellz(n)") = E u(n)

2
] — 00, (B.35)

2t

Elu(n)z*(n — )] = <1, %>u = 2% 7{:1 Suu(z)mdz (B.36)

for 1 < 7 < M. For minimum phase A(z), the only poles of the integrand inside
the unit circle are those of Sy, (2); therefore, using the residue theorem to evaluate
(B.36), we see that these quantities remain finite even as one or more roots of A(z)
approach |z| = 1.

This implies that as k — 0D from inside D,
F(L7'(k)) — 0,

in view of (B.35), (B.36) and the definition of F. Since L(0) = 0, we conclude that
the domain of G can be extended in order to include 0D by defining G(k) = 0 for
all k € 9D, and in this way G : D U 9D — CM remains continuous.

We now invoke the following Borsuk fixed point theorem [21, p.46]:

Theorem B.1. Let D be a closed, bounded, symmetric and convez subset of cM,
and let G be a continuous mapping from D to CM . If G is odd along the boundary,
i.e.

G(-k) = —G(k) for allk € 0D, (B.37)
then G admits a fized point in D: there ezists k, € D such that G (k) = k,.

We can apply this result with D = D U dD: since G(k) = 0 for all k € D,
(B.37) is clearly satisfied. Thus G(k,) = k, for some k, € D. Moreover k, cannot
belong in 0D since all 9D is mapped onto 0 which is not in 0D. Thus the fixed
point lies inside the stability domain D. -
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B.21 Proof of Lemma 5.2

With M = 1, assume that the polynomials 1 + az~! and 1 + bz~! were both
minimum-phase stationary points of PLR. Define the processes

1 1
Ta(n) = mu(n)a Th(n) = 1+W“(”)a
and their autocorrelation coefficients
ra[k] = E[zq(n)ze(n — k)], rolk] = Elzp(n)zp(n — k)]

Then we must have r,[1] = 74[1] = 0. Define the process w(-) as

1 1
W) = T g1l = T roen)
with autocorrelation coefficients r,,[k] = Elw(n)w(n — k)]. Noting that z,(n) =

(14 bz=Hw(n), it can be easily shown that
ra[1] = Tw[1] 4 (1w [0] + 7 [2])b + 74 [1]6%. (B.38)

Define the cross-correlation coefficients c[k] = E[zp(n)w(n — k)]. Since w(n) =
zp(n) — aw(n — 1), they satisfy

c[k] = ry[k] — ac[k + 1], (B.39)
Tw [k] = C[k] - a"’"w[k - 1]- (B.40)

By (B.39), 7[1] = 0 implies ¢[1] = —ac[2]. In view of (B.40), this gives

rwl[l] = —a(ry[0] + c[2]), (B.41)
Twl2] = ¢[2] — ary(1]
= ¢[2] + a*(r[0] + c[2])- (B.42)

Substituting this into (B.38), we obtain

ra[l] = —(a = b)(1 — ab)(r¢[0] + c[2])
= 0 by assumption. (B.43)

Now note that since
r2[0] + 72[2] = (1 + a®)(r5[0] + ¢[2))

we cannot have 7,[0] 4+ ¢[2] = 0 due to the fact that |ry[0]] > |r;[2]|. Also, since
lal,|b] < 1, one has 1 — ab > 0. Thus (B.43) implies a = b. n
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A REVIEW OF SZEGO POLYNOMIALS

Consider the power spectral density function Sy, (z) associated to some zero-
mean, real-valued process u(-):

o0

Sw(z) = Y ruw(n)z™™  with 1y (n) = Blu(k + n)u(k)).

n=—oo

It will be assumed without loss of generality that u(-) is scaled to unit variance, i.e.,
Tuwu(0) = 1. The weighted inner product induced by Sy, (z) of two functions in #,

FR) =Y fz™* g2) =D a2,
k=0 k=0

is denoted by

FE s = = § Sl () E
= ZZfigj'ruu(i _.7)
i=0 j=0

If u(-) is a white process, then one has 7, (n) = §(n) (the Kronecker delta), which
gives (f(2),9(2))u = D opoo frge- Taking f(z) = 27%, g(2) = 277, one finds that
these monomials are orthonormal. However, for colored u(-), one has (2%, z77), =
T (i— j) which need not be zero. Thus the standard basis {z7¥}2° | of the subspace
Ho is not orthonormal in general with respect to this spectrally weighted inner
product.

The Szegd polynomials {py(2)}7°, associated to u(-) are obtained by applying
the Gram-Schmidt orthonormalization procedure to the standard basis: one takes
po(2) = 1, the first element of the original basis {z*}2° ; then, pi(z) is taken as a
linear combination of 1 and z~! in order to satisfy

(Po(2),p1(2))u =0, (p1(2),p1(2))u =1,

and so forth. As a consequence of this procedure, the Szegd polynomials satisfy the
following properties:

179
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1. Each polynomial pg(z) has degree k.

2. The set {px(2)}L_, spans the subspace of polynomials of degree not exceeding
P.

3. If f(z) € Haz is a polynomial of degree not exceeding P, then (f(z),pr(2))y =0
for all £ > P.

Observe that for all £ > 0 one can write

po(2) 1 1
p1(2z z
1.( ) = Ck‘ . )
Pr(2) z7F
———— ——
=P (?) =Sk (2)

where the matrix Cy is lower triangular and invertible. Note that, by construction,

I = (pi(2), Pk (2))u
= Cp(sk(2),sf (2))uCh

Tuu(0)  Tuu(l) oo Tuu(k)
_c, Tuu:(l) Tuu:(o) TUU(k_l) C%,
| Tuuw(k) Tuu(k —1) -+ 74(0) J
_R,

which reveals the matrix C;' as the Cholesky factor of the (k + 1) x (k + 1)
autocorrelation matrix of the process u(-), i.e. Ry = CI;IC,;T.

Note that, due to the orthogonality of the Szegb polynomials, the signals

Br(n) = pr(2)u(n)

satisfy E[B;(n)-B;(n)] = 6(i — j). In fact, Bx(n) is just the kth backward prediction
error (normalized to unit variance) associated with the process u(-), and pg(z) is
just the (normalized) kth order backward prediction error filter. The correspond-
ing (normalized) kth order forward prediction error filter is given by the reverse
polynomial pg(z) = 2 *¥pg(2~1). These filters are familiar in the context of linear
prediction theory [46], in which it is well known that pg(z) is maximum phase (all
roots lie outside the unit circle), and therefore py(z) is minimum phase. Moreover,
all the prediction error filters up to order k can be implemented together in a lat-
tice structure as shown in Figure C.1. The reflection coeflicients p1, ..., pg of this
lattice filter are known as the Schur parameters of the process u(-), and they are
uniquely determined by the autocorrelation coefficients 74,(0), 7uu (1), - .., Tuu(k)-
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u(n)=ao(n)=PFo(n) ~ a1(n) az(n) ag(n)
p1 P2
P P
B1(n) B Br(n)

Figure C.1: Lattice implementation of the prediction error filters (unnormalized
Szegd polynomials and their reverse counterparts). «;(n): forward pre-
diction errors; f;(n): backward prediction errors.

The lattice structure of Figure C.1 is an implementation of the recursion

ol g hallas) e

in an unnormalized fashion. The variance of the forward and backward prediction
errors in Figure C.1 is given by

k

Eloj(n)] = Elfi(n)] = E[®(n)] - G, with GF =[]t~ ),
=1

so that the relation between the normalized and unnormalized signals is just

Br(n) = Clkﬂk(n)

(assuming E[u?(n)] = 1), and similarly for the forward prediction errors.

Although the Szegd polynomials were generated from the natural basis {z7%}2° |
due to the fact that the dimension of this set is infinite it is not immediately obvious
that the Szegd polynomials form a complete basis, i.e. that {py(z)};2, spans the
whole #y subspace. This is the case provided that Sy, (z) satisfies

exp [i / i lnSuu(ej“’)dw] >0 (C.2)

2 J_,

which is known as the Szego condition, a technical requirement that will be assumed
to hold in the sequel. This condition also ensures |px| < 1 for all k, as well as
limg_, o Cx > 0. See [57, 123] for more advanced topics on Szego polynomials.

If f(2), g(z) € Ho and the Szegd polynomials form a complete basis, then we
can write

FR) =" fie(2)s  9(2) =Y gipk(2),
k=0 k=0
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where
fo = (F(2)spk(2us g1 = (9(2), Pk (2))us

and the weighted inner product becomes
o0
(f(2),9())u = D figh
k=0

due to the orthonormality of the polynomials {px(2)}72,.

Autoregressive processes

The process u(+) is autoregressive of order m, or AR(m), if its psd can be written

as

62

a(z)q(z 1)

with ¢ a constant and ¢(z) a polynomial of degree m, which can be taken to be
minimum phase. This means that u(-) can be seen as the output of an all-pole
filter with transfer function c¢/q(z) driven by unit-variance white noise. Observe
that in that case, the optimum forward and backward prediction error filters of
order k > m are ¢(z) and 2z ¥¢(z1) respectively, since the mth order filters already
achieve perfect whitening. Equivalently, the Schur parameters satisfy p;, = 0, for
all k > m.

Suu(2) =

This observation reveals a useful property of the Szego polynomials associated
to an AR(m) process: they satisfy

pr(2z) = 2~ Ep (2) for all k > m, (C.3)

and in fact p,,(2) = z ™q(z ') (by suitably scaling Sy, (z) if needed).
Observe that, if we define K,,, = span{py(2)}32,,, then AR(m) processes satisfy

f(2)eEKm = 27'f(2) €Knm (C.4)

so that the subspace K, is right shift invariant. In fact, property (C.4) is all that is
required of the process u(-) in the proofs of many results in this thesis that invoke
an autoregressive condition on u(-). One could think that (C.4) describes a class of
processes that is more general than the AR(m) class. Is that the case?

Lemma C.1. Assume that the Szegé condition (C.2) is satisfied. If the subspace
K is right shift invariant, then the process u(-) is autoregressive of order m (or
less).

Proof: It suffices to show that if I, is right shift invariant, then the Schur param-
eters are zero for k > m. We proceed by induction in k.
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First, we will prove that 2~ 'p,,(2) € K, implies p, 11 = 0. Observe that, if we
write

pr(2) = Pro + PRz T+ -+ prrz

then the first and last coefficients are given by

pro = Dhk = —
G’ Cr

Now since 27 1p,,(2) € Ky, it can be written as a linear combination of the Szego
polynomials pg(z) with k& > m. In addition, 2~ 'p,,(2) is a polynomial of degree
m + 1, and therefore it is orthogonal to pk(z) for k£ > m + 1. Hence we can write

z_lpm(z) = apm(2) + bpmi1(2)

for some constants a, b. Equating the coefficients of z=(M+1) one obtains

i o b o Cm+1
Cm B Cm—l—l - b= Cm ’ (0'5)

while equating coefficients of z° = 1 gives

0=alm 4 pPmtt, (C.6)
Cm Cm+1

Substituting (C.5) into (C.6), we obtain ap,, + pm+1 = 0. If p,, = 0, then it follows

that pp4+1 = 0 as desired. Hence assume that p,, # 0, in which case a = —pp41/pm.-
Thus ¢
o) = —Ep(2) + L p (2). (C7)
Pm Cm

On the other hand, the recursion (C.1) shows that

_ pm—l—lﬁm(z) + Z_lpm(z) _ Cm

Pm+1(2) m . [Pmt1Pm(2) + Z_lpm(z)] - (C.8)
Substituting (C.8) into (C.7) gives
& pm(z) = =P pn(2) + pmiipm(z) + 2 'pm(2),
that is,
st [Bn(2) = ()] = 0. (C.9)

Observe that the coefficient of 27 in pp,(2) — pimpm(z) is CLm (pm — p%) Thus

(C.9) implies
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For the term in parenthesis to be zero, one must have |p,;,| = 1 which is not possible
since the Szego6 condition holds. Thus p,,4+1 = 0.

Now assume that p,11 =+ = pmik = 0, and 2" 1py1x(2) € Ky Then we will
show that pp,4 k41 = 0.

Note that pp4; = 0 for 1 <14 < k implies
pm—l—i(z) = Ziipm(z)a iﬁm—l—i(z) = iﬁm(z)a Cm+i = Cmo 1<i<k.
Therefore

_ Prmtk+1Pmk(2) + 27 Pk (2)

Prmtk+1(2) 5
V 1- Prm+k+1

= = [omeratn(a) + 2 @] . (€10
m+k+1

Now since 2~ 'py,1x(2) belongs in K, and it has degree m +k + 1, it can be written
as a linear combination of py,1(z) with 0 <i <k + 1:
27 Ppmik(2) = copm(2) + c1pmi1(2) + - + Chi1Pmyki1(2)
= (co+ 1z 4+ erz ) pm(2) + chy1Pmirs1(z).  (C.11)
Equating the coefficients of z=(™*5+1) one sees that

_ Cmak+1 _ Cmtks1
Ck+1 = = .

Cm—Hc Cm
Substituting this and (C.10) in (C.11),

2 man(z) = (co + 127 + -+ a2z ¥ + 27F P (2) + prgks1Pm(2).  (C.12)

Therefore,

1
C_(COPm + pm+k+1) = 0.
m

Again, if p,, = 0 then it follows that p,,+x+1 = 0 as desired. Otherwise, one has
€0 = —Pmiks1/pm- With this, and noting that z 'pmir(2) = 2% Ipn(2), we
obtain from (C.12)

Pm+k+1 - - A
0= (—M+c1z Lp gz k) Pm(2) + Pmtrk+1Pm(2)-

Pm
Successively equating the coefficients of z=™ % ... 2~™ in the right-hand side to
zero yields ¢ = cx—1 =--- =c¢1 = 0 and
1
Prthtl (pm _ _) o,
Cm Pm
which implies p,,15+1 = 0 since |pp| < 1. This concludes the proof. n

Thus Lemma C.1 shows that the mth order autoregressive condition on a pro-
cess is completely equivalent to the corresponding subspace K,, being right shift
invariant.
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