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Abstract

In modern society, digital data about individuals that could be considered to
be highly personal, can be found relatively easily in the communication networks,
especially the Internet. Although most people support the last decades’ advances
in digital networks, the sensitivity of these data motivates an increasing concern
about the public availability of personal data and the processing performed on
them. On the other hand, signal processing researchers have traditionally focused
on continuously improving the efficiency and robustness of the applied algorithms,
while often leaving aside the crucial aspect of data privacy. Thus, advances in
signal processing have not taken into account the trustworthiness of the parties
that manage users’ signals or the sensitivity of the information contained within
these signals. There are many application scenarios where the need for privacy
is clearly present, mainly those in which biological signals (fingerprints, faces,
iris, DNA, ECG signals, MRI images,...) are involved, as they hold extremely
sensitive information about users or patients, and their privacy is traditionally
addressed through written consents that represent the trust that users must put
on the party or parties that process their signals.

Signal Processing in the Encrypted Domain (SPED) is an emergent research
field that has arisen to effectively tackle the privacy problems involving signal
processing. As an interdisciplinary area, it has faced from its birth the challenge
of bringing together the views of the cryptographic and the signal processing
communities in order to reach the target of efficiently applying privacy preserving
techniques to common signal processing operations.

This thesis presents novel research work performed within the field of SPED to
provide new general-purpose privacy-preserving primitives, establish a whole new
framework in nuclear privacy-sensitive signal processing applications like adap-
tive filtering, solving problems like the omnipresent cipher blow-up in encrypted
iterative processing and explicitly analyzing the existing trade-offs among time
efficiency, bandwidth and error propagation in these solutions. Other privacy-
aware application scenarios mainly dealing with biometric and biological signals
are also tackled, providing efficient novel protocols for protecting the privacy
of the signals’ owners. The work presented in this thesis provides a compre-
hensive comparison between different approaches for tackling encrypted process-
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ing, like homomorphic encryption, garbled circuits, interactive protocols and
zero-knowledge proofs, and finishes proposing an extension to a recently pre-
sented fully-homomorphic cryptosystem, showing the potential of this approach
in achieving fully noninteractive privacy-preserving outsourced processing.
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Notation XV

Notation

The notation along the chapters of this thesis is the following, unless otherwise
stated: lowercase letters will be used indistinctly to represent classes in a ring
(Zy,, +, ) and a representative of that class in the interval [0,n). [.] will represent
the rounding function of a number to the nearest integer. [a]s represents the
reduction of @ mod d.

The used vectors will be column vectors of size L unless otherwise stated,
and they will be represented by lower-case boldface letters, whereas matrices will
be represented by upper-case boldface letters. In some chapters, vector notation
a = [ag,...,a, 1] and polynomial notation a(z) = > ' a; - 2 will be used
indistinctly when appropriate. An element at row ¢ and column j of a matrix
A will be denoted indistinctly by A(i, j) or A;;; ()7 will denote matrix/vector
transpose, and A" = {a;;}.% represents the submatrix of A of size (t —r +1) x
(u—s+1), defined by a; ; = a1, j1s. Scalar random variables will be denoted by
italicized letters, and upper-case calligraphic letters will represent sets or parties

participating in a protocol.

When the used encryption system is not relevant, the encryption of a number
x will be represented by [z], and the vector (matrix) formed by the encryptions
of the vector & (matrix X) will be represented by [z] ([X]). When working with
the binary representation of a number z, the encryption of the vector of binary
bits of that representation will be denoted as [z],. When a specific cryptosystem
is used, E(z) and Dg(z) will be used for encryption and decryption respectively,
being the subindex s representative for the used cryptographic algorithm.

The operations performed between encrypted and clear numbers will be in-
dicated as if they were performed in the clear; e.g. [X] - b will represent the
encryption of [X -b]. Regarding the complexity calculations, the complexity
of basic modular operations, like additions (A), products (P) and exponentia-
tions (X)) will be denoted by Cpx 4, Cpxp, Cpx y respectively, prefixing an E (i.e.
FEA,EP,EX) when they are performed under encryption. The computational
complexity for encryptions and decryptions will be denoted by Cpxy and Cpxp,.
The factor ¢t < 1 will denote the ratio between the size of a clear-text value
and that of an encrypted value. When needed, the subscript ¢m will denote
communication complexity, measured in number of bits, while ¢p will indicate
computational complexity, with an indication of the party whose complexity is
represented. Finally, the expression a €z A denotes the random choice of a value
a from the set A with uniform distribution.
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Chapter 1

Introduction

In modern society, digital data about individuals can be found relatively easily
in the communication networks, especially the Internet. Although people sup-
ports the last decades’ advances in digital networks, the sensitivity of these data
motivates the raise of an increasing concern about the public availability of per-
sonal data, and the processing performed on them. Focusing on the European
case, this concern has been reflected in a series of Directives, dealing with the
protection of individuals’ personal data ([10},[12]). Directive 95/46/EC deals with
the protection of individuals with regard to the processing of personal data and on
the free movement of such data, where personal data means any information re-
lating to an identified or identifiable natural person. One of the main mottoes
of this Directive is that data processing systems must respect the fundamental
rights and freedoms, specially in those aspects concerning the right to privacy.

Leaving aside the legal framework, and turning into the technical support to
privacy principles, conventional cryptographic protocols deal with the problem of
protecting some private information from an unauthorized third party that oth-
erwise could modify or have access to the information. In the scenario of secure
processing, where the privacy must be preserved not only against a third party,
but also against the parties that process the data, secure multiparty computation
constructions can be used. Nevertheless, typical multiparty computation proto-
cols become too costly in terms of computation and communication complexity
for real-world scenarios.

This is the context in which the emerging field of Signal Processing in the En-
crypted Domain arose. This discipline tries to address the problem of efficiently
processing signals in untrusted environments, where not only the communica-
tion channel between parties is insecure, but also the parties that perform the
computation are not trusted.
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1.1. Signal Processing in the Encrypted Domain

Signal processing is an area that comprises many techniques for the represen-
tation, analysis, transmission and restoration of signals. Among the most relevant
problems in this field, we can point out the filtering problem: a filter or estimator
is a system designed to extract information about a quantity of interest from
noisy data. Filters and signal processing operations in general are nowadays
ubiquitous, having an extremely broad field of application, ranging from voice
processing performed by an embedded microcontroller in a mobile phone to com-
plex surface and volume rendering and texturing for 3D animation films, passing
through the presentation and automated analysis of MRI (magnetic resonance)
images.

We live surrounded by electronic devices that perform signal processing, and
they have become essential in our every-day lives; thus, their presence can have a
strong impact on our privacy. In fact, some of the many application scenarios of
signal processing involve contexts in which the processed signals are highly sen-
sitive and present strong privacy constraints. Hence, in the last years there has
been a growing interest from the scientific community in applying privacy preserv-
ing techniques to common signal processing operations; this emergent research
field has been named Signal Processing in the Encrypted Domain (SPED) [17,9).

Signal processing researchers have traditionally been focused on continuously
improving the efficiency and robustness of the applied algorithms, while leaving
aside the crucial aspect of data privacy. Thus, signal processing was not aware
of the trustworthiness of the parties that manage users’ signals or the sensitivity
that the information contained within these signals might have. There are many
application scenarios where the need for privacy is clearly present, mainly those in
which biomedical or biometric signals (fingerprints, faces, iris, DNA, ECG signals,
MRI images,...) are involved, as they hold extremely sensitive information about
users or patients, and their privacy is traditionally addressed through written
consents that represent the trust that users must put on the party or parties that
process their signals; in fact, these prototypical scenarios have attracted much of
the attention of the SPED community.

The secure treatment of private data is a question of great relevance for indi-
viduals as well as for organizations. Informally, data privacy in a system consists
in the possibility of hiding certain data to determined users of the system. Never-
theless, traditional cryptosystems only provide an all-or-nothing security, in the
sense that they do not offer any kind of access to encrypted data unless the deci-
phering key is available. Furthermore, conventional cryptographic protocols deal
with the problem of protecting some private information from an unauthorized
third party that otherwise could modify or have access to the information. When
the privacy must be preserved not only against a third party, but also against
the parties that participate in the protocol where the inputs are shared, more
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involved solutions come into play.

Signal processing in the Encrypted Domain was born in order to efficiently
cover the needs of privacy for data that must be handled by authorized but
non-trusted third parties, providing a greater malleability than traditional cryp-
tosystems, as it allows different levels of access to the data, in order to perform
certain operations on them without the need of decryption and, thus, without
having access to their clear-text version. Hence, it addresses the problem of pro-
cessing signals in untrusted environments, where not only the communication
channel between parties is insecure, but also the parties that perform the compu-
tation are not trusted. This groundbreaking concept of processing has been a hot
topic during the last few years, although the theoretical principles on which it is
founded date back to more than two decades ago. In this period, there have been
plenty of contributions aiming towards the target of performing secure processing
of data by a third party, preserving the required privacy level.

1.1.1. State of the Art in SPED

Signal Processing in the Encrypted Domain is an interdisciplinary research
area that joins the efforts of the signal processing and the cryptographic commu-
nities in order to provide solutions for the privacy and security problems in signal
processing applications, with a special interest in the efficiency of the implemen-
tations.

The theoretical grounds on Signal Processing in the Encrypted Domain come
from the field of secure function evaluation, that was firstly introduced by Yao in
1982 [245] (Secure two-party computation) through the now widely known Mil-
lionares’ problem, and then generalized to Secure Multiparty Computation [107]
(SMC). In the former setting, two millionaires wish to know who is the richest,
without disclosing to the other their respective wealth. The presented solution
employed the concept of garbled circuits, with which it is possible to execute a
function, expressed as a combination of binary gates, on certain data (also in a
binary representation) that belong to two (or more) parties. After the execu-
tion of a garbled circuit, both parties can obtain the result of the computation,
but none of them have access at any time to the data belonging to the other
party. In spite of the generality of the presented solution, the inefficiency of its
implementation would constitute the biggest obstacle for the development of this
technology during the following years, in such a way that the existence of efficient
solutions for the secure execution of a generic function is yet nowadays an open
problem. Nonetheless, many efficient and secure techniques have been developed
for specific applications in the past few years, building up a set of tools that
foretell the potential of this technology.

After the initial proposal of Yao up to the present, there have been many



4 1.1. Signal Processing in the Encrypted Domain

contributions related to private data processing [174]. Without intending to pro-
vide a thorough survey, a classification of the technologies nowadays available
for the implementation of SPED, summarized in seven categories, is presented in
order to give a glimpse of the elements that build up the current landscape on
approaches to SPED!.

1.1.1.1. Secure Multiparty Computation

Secure Multiparty Computation [245 107, 109] (SMC) stems directly from
the initial Yao’s proposal, based on interactive protocols performed by two or
more parties that own private data, to which they wish to apply a determined
function, known by all the parties. While this approach needs to communicate
a great amount of information among the involved parties, adding a significant
overhead to the communication required in a non-private solution, it has the
advantage of being generic, thus allowing the implementation of a great variety
of functions in a distributed fashion. This category includes several basic secure
primitives, like Oblivious Transfer [48,[168],[148], that allows to choose one element
out of N without disclosing which was the chosen one, or Secret sharing [202],
that splits stored data into several parts (shares), in such a way that all the
shares are needed for the reconstruction of the original data. SMC techniques
have recently received contributions that sensibly improve the computation and
communication complexity [I41], and that paired with homomorphic encryption
can yield very efficient protocols.

Secure Function Evaluation (SFE) is a special case of SMC in which a set
of players want to evaluate a function, known to all players, on their private in-
puts. Subsequently, various approaches to securely evaluating a function have
been developed for different function representations, namely combinatorial cir-
cuits [107, 245, [130], ordered binary decision diagrams [142], branching pro-
grams [167, [166], or one-dimensional look-up tables [I66]. Each of these ap-
proaches can achieve a practical and efficient oblivious protocol for evaluating a
given function f, if f can be expressed in a space-efficient manner in the chosen
representation.

1.1.1.2. Homomorphic Encryption

At a conceptual level, arithmetic operations can be performed in the encrypted
domain using a privacy homomorphism [49]. This consists in a group homomor-
phism between clear-text data and encrypted data, allowing the execution of

!There are some surveys available in this area [I7,[9], to which we refer the reader for further
information.
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operations (generally sums or products) on encrypted data, without the need of
deciphering such data. Formally [190]:

Definition 1 (Privacy homomorphism) Let S be a set, and S" a possibly dif-
ferent set, with the same cardinality as S. Let D : 8" — S a bijection, called de-
cryption function. Let U be an algebraic system of operations in clear-text given

by:
U= (Sa fla sy fk;pla cey PLy S15 400y Sm)7

where f; : S9% — S are functions with g; parameters, p; are predicates with h;
parameters, and s; are constants.

Let C be the counterpart of U for the calculations with encrypted data:

C = (S f1, s [os DLy ooy D1 Sy ey S0 ).

The mapping D is called a privacy homomorphism if it satisfies the following
conditions:

s (V)1 <i<k= (V(ay, .. a,) € S%)
(Fe e ") (fl(a, ..., aq) = c= fi(D(ay), ..., D(ay,)) = D(c))).
w (Vi) (1 <i<Il= (Y(ay,..,ap) € S™)
(pi(ay,...,an,) = pi(D(ay), ..., D(ap,)))).

» (Vi)(1 <i<m= D(s}) =s).

Furthermore, the following conditions must be satisfied for C' and D to be
useful as a protection:

D and D~! must be easily computable.

» The functions f! and the predicates p; in C' must be efficiently computable.
» D7!is a cipher without expansion or a cipher with an expansion such that
the cryptotext representation is only marginally bigger than the correspond-

ing clear text.

= The operations and predicates in C' must not suffice to obtain an efficient
way of calculating D.
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There are certain semantically secure encryption algorithms [177, [82] 175, [111]
that present a private homomorphism, allowing the execution of one operation
(generally sums or products) on encrypted data, without the need of deciphering
such data (cf. ArticleID 13801 in [I7]). The most commonly used homomorphic
cryptosystem is Paillier’s, that presents an additive homomorphism (cf. Sec-

tion 2Z22.277]).

These cryptosystems present several decisive advantages, such as the drastic
reduction of the overhead in the communication required among parties, the effi-
ciency of the computation, and the automatic provision of privacy while data are
being processed, as they never leave their encrypted state. As a counterpart, the
amount of operations that homomorphic encryption allows is restricted (either
sums on encrypted data and products of ciphered data and known data, or prod-
ucts between encrypted data and exponentiations of ciphered data to known data,
but not all of them simultaneously). There are, though, some recent contribu-
tions by Gentry [104] 105], that are able of executing any circuit without the need
of decryption, through a full homomorphism. It does so through a cryptosystem
based on ideal lattices with bootstrappable decryption, for which he shows that
it achieves a full homomorphism. While this proposal is definitely promising, it is
still not practical, due to the huge size needed for the ciphertexts. In fact, the ex-
istence of practical fully homomorphic cryptosystems is still an open problem, but
there is a whole research line currently underway, with works like [20§], focused
on translating Gentry’s scheme into a practical fully homomorphic solution, but
it is still limited to very small plaintexts and very simple circuits. In this thesis
we will adhere to using an additively homomorphic cryptosystem, always taking
into account the advantages that an efficient and practical fully homomorphic
cryptosystem would provide, and devote the last chapter to the extension and
efficient use of a quasi-full homomorphism.

1.1.1.3. Commitment Schemes

Commitment schemes [76] are cryptographic tools that, given a common pub-
lic parameter parcom, allow that one party of a protocol choose a determined value
m from a finite set M and commit to his choice C,, =Com(m,r, parcom), such
that he cannot modify it during the rest of the protocol; the committed value
is not disclosed to the other party, thanks to the randomization produced by r,
which constitutes the secret information needed to open the commitment.

The required security properties that the commit function must fulfill are bind-
ing and hiding; the first one guarantees that once produced a commitment C,, to
a message m, the committer cannot open it to a different message m’; the second
one guarantees that the distribution of the commitments to different messages are
indistinguishable, so one commitment does not reveal any information about the
concealed message. Each of these properties can be achieved either computation-
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ally or in an information-theoretic sense, but the information-theoretic version
cannot be obtained for both properties at the same time.

The commitment scheme used throughout the present thesis, unless other-
wise stated, is Damgard-Fujisaki’s scheme [78], that provides statistically-hiding
and computationally-binding commitments, based on Abelian groups of hidden
order. Given the security parameters F, B, T and k, the common parameters are
a modulus n (that can be obtained as an RSA modulus), such that the order of
Z* can be upper bounded by 28, a generator h of a multiplicative subgroup of
high order (the order must be F-rough) in Z*, and a value g = h®, such that the
committer knows neither a nor the order of the subgroups. The commit func-
tion of a message x € [—7, 7| with a random value r € [0,25%*] takes the form
C, = ¢g"h" mod n.

Additionally, this commitment scheme presents an additive homomorphism
that allows computing the addition of two committed numbers (Cyy, = C, - Cy
mod n) and the product of a committed number and a public integer (Cy, = C
mod n).

1.1.1.4. Interactive Proof Systems

Interactive proof systems were introduced by Goldwasser et al. [113]; they
are two-party protocols in which a Prover P tries to prove a statement x to a
Verifier V, and both can make random choices. The two main properties that an
interactive protocol must satisfy are completeness and soundness; the first one
guarantees that a correct Prover P can prove all correct statements to a correct
Verifier ¥V, and the second, that a cheating Prover P* will only succeed in proving
a wrong statement with negligible probability.

A special class of interactive protocols are Proofs of Knowledge [162], in which
the proved statement is the knowledge of a witness that makes a given binary
relation output a true value, such that a probabilistic algorithm called knowledge
extractor exists, and it is able to output a witness for the common input = using
any probabilistic polynomial time Prover P* as an oracle, in polynomial expected
time (weak soundness).

1.1.1.5. Zero-knowledge Protocols

Zero-knowledge protocols [113], 108, 109] allow, through the interaction be-
tween two parties (a Prover P and a Verifier V), that one of them prove the valid-
ity of an statement without disclosing any additional knowledge (zero-knowledge)
besides that directly derived from the proven statement. More formally, an Inter-
active Proof System (P, V) is statistically zero-knowledge if it exists a probabilis-
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tic polynomial algorithm (simulator) S such that the conversations produced by
the real interaction between P and V are statistically indistinguishable from the
outputs of SV.

These protocols are commonly used in combination with other techniques to
prove that the operations to which data are subjected are correct, even when
one has no access to such data. The main advantage of this approach consists
in that it can be used to avoid any attempt of accessing the private data by
malicious users, and it allows to perform more complex operations than those
allowed by homomorphic encryption. The counterpart comes as an increase in
the computational and communication burden needed for performing a given
operation.

1.1.1.6. Data obfuscation

Data obfuscation [35] consists in adding some kind of noisy (random) signal
to data in order to partially or totally conceal them, in such a way that some rel-
atively complex operations can be performed on them, provided that the original
meaning of the data is preserved. These methods have the advantage of allowing
complex operations with a relatively low computational and communication bur-
den, at the expense of privacy, as some information about the obfuscated data
can be inferred from the intermediate steps of the process.

1.1.1.7. Searchable encryption

Searchable encryption [46] is a cryptographic primitive that allows for the
check of a match between a given pattern inside encrypted data. It is mainly
used for keyword searches in encrypted databases, and presents the advantage of
conveniently protecting the performed queries in these cases, but as a counterpart,
it is not very flexible, and it also presents some scalability issues. Nevertheless,
the area of searchable encryption has been identified by DARPA as one of the
technical advances that can be used to balance the need for both privacy and
national security in information aggregation systems [13].

There are several setups in which the previous techniques can be used, and
each one has its advantages and drawbacks in terms of bandwidth and computa-
tion efficiency, but they cannot be directly compared in general, as they serve for
different purposes. Even though there are no generic solutions available yet that
can be applied efficiently to any case [69], allowing the execution of any function
on encrypted data, the previous approaches can be combined and extended, tak-
ing into account the specific requirements of a determined application, in order to
obtain a solution that provides a simultaneously efficient and secure implementa-
tion. Currently, research efforts in the field of Signal Processing in the Encrypted
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Domain are focusing on this direction, giving birth to numerous contributions to
efficiently and securely process data and signals in many application areas, which
are briefly described in the next section.

1.1.2. Application Areas

Among the most representative application areas of Encrypted Data Process-
ing, the following are particularly relevant:

» Secure Medical Diagnosis [221][39]: patients’ medical data are extremely
sensitive, and the execution of secure medical processing on those data in
order to obtain a totally confidential diagnosis is one of the main appli-
cations of SPED. As an example, [221] presents a system for performing
approximate searches on DNA sequences in order to seek for genetic dis-
eases keeping both the DNA sequence and the search method secret.

» Private Biometric Authentication [89] [196]: biometric applications are
also one of the paradigmatic signal processing scenarios where sensitive
signals are handled. Biometric signals (faces, iris, fingerprints,...) are unre-
placeable keys that users are not willing to give away for the purpose of a
secure authentication. Achieving a balance between secure authentication
and private biometric processing is one of the challenges in this field.

» Secure Database Queries [I58, [50]: The scenario in which a non-trusted
server stores an encrypted database and allows efficient private queries on
the stored data is one of the most studied use cases of SPED. There are many
proposed protocols for accessing encrypted data in a server, as searchable
encryption [51], 50}, with mechanisms based on trapdoor functions, secret
sharing or homomorphic encryption.

» Private Information Retrieval [I58]: This application covers the sce-
nario in which users wish to access a (centralized or distributed) public
database, but keeping their queries secret, such that the server or servers
must process an encrypted query. The proposed solutions to this problem
are mainly based in Oblivious Transfer.

= Zero-knowledge based Watermarking and Fingerprinting sys-
tems [230, 224]: Practical watermarking systems have always used sym-
metric key for embedding and for detection/decoding of the watermark.
Zero-knowledge allows for a private detection/decoding, effectively prov-
ing that the watermark is present inside some asset (image, audio, video)
without disclosing the secret key.
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» Secure Data Mining [145] [244] 28]: This is by far the most studied field of
application of Private Data Processing, and it consists in extracting knowl-
edge from data that are distributed among several users who, due to privacy
concerns, do not want to share their data in the clear. A number of works
in this area are available, ranging from secure clustering algorithms [132],
classification [233] or scalar products [211], to computation of correlation
matrices [149], private execution of neural networks [I76], and many more.

» Private Function Evaluation [52]: this is one of the most promising fields
for Encrypted Data Processing, where the aim is to provide an environment
in which a user executes a function on someone else’s data, in a secure
and private fashion for everyone. While currently developed functions are
still low-complexity primitives and algorithms, it is foreseeable that Private
Function Evaluation can provide the grounds for totally private remote
computation and data outsourcing.

= Encrypted Signal Processing: Signal processing is one of the latest
fields to which encrypted data processing has been incorporated, but there
are already some initial progresses, such as private algorithms for the im-
plementation of several discrete transforms (DFT, DCT) [44], which are
widely used in audio/image/video processing.

The subsequent chapters of this thesis show some recent developments in the
most promising application fields named above. Furthermore, the recent field of
Cloud Computing, that has also a section devoted to it, has to be added to the
previous ones. The increasing trend towards remote and distributed computing
opens a new and wide range of applications to which SPED can provide an excep-
tional tool for achieving the required level of privacy and malleability, allowing
for an environment of guaranteed trust in which users can develop their work
securely and privately.

1.2. Contributions and publications

In the following, a brief summary of the contributions contained in this thesis,
together with the published works and patents that support its research value and
its technological transfer value, is provided.

1.2.1. Publications

The publications and patent applications that support the research under-
taken during the period of this thesis are the following;:
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1.2.1.1. Journal papers

J1

J2

J3

J4

Juan Ramoén Troncoso-Pastoriza, Daniel Gonzalez Jiménez, and Fernando
Pérez-Gonzélez. Fully Private Noninteractive Face Verification. Submitted
to IEEE. Trans. on Information Forensics and Security, 2012.

Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzalez. Secure
Adaptive Filtering. TEEE Trans. on Information Forensics and Security,
6(2):469-485, June 2011.

Juan Ramén Troncoso-Pastoriza and Fernando Pérez-Gonzalez. Efficient
zero-knowledge watermark detection with improved robustness to sensitivity
attacks. EURASIP Journal on Information Security, 2007. Special Issue on
Signal Processing in the Encrypted Domain.

Luis Pérez-Freire, Pedro Comesana, Juan Ramén Troncoso-Pastoriza, and
F. Pérez-Gonzalez. Watermarking security: a survey. LNCS Transactions
on Data Hiding and Multimedia Security I, 4300:41-72, October 2006.

1.2.1.2. Conference papers

C1

C2

C3

C4

C5

Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzalez. Fully Ho-
momorphic Faces. Submitted to IEEE International Conference on Image
Processing, 2012.

Daniel A. Rodriguez-Silva, F. Javier Gonzélez-Castano, Lilian Adkinson-
Orellana, Alexandre Fernandez-Cordeiro, Juan Ramén Troncoso-Pastoriza,
and Daniel Gonzélez-Martinez. FEncrypted Domain Processing for Cloud
Privacy: Concept and Practical Experience. In International Conference on
Cloud Computing and Services Science (CLOSER 2011), Noordwijkerhout,
The Netherlands, May 2011.

Juan Ramén Troncoso-Pastoriza and Fernando Pérez-Gonzalez. Efficient
Protocols for Secure Adaptive Filtering. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2011), pages 5860-
5863, Prage, Czech Republic, May 2011. IEEE.

Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzalez. CryptoD-
SPs for Cloud Privacy. In CISE 2010, volume 6724 of LNCS, Hong Kong,
China, December 2010.

Juan Ramon Troncoso-Pastoriza and Fernando Pérez-Gonzalez. Secure and
Private Medical Clouds using Encrypted Processing. In VPH 2010, Brussels,
Belgium, October 2010.
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C6

C7

C8

C9

C10

C11

C12

C13

Juan Ramoén Troncoso-Pastoriza, Daniel Gonzalez-Jiménez, and Fernando
Pérez-Gonzélez. A new model for Gabor Coefficients’ Magnitude in Face

Recognition. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2010), Dallas, USA, March 2010. IEEE.

Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzalez. Skewed
Log-Stable model for natural images pizel block-variance. In IEEE Interna-
tional Conference on Image Processing (ICIP’09), Cairo, Egypt, November
2009. IEEE.

Juan Ramoén Troncoso-Pastoriza, Pedro Comesana, Luis Pérez-Freire, and
Fernando Pérez-Gonzalez. Videosurveillance and privacy: covering the two
sides of the mirror with DRM. In ACM Workshop on Digital Rights Man-
agement, Chicago, IL, USA, November 2009. ACM.

Juan Ramén Troncoso-Pastoriza, Pedro Comesana, and Fernando Pérez-
Gonzdlez. Secure Direct and Iterative Protocols for Solving Systems of
Linear Equations. In SPEED Workshop 2009, pages 122-141, Lausanne,
Switzerland, September 2009.

Juan Ramén Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Ce-
lik.  Privacy preserving error resilient DNA searching through oblivious
automata. In 14th ACM Conference on Computer and Communications
Security, pages 519-528, Alexandria, Virginia, USA, October 29-November
2 2007. ACM Press.

Juan Ramon Troncoso-Pastoriza, Stefan Katzenbeisser, Mehmet Celik, and
Aweke Lemma. A secure multidimensional point inclusion protocol. In 9th
ACM Workshop on Multimedia and Security (MMSEC’07), pages 109-120,
Dallas, Texas, USA, September 2007.

Juan Ramén Troncoso-Pastoriza and Fernando Pérez-Gonzélez. FEfficient
Non-Interactive Zero-Knowledge Watermark Detector Robust to Sensitiv-
ity Attacks. In Edward J. Delp III and Ping W. Wong, editors, Security,
Steganography, and Watermarking of Multimedia Contents IX, San Jose,
California, USA, January 2007. SPIE.

Juan Ramoén Troncoso-Pastoriza and Fernando Pérez-Gonzélez.  Zero-
Knowledge watermark detector robust to sensitivity attacks. In 8th ACM
Multimedia and Security Workshop, pages 97-107, Geneva, Switzerland,
September 2006. ACM.

1.2.1.3. Patent Applications derived from the work performed in this

P1

thesis

Title: METHOD AND APPARATUS FOR SECURE IMAGE PROCESS-
ING
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P2

P3

P4

P5

P6

USPTO Application No: 61/596151

Filing Date: 08/02/2012

Inventors: J.R. Troncoso-Pastoriza (Vigo, Spain), F. Pérez-Gonzalez (Vigo,
Spain)

Assignee: Gradiant

Title: METHOD, APPARATUS AND SYSTEM FOR SECURED ADAP-
TIVE FILTERING

USPTO Application No: 61/443823

Filing Date: 17/02/2011

Inventors: J.R. Troncoso-Pastoriza (Vigo, Spain), F. Pérez-Gonzélez (Vigo,
Spain)

Assignee: Gradiant

Title: CRYPTOGRAPHIC SYSTEM FOR PERFORMING SECURE
COMPUTATIONS AND SIGNAL PROCESSING DIRECTLY ON EN-
CRYPTED DATA IN UNTRUSTED ENVIRONMENTS

USPTO Patent Application No: 61/240177

Filing Date: 04/09/2009

Inventors: J.R. Troncoso-Pastoriza (Vigo, Spain), P. Comesana-Alfaro
(Vigo, Spain), F. Pérez-Gonzalez (Vigo, Spain)

Assignee: Gradiant

Title: CRYPTOGRAPHIC SYSTEM FOR PERFORMING SECURE IT-
ERATIVE COMPUTATIONS AND SIGNAL PROCESSING DIRECTLY
ON ENCRYPTED DATA IN UNTRUSTED ENVIRONMENTS

USPTO Patent Application No: 61/240179

Filing Date: 04/09/2009

Inventors: J.R. Troncoso-Pastoriza (Vigo, Spain), P. Comesana-Alfaro
(Vigo, Spain), F. Pérez-Gonzalez (Vigo, Spain)

Assignee: Gradiant

Title: CRYPTOGRAPHIC SYSTEM FOR PERFORMING SECURE IT-
ERATIVE MATRIX INVERSIONS AND SOLVING SYSTEMS OF LIN-
EAR EQUATIONS

USPTO Patent Application No: 61/240181

Filing Date: 04/09/2009

Inventors: J.R. Troncoso-Pastoriza (Vigo, Spain), P. Comesana-Alfaro
(Vigo, Spain), F. Pérez-Gonzalez (Vigo, Spain)

Assignee: Gradiant

Title: CRYPTOGRAPHIC SYSTEM FOR PERFORMING SECURE
COMPUTATIONS AND SIGNAL PROCESSING DIRECTLY ON EN-
CRYPTED DATA IN UNTRUSTED ENVIRONMENTS

EPO Patent Application No: EP10175467

Filing Date: 04/09/2009
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Inventors: J.R. Troncoso-Pastoriza (Vigo, Spain), P. Comesana-Alfaro
(Vigo, Spain), F. Pérez-Gonzalez (Vigo, Spain)
Assignee: Gradiant

P7 Title: METHOD AND A SYSTEM FOR PERFORMING AN OBLIVI-
OUS QUERY ISSUED BY A FIRST PARTY ON A STRING PROVIDED
BY A SECOND PARTY
International Application No.: PCT/IB2008/051771
Application Date: 08/05/2007
Inventors: S. Katzenbeisser (NL), J.R. Troncoso-Pastoriza (NL), M.U. Ce-
lik (NL)

Assignee: Koninklijke Philips Electronics N.V.

1.2.2. Contributions

The main contributions that stem from the work performed during the re-
search period covered by this thesis can be summarized in the following points,
that also indicate between brackets the produced publications related to each of
them:

1. A set of novel privacy-preserving primitives has been produced using Signal
Processing in the Encrypted Domain techniques, addressing general inter-
est problems like point inclusion, automata execution, solving systems of
linear equations, error-resilient approximate matching and searching proto-
cols, together with related subprotocols (mainly zero-knowledge proofs) of
independent interest. A thorough time and bandwidth complexity analy-
sis has been performed on these protocols, showing their efficiency as well
as their security in the random oracle model with semi-honest adversaries
(C9,C10,C11,P3-PT7)

2. This work also establishes a framework for the problem of secure adaptive
filtering with semi-honest parties, nuclear in signal processing applications
with privacy constraints, providing a fair comparison among different pro-
posed strategies in terms of bandwidth, time complexity and error propa-
gation, and solving the cipher blow-up problem through novel quantization
interactive subprotocols, as well as proposing efficiency improvements for
the used additive homomorphic cryptosystems that do not hinder their se-
curity (J2,C3,P2).

3. Several previously identified application scenarios for privacy-preserving sig-
nal processing have been tackled, mainly biometric recognition and biomed-
ical signal processing; this work provides novel efficient solutions for DNA
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approximate searching with incomplete templates in a privacy preserv-
ing way, as well as secure watermarking detection protocols for symmet-
ric key schemes, through the use of zero-knowledge protocols in a detec-
tion algorithm showing improved robustness against sensitivity attacks,
one of the most powerful attacks against common watermarking systems
(J3,J4,C10,C12,C13,P7).

4. A framework and a conceptual high level architecture are provided for pri-
vate signal processing in Cloud environments, treated as untrusted envi-
ronments; this framework allows for the possibility of a fully private out-
sourced processing in Cloudified applications, targeting mainly medical
Clouds (C2,C4,C5).

5. This work also presents a novel and original solution for privacy-preserving
videosurveillance applications; this solution does not employ encrypted pro-
cessing, but a DRM system combined with a smart use of video coding
standards, to reverse the typical way in which DRM is used and provide an
integral privacy protection and user management system for videosurveil-

lance (C8).

6. Finally, future fully private and noninteractive encrypted processing is fore-
seen through the use of fully-homomorphic cryptosystem, providing an ex-
tension to current schemes that allows for a reduction in cipher expansion;
its performance is showcased in a biometric application tackling private
face recognition with encrypted faces, templates and parameters, in which
a novel model for Gabor coefficients is presented and evaluated in terms
of goodness of fit and used for applying an optimal coefficient quantization
that leads to a huge plaintext reduction without hindering the recognition
performance (J1,C1,C6,C7,P1).

1.3. Outline

This thesis summarizes the research work done in SPED and structures it in a
comprehensive way, following a bottom-up approach, going from very specific low-
level primitives (point inclusion, linear equations solving, automata execution),
to a general framework covering a whole field in signal processing (secure adaptive
filtering), and a high level architecture for generic applications in a non-trusted
environment (Secure Cloud) together with other application-oriented solutions
covering secure watermarking or medical scenarios. Finally, the last chapters
also point to other directions for privacy protection besides SPED (like the use
of DRM) and give a glimpse on how future fully homomorphic cryptosystems
can revolutionize the unattended and interactive private encrypted processing,
exemplifying it in a biometric application.
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The remaining chapters of the thesis are structured as follows:

s Chapter 2 shows several generic low level secure primitives applicable in a
privacy-aware scenario to problems like linear algebra (iteratively solving
systems of linear equations) and determining point inclusion in a specified
region. Some of the numerous applications of these primitives are also
shown in this chapter.

s Chapter B presents the problem of Adaptive Filtering with privacy con-
straints and compares several protocols combining the available privacy
techniques in terms of the tradeoff computational load-bandwidth-precision,
and proposing solutions to the cipher blowup problem.

» Chapter Ml presents several application scenarios for which specific privacy
preserving solutions are proposed, dealing with zero-knowledge watermark
detection, Cloud Computing privacy-preserving architectures, an medical
applications addressing the concept of Private Medical Clouds or secure
systems for DNA queries.

» Chapter Bl introduces other privacy-aware scenario dealing with multimedia
signals: videosurveillance. This chapter takes a different approach as the
previous ones and presents a whole privacy framework based on the use of
DRM and standards-compliant multimedia coding in order to conceal the
sensitive parts of the involved video streams and empower the users with
the control of their private data.

= Chapter [0l presents a double contribution targeted towards private biomet-
ric authentication; on the one hand, it provides a novel model for Gabor
coefficients extracted from face images that allows for better feature com-
pression with almost no impact in face recognition performance, and pairs
it with a fully private authentication system based on a novel extension of
a fully homomorphic cryptosystem by Gentry, opening the door to a fully
noninteractive private system for outsourced processing of sensitive data.

= Chapter [ enumerates and elaborates the conclusions that can be drawn
from the concepts introduced in this thesis, and also points out the future
research lines that they open.



Chapter 2

Generic Secure Primitives

This chapter deals with three important basic primitives in signal
processing: the multidimensional point inclusion problem, the solu-
tion of systems of linear equations—introducing the cipher blow-up
problem for iterative algorithms, that is fully developed in the next
chapter—, and the secure execution of finite automata. Finally, some
basic elements, mainly comprising zero-knowledge proofs and secure
subprotocols, that will be used as building blocks in the following
chapters are presented also in the Appendices.

Many signal processing applications reduce to a multidimensional
point inclusion problem where two participants decide whether a point
known to the first lies inside a region specified by the second. In a
secure solution, neither party gains knowledge about the other’s in-
put. For instance, in biometric authentication the client can prove his
identity without disclosing his biometric. In this chapter, we present
a new primitive for securely solving the multidimensional point inclu-
sion problem. Using this primitive, we first propose an efficient and
provably secure protocol that solves the problem for an N-dimensional
convex region bounded with hyperplanes. We subsequently extend the
protocol to inclusion in multiple hyperellipsoidal regions. Consider-
ing possible reduction strategies such as input packing, we analyze
the complexity of both protocols.

In the second part of the chapter, we also propose novel privacy-
preserving protocols for the solution of Linear Systems of Equations,
that improve on previous contributions in terms of security; we present
secure implementations of iterative algorithms, pointing out the diffi-
culties that arise when dealing with iterative operations on encrypted
data, and proposing possible solutions to these shortcomings.

Finally, the third part of the chapter presents an error-resilient
privacy-preserving automata execution protocol, with many applica-
tions, like string searching or private DNA queries (see Section [.4]).

17
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This protocol checks if a short template, known to one party, is present
inside a sequence owned by another party, accounting for possible er-
rors and without disclosing to each party the other party’s input. Each
query is formulated as a regular expression over a finite alphabet and
implemented as an automaton. As the main technical contribution,
we provide a protocol that allows to execute any finite state machine
in an oblivious manner, requiring a communication complexity which
is linear both in the number of states and the length of the input
string.

The work shown in this chapter has been partially presented
at ACM MMSEC’07 [230], CCS 2007 [221], and SPEED Work-
shop 2009 [220], and some of the technical developments have
been filed as patent applications (Patent pending, Application No.
61/240177, 61/240179, 61/240181, EPO EP10175467, and PCT
PCT/IB2008/051771).

2.1. Introduction

In the privacy preserving computation framework that this thesis covers, sev-
eral proposals have been recently issued to implement primitives like secure access
to encrypted databases [51),209], transcoding of an encrypted signal without prior
decryption [135], or basic problems in computational geometry, such as computing
scalar products [I06] or solving the point inclusion problem for the 2-dimensional
case [32].

The point inclusion problem refers to deciding whether a point lies in a certain
spatial region. It is related to point location in computational geometry, which
has been investigated for two-dimensional spaces for more than twenty years [83]
optimizing the algorithms for achieving subpolynomial search time and storage.
For more than two dimensions, the point location problem is still open, except for
the case of arrangements of hyperplanes [58], convex subdivisions [I88], special
convex polytopes [153], and other subdivisions that allow efficient point location.

Point inclusion is an underlying problem in many common signal processing
applications that must be run in untrusted environments; however, it rarely deals
with 2-dimensional signals, but with multidimensional ones. For instance, in the
case of biometric authentication, the biometric data (a feature vector embodying
a point in a multidimensional space) that is presented by an individual must be
matched with some template (represented by a region of acceptance in the space)
that is held by a server, but both parties do not want to disclose their respective
inputs to the other party.

Additionally, the efficient protocols presented up to now in the field of sig-
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nal processing in the encrypted domain have been focused in linear operations,
like scalar products, and non-iterative algorithms. Nevertheless, there are many
basic algorithms needed for most signal processing applications that are itera-
tive and involve not only scalar products with known values, but also products
between two a priori unknown sequences. The lack of these algorithms would
suppose missing a powerful and irreplaceable tool that enables almost any signal
processing application.

In this chapter, we first present an efficient and provably secure two-party
protocol for solving the point inclusion problem in a convex region bounded by
hyperplanes in N-dimensional space. In our construction, we use the public key
encryption scheme of Paillier [I77] for concealing the input coordinates of the
point, compute the relative position of this point and each of the hyperplanes
under encryption, use the BITREP gate [199] to extract the result for each hyper-
plane, and merge them again into the binary decision. Our primitive can also
be extended to multi-party scenarios, as well as to non-convex regions, as every
non-convex region can be expressed as the disjoint union of convex regions. We
perform a full complexity analysis for the whole protocol, including the BITREP
subblock.

For dealing with unconnected regions, we also present an extension of our
construction to regions specified as the union of several hyperellipsoids, with the
same privacy properties as the former one. As a special case, our protocols also
yield a solution to the 2-dimensional problem, resulting in a much more efficient
and secure solution than the one proposed in [32].

We also cope with the problem of interactive algorithms in signal processing,
and present efficient and provably secure two-party protocols for solving linear
systems of equations and inverting matrices, useful for many applications (e.g.
least squares minimization), implementing also iterative algorithms, and calcu-
lating the needed cipher size to accommodate a given number of iterations. We
also perform a full complexity analysis of the presented protocols.

Finally, we present an efficient (amortized linear time) protocol for the obliv-
ious execution of a finite state automaton; Section 4] will show how it can be
used to solve the problem of oblivious approximate string matching and search-
ing, allowing a maximal number of symbol errors, insertions and deletions. We
extend it also to automata with non-binary output (Mealy and Moore machines),
used in applications such as text parsing, computational linguistics and speech
recognition.

The rest of the chapter is organized as follows: Section surveys related
previous work, and describes the building blocks and required concepts for the
implementation of our protocols. In Section 2.3 we present a protocol for secure
point inclusion in an N-dimensional polytope, and extend it to cope with non-
connected hyperellipsoidal regions. A complete complexity analysis is undertaken
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in Section 234l Section [2.4] sketches our protocols for secure linear algebra and
gives their measures of complexity. Section [2.4.4] evaluates the given complex-
ity measures for a specific construction, gives some examples of use and, for the
iterative protocols, plots bounds to representable numbers as a function of the
performed iterations, focusing on the trade-off among the three considered param-
eters: complexity, representability and number of iterations. Section presents
a privacy preserving protocol for the execution of finite automata, whose com-
plexity is evaluated in Section 2.5.2} the protocol is also extended to transducers
keeping the same order of complexity, and its security is analyzed in Section 2.5.4l
Finally, Section 2.6l summarizes the obtained results and sketches the future lines.

2.2. Preliminaries

In this section, we briefly survey the related work and explain the building
blocks needed for implementing our protocols.

2.2.1. Related Work

To the best of our knowledge, the only proposal for solving the problem of
point inclusion through secure two-party computation was presented by Atallah
and Du [32)] for a two-dimensional problem where the region is a convex polygon.
The authors develop two primitives, namely a protocol for privately computing
the scalar product of two values, and a vector dominance protocol that privately
tests whether all components of one vector are greater than the components of
another vector. The latter protocol is based on several parallel executions of
Yao’s millionaires’ protocol. Finally, they require a method of equality testing.
The protocol by Atallah and Du has been recently used in [197] for privately
determining the positioning on the sensing area of a pervasive sensor network.

Atallah and Du’s solution has several drawbacks. The first problem is related
to their protocol for privately computing the scalar product. As pointed out
in [243] and [106], it does not preserve privacy. With a simple attack one of
the parties can, with a probability close to 1, retrieve the private input of the
other party after a single execution of the protocol. The second drawback is the
inefficiency of their vector dominance protocol, as it involves several executions of
Yao millionaires protocol. Finally, the protocol they propose for equality testing
only works when using a commutative deterministic encryption, which cannot
achieve semantic security.

Regarding the problem of privately solving linear systems of equations, there
was a previous approach by Du and Atallah [86]. In that work, the authors
presented the problem of solving a linear system with a matrix and an independent
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vector partitioned between two parties. They provided a solution based on secret
sharing, but the privacy that it achieves is not total; as later works have shown (cf.
Wright and Yang [243]), their protocol for secure multiplication leaks information
about the multiplied matrices, and it also relies on a security parameter that
largely increases the needed communication in order to achieve a determined
level of concealment on the multiplied values. It is also worth mentioning that
Cramer and Damgard proposed in [70] a solution to distributed linear algebra
problems, coping with finite fields; on the contrary, this chapter gives solutions
to problems posed in R".

The protocols presented in this chapter improve on previous work in terms of
achieved privacy, practically limiting the leak of information to the inherent leak
produced by the disclosure of the solution of the point inclusion or of a SLE.

Regarding prior work in the field of Signal Processing in the Encrypted Do-
main, we are not aware of any previous solution for securely executing iterative
algorithms, nor any study performed on the impact that an iterative implemen-
tation has on the range of representable numbers. Hence, this chapter presents
the first solution for privacy preserving iterative algorithms, that is further de-
veloped and studied in the next chapter, within the framework of secure adaptive
filtering.

As for the problem of oblivious automata execution, to the best of our knowl-
edge there is no prior work dealing with it; the closest problems are approximate
string matching and searching; for the latter, a short sequence @ (the pattern) is
searched in a longer sequence y, while tolerating Edit errors (insertions, deletions
and substitutions of symbols): if an approximate match (using the Edit distance
as metric) is found between the pattern & and some substring of y, the search will
report a positive answer. The problem of approximate string matching can be
seen as a special case of searching when the length of the pattern and the length
of the sequence y are approximately equal (up to insertions and deletions of a
certain number of symbols). These two problems and the application of automata
for solving them will be described in more detail in Chapter [l

Approximate string searching is one exemplary instance where generic SMC
solutions yield to particularly inefficient protocols; this is mainly due to the need
for error-resilience in the search process. Furthermore, approximate searching
through automata execution is a highly asymmetric problem, in the sense that
only one party (the server) knows the function that is evaluated (the automaton),
whereas the other party (the client) holds the corresponding input. From a higher
level perspective, both parties agree on some specific functionality (i.e., a class
of functions), while the specific function to be evaluated is considered a private
input of one party.

To the best of our knowledge, only the work in [33, B4] gives an efficient
solution for a problem akin to privacy preserving approximate string searching.
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In that work, the authors present a protocol for privacy preserving Edit distance
evaluation. The calculation of the Edit distance is performed through a dynamic
programming algorithm [42] that achieves linear time complexity in the product
of the lengths of the compared sequences. The authors of [33, 34] implement
an oblivious version of the dynamic programming algorithm that achieves the
same order of complexity. If a threshold in the number of admissible errors is
established, their protocol can be regarded as a solution to a particular instance of
the problem of approzimate string matching. As a central tool in the construction,
the authors run an instance of Yao’s Millionaire’s problem at each step of the
dynamic programming algorithm, making the solution inefficient in practice.

The protocol in [33, B4] can be extended to solve the approzimate string
searching problem as well. However, the number of comparisons involved in
the dynamic programming algorithm grows with the product of the length of the
strings. The solution proposed in this chapter completely avoids comparisons
of encrypted values, thus overcoming this scalability problem. Furthermore, our
solution is more general, as it is not limited to approximate matching or searching,
but can be applied to any finite automata, and, therefore, any regular expression
matching problem in sequences formed by symbols of a finite alphabet.

For solving the posed problem, we use secret sharing [61], homomorphic en-
cryption and 1-out of-m oblivious transfer OT?* [168], and develop a specific
protocol for the secure evaluation of a finite automaton. Finally, it must be
noted that trying to address the private execution of finite automata through the
adaptation of generic constructions for secure function evaluation (e.g., Gener-
alized Indirect Indexing [167) [166] or Mix and Match [130]) poses several prob-
lems, as these primitives cannot efficiently index two-dimensional matrices. For
a straightforward application of these techniques, the state transition matrix of
the automaton must be flattened, and in each processing step an amount of data
equivalent to the whole matrix must be transferred between both parties. This
results in a communication complexity of O(N -|Q|-|X]) (cf. Section Z2.2.4). In
contrast, the solution of Section achieves a communication complexity that is
both linear in |Q| and |X|.

2.2.2. Building Blocks

In this section, we introduce some of the concepts employed in the rest of the
chapter, namely threshold homomorphic encryption, secret sharing, the BITREP
protocol and the formal definition of finite automata.
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2.2.2.1. Threshold Homomorphic Encryption

In this chapter we do not restrict the used cryptosystem for the presented
protocols, as far as it presents an additive homomorphism. For the sake of clar-
ification, and for performing the numerical complexity calculations, we will use
either the Paillier cryptosystem [177] or its Damgard-Jurik extension [79], both
in its threshold and non-threshold form; hence, Ep(z) and Dp(z) (resp. Eps(zx)
and Dp;(z)) will denote the encryption and decryption operations on x.

A k out of M threshold public key encryption system [84] is a cryptosystem
where the private key is distributed among M parties, and at least k of them are
needed for decryption. Damgard and Jurik’s cryptosystem presents an additive
homomorphism that allows computing the addition of two encrypted numbers
and the product of an encrypted number and a public integer:

[v +vy] =Epslx +vy] = Eps[z] - Epsly] mod n*™,
[z - k] =Eps[z - k] = Eps[x]® mod n*™.

As multiplications cannot be performed homomorphically, we will use in our
constructions the two-party version of one existing subprotocol for securely per-
forming multiplication; it is sketched in Appendix 2.Cl

The message space is Z,s, where n is the product of two safe primes p, ¢, and
the parameter s is fixed. Unless the contrary is explicitly said, we will use s =1
(regular Paillier) throughout the chapter.

The encryption of a message z is obtained by picking a random r € Z .., and
computing the ciphertext Ep [z] as

Epslx] = ¢"r™  mod n*™.

For the threshold decryption of ¢ = Ep;[z], every party calculates a decryp-
tion share with his share of the secret key. These decryption shares are distributed
among all the parties, and combined to obtain the wanted decryption. In case
of malicious parties, they must also generate a zero-knowledge proof [205] for
the correctness of the decryption share. For further details, we refer the reader
to [79].

We must again draw attention to the fact that currently there is no practical
fully homomorphic cryptosystem, that is, there is no secure cryptosystem that
allows for the homomorphic computation of additions and products without re-
strictions. There have been recent contributions by Gentry [104], that present
a cryptosystem based on ideal lattices with bootstrappable decryption, and it
is shown that it achieves a full homomorphism. Nevertheless, the authors ar-
gue that making the scheme practical remains an open problem. Thus, until
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Chapter [6], we will adhere to using an additively homomorphic cryptosystem and
briefly comment the advantages that an efficient and practical fully homomorphic
cryptosystem would provide.

2.2.2.2. Secret Sharing

Secret sharing is a technique introduced by Adi Shamir [202], by which a given
value (the secret) is divided among several parties, such that the cooperation
among a number of these parties is needed in order to recover the secret. None
of the parties alone can have access to the secret.

Shamir’s scheme is based on polynomials, and the need of k points in order
to completely determine a degree (k — 1) polynomial. Secret sharing is a widely
used primitive in cryptographic protocols. In this work we focus on two-party
protocols; thus, we are only interested in the two-party version of the secret
sharing scheme, that is based on linear functions and, consequently, it naturally
supports the computation of sums and products directly on the shares: let Z,, be
the domain of the secrets. Then, a share of a secret x is defined as two values
x4 and zpg, owned by their respective parties, such that r4 + g = z mod n.
Hereinafter, randomizing an encrypted value x will mean obtaining one share and
providing the encryption of the other (through homomorphic addition).

2.2.2.3. BITREP Protocol

While homomorphic computation and secret sharing are very efficient for im-
plementing arithmetic operations, circuit evaluation is still more efficient when
dealing with binary tests [77]. Thus, there exist efficient protocols for binary com-
parison [77, [173] or Prefix-OR [77]. Traditionally, the search for efficient solutions
has led to proposals for changing between integer and binary representation in
order to efficiently implement both arithmetic and binary operations; e.g., there
are solutions like BITREP protocol [199], that converts Paillier encrypted integers
to Paillier encryptions of their corresponding bit representation.

The BITREP protocol was presented by Schoenmakers and Tuyls [199], as
a means for securely converting a Paillier encrypted [-bit number into [ Paillier
encryptions of its individual bits. The protocol is based on random bit gates and
addition circuits, and comes in two variants:

= The first one, called BITREP gate, performs bit extraction for any number
in Z,,, using an information-theoretic blinding of the given number through
additive randomness jointly generated among all the parties, and two addi-
tion circuits.
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= The second one, called LSBs gate, is a light version of the previous one,
that substitutes the information-theoretic blinding by a statistically indis-
tinguishable one, with a security parameter k, that imposes a bound on the
bit-size of the input number. To use the protocol, each input must be at
least k bits smaller than the modulus. In this way, the most costly circuit
evaluation is eliminated, and the efficiency is greatly improved.

In the following, the bit-extraction gate will be referred to as BITREP, inde-
pendently of its implementation. The distinction between BITREP and LSBs will
only be made explicit in the complexity analysis of Appendix 2.Al

2.2.2.4. Finite Automata

A deterministic finite automaton [123] (or finite state machine, FSM) is de-
noted by a 5-tuple M = (Q, %, A, qo, F'), where @ is a finite set of states, X is
a finite input alphabet, ¢y € @ is the initial state, I C @ is the set of final
states, and A denotes the transition function. Without loss of generality, we
restrict ourselves to ‘complete’ finite automata, where it is possible to make a
transition at each state with every input symbol (each FSM can be transformed
into an equivalent complete automaton by adding a sink state). We represent
the states as integers in Zqg|, the inputs as integers in Zy|, and the transition
function as a matrix A € My||g|(Zq|), such that A(i,j) represents the next
state when the FSM sees an input ¢ € ¥ and is in current state j € (). A string
T =202 ...7nv_1 € UV is said to be accepted by the finite automaton M if the
state

an = A(--- A(A(qo, w0), 71) - -+, oN-1)
is a final state gy € F.

The language accepted by a finite automaton M is the subset of all strings
from X* it accepts. It is known that the sets accepted by FSMs and regular
sets coincide. Thus, for every regular expression there is a finite automaton that
accepts only words that match that expression, and vice-versa.

Finite automata can only express decision problems; thus, they are also called
acceptors. The theory of automata has been extended to finite state machines
that are capable of producing a string over a finite alphabet II as output. Au-
tomata with non-binary output are called transducers, and they can be classified
into two groups:

s Moore machines: At each transition, the automaton produces one symbol as
output, being this a function of the current state of the machine. Formally,
a Moore machine is a 6-tuple (Q, X, I1, A, X, qo), where @, 3, A, go have the
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same meaning as for FSMs. II denotes the output alphabet, and A € 119l is
a vector whose components A(q) encode the output symbol of the machine
at a given state q.

s Mealy machines: At each transition, the automaton produces one output
symbol, which can depend on the transition taken. Formally, a Mealy
machine is a 6-tuple (Q,%, 11, A A, qy), where Q, %, A, gy have the same
meaning as for FSMs. II denotes the output alphabet, and A € M5« q((II)
is a matrix whose components A(a, ¢) encode the output of the machine for
a given state ¢ and input symbol a.

In general, Moore machines are as expressive as Mealy machines; however, a
Mealy machine may need a smaller number of states than its equivalent Moore
machine.

2.3. Point Inclusion Protocol

This section is devoted to the development of secure protocols for the point
inclusion problem in two different cases. Firstly, we address the case of a convex
region whose boundary is given by hyperplanes. We then address non-connected
regions given by several hyperellipsoids. As a final remark, we point out how
the problem of Vector Dominance, that can be seen as a subproblem of point
inclusion in our construction, can be solved by employing the same technique as
for the two main protocols.

2.3.1. Convex Region bounded by Hyperplanes

We present a two-party protocol that implements a privacy preserving solution
to the point inclusion problem. The employed method for determining the point
inclusion assumes convex polytopes, but it can be easily extended to non-convex
polytopes just by taking into account that any polytope can be expressed as a
disjoint union of convex polytopes. As we are working in an N-dimensional space,
vectors will have length N.

The problem can be stated as follows: Let S be a convex polytope in an N-
dimensional space that is delimited by K hyperplanes given in Hessian normal
form {n,Tn:I: = —n}fz;é, with their normal vectors heading toward the inner region
of S. Each hyperplane defines a hemispace S, = {x € R" | nT = +n < 0}, such
that S = N,,S,,. The scenario comprises two parties: Alice, who has a point

a = {a;}1*,", and Bob, who has the description of the region S. Alice wants to
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check if a € §, without disclosing any knowledge of the coordinates of a to Bob,
and without getting any knowledge of the description of S.

The clear-text algorithm for solving the posed problem consists in checking
the position of the point with respect to each of the hyperplanes: if a € S,,,, Vm =
., K, which can be checked by computing the inner product between the point
and the normal vector of each plane and adding the corresponding offsets, then
the point lies inside §. The time efficiency of this algorithm can be optimized:
once a hyperplane that leaves the point outside of the bounded region is found, the
algorithm stops without computing the remaining scalar products (in such a case,
this algorithm is the most efficient one also for the two-dimensional point inclusion
problem in convex polygons of small area). However, a direct implementation of
this stop-test is not possible in our scenario, as it would leak too much information
about the position of the point w.r.t. individual hyperplanes.

We assume semi-honest parties in this section, i.e. we will consider that the
parties honestly execute the protocol even though they may record all inter-
changed messages and try to deduce information about the secret input of other
parties. We will indicate also the modifications needed for considering malicious
parties in Appendix 2.Bl Assuming that Alice’s point will be at most at a dis-
tance of 7 = 2! units from each of Bob’s hyperplanes, Bob can pack his planes in
only one vector Mnpackea and one offset npacked, €xpressed as

Npacked = Z Ny - m(+) (2 1)

and
K—1

Tlpacked Z —Tim + 2 2m(l+1)’

m=0

where the displacement by 2! represents a shift to work only with positive num-
bers. Note that this packing codes the sign of the [-th computed distance in the
(I + 1)-th bit, being 0 in case the given coordinates are inside the considered
hemispace S,,, and 1 otherwise.

The packing can be done before the execution of the protocol. Thus, if each
signed distance requires at most [ + 1 bits, the maximum number of hyperplanes
that can be packed together is

[log, 7]
< Tl (2.2)

Intuitively, the protocol computes the scalar product of Alice’s coordinates
and each of the hyperplane normal vectors and adds the corresponding offset,
storing the sign of the distance between the point and the m-th hyperplane at
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the (m(l 4 1) + 1 4 1)-th bit of the resulting encrypted number. Then, all these
bits are extracted with the BITREP gate and combined to form the answer.

More formally, Alice and Bob engage in the following protocol:

1. Alice encrypts the coordinates of her point a using a threshold Paillier
cryptosystem to obtain a vector

{Epla]}5" = {g¥r} mod n*} 1,
and sends it to Bob.

2. Bob calculates the signed distance from Alice’s point to each of the K
hyperplanes, performing the scalar product between the point a and each
of the hyperplane normal vectors m and adding the respective offset to
obtain a packed distance

T
dpacked = npacked -a+ Tlpacked -

This operation can be done under encryption by employing the homomor-
phic properties of the cryptosystem, applying a rerandomization given by

r':

EP [dpacked] = T/)n : EP [npacked] :
N-1
(EP [a/i])npacked,i mod n2

=0

The signs for the distances—considering zero as negative, as the polytope
is an open set—to each of the planes are coded in the bits of dpackea as
indicated before

dpacked[m(l + 1) + l]

3. Both parties run the BITREP protocol presented in [I199] on Ep|dpacked] for
getting the bit representation of dpacked, and take the encryptions corre-
sponding to bits numbered {m(l 4+ 1) + 1}~ "} which we will denote as

m=0"

{Eplbml} o = {Erla & Sul}no-

4. In order to determine the number of hyperplanes that leave Alice’s point
outside the polytope one can add the values [a ¢ S,,] to obtain

D

> b

K-1
m=0
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The point lies inside the polytope S if and only if D = 0, as
K-1
acSe |\ (bn) & D=0.

m=0

The encryption of D can be calculated independently by Alice and Bob
using the homomorphic properties of Ep:

Ep[D] = [] Evlbn]

5. Alice and Bob jointly multiply the encrypted number Ep|[D] by a random
number r = r4 - rg, where r4 and rp are random choices of Alice and Bob
respectively.

6. The result of the previous blinding Ep[D-r mod n] is jointly decrypted by
both parties to obtain a zero value in case a € S, or a random (uniformly
distributed) value in case this condition is not fulfilled.

The protocol can be proven secure, as all private inputs are encrypted and the
semantic security of the cryptosystem guarantees no information leakage about
these values. Furthermore, [199] proves the security of BITREP. Given this prop-
erty and the statistical indistinguishability of the encrypted values, the view for
each party can be straightforwardly simulated without interacting with the other
party; this simulation has indistinguishable distribution from real interactions,
thus showing the security of the whole protocol.

The packing (2.I) bounds the number of possible hyperplanes that can be
used to describe the geometrical region by K < Uoli—anj. In a typical scenario,
with modulus size of 1024 bits and 32 bits for the magnitude of the distances
(d € [—2%,232 —1]), 31 hyperplanes can be used. If the region is defined by more
hyperplanes, there are two possible solutions:

» Use Damgard-Jurik encryptions [79], with Z,. as the clear-text domain
instead of Paillier encryptions. This would allow LSII‘%"J hyperplanes, at

the cost of having a longer and more complex BITREP protocol.

» Perform steps (1)-(3) of the protocol in parallel, each time packing at most
K hyperplanes together and combining all extracted bits in step (4). This
solution is more efficient than the previous one, as will be seen in Sec-

tion 2.3.41

Though the previous exposition has been done for a two-party protocol, it
can be generalized to allow multi-party sharing of the boundaries of the region
S among several servers, or of the coordinates @ among several clients, just by
extending the number of parties required for decryption.
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2.3.2. Extension to Hyperellipsoidal Regions

In this section, we show how the protocol of Section 2.3.1] can be extended to
regions specified by hyperspheres or hyperellipsoids. In the case of hyperspheres,
the server possesses K centroids in an N-dimensional space (with their respective
coordinates {b,,}2 ! and the squared radius of the closed balls centered at them

{p2 YE=1). The client wants to know if her point a is inside one of those balls.

The modified protocol can be applied to group authentication, in which there
are several acceptance regions, and the features of the client must be tested for
inclusion in all these regions to find if it lies inside one of them.

Hyperelliptical regions can be coped with by applying a strain ; to each of the
dimensions in order to transform the hyperspheres in hyperellipsoids, such that
the i-th dimension semiaxis of the m-th hyperellipsoid has a length l,, ; = py/Vim.i-

The point a lies inside the m-th hyperellipsoid if the following condition is
satisfied:

(Diag(vm) - (@ = byn))" - Diag(ym) - (@ = by) < py, &

N-1
> vmalai —bmi)* < pl, & (2.3)
i=0
N-1 N-1 N-—1
- Z ’YrQn,ia? + Z 2bmﬂ§i,@-ai + i — Z (’Vﬁubfm) > 0.
N =0 . \i:O . i=0 B

The strains can be generalized to any linear transformation, just by substi-
tuting the strain diagonal matrix by a full matrix; this would correspond to the
case in which it is necessary to eliminate linear dependencies among the features,
and this operation has to be performed in the encrypted domain.

To solve the hyperelliptical point inclusion problem, one can use the following
modified version of the protocol of Section 2.3.1k

1. The server packs the coordinates of the centroids, the radii (including the
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squared values of the centroids), and the strain vector

K-1
2b;acked =2 Z Diag(vum) - by, - 2m(l+1)7

m=0
K—

=3 (v b 2) 2,

m=0

K-1
7§acked = — Z Ym 2m(l+1).
m=0

—_

12
P packed

2. The client encrypts her coordinates and the squared value of her coordinates
with the threshold Pallier cryptosystem, and sends both vectors Epla] and
Epla?] to the server.

3. The server computes the signed distance of the client’s coordinates to each
of the hyperellipsoidal surfaces according to (2Z3]), where the points on the
hyperellipsoid are considered inside the accepted region, as it is a closed
set. The distances are packed into

- 2 T 2 /T 72
dpacked - <7packed) ra”+2b packed a-+p packed*

This operation can be done under encryption by

N-1
EP[dpaCked] = "L';Z . <H (Ep[a?])/‘/gzmked,i> .

=0

(1__[ ( Ep[ai])%;ackcd,¢> .

1=0
/2 2
Ep[p packed] mod n”.

After these computations, the rest of the protocol comprises steps 3 to 5 of
the one in Section 2.3.1 with a different interpretation of the obtained result:
D = 0 means that the client’s coordinates are not within one of the acceptance
regions, whereas D # 0 means that the coordinates are inside one (or more) of
the acceptance regions.

2.3.3. Vector Dominance Problem

The two-party secure vector dominance problem, also referred to as multidi-
mensional Yao’s millionaires problem, was first addressed in [32], and consists of
the private comparison of two vectors ¢ and b, each one owned by one of the par-
ties participating in the protocol, in such a way that the output of the protocol
is the binary value of



32 2.3. Point Inclusion Protocol

C>-bE/\(c,->bi).

%

During the execution of the protocol, no other information must be dis-
closed, such as the values of the vector components or the indexes for which
¢; # b;. Several protocols have been proposed to solve this problem. Atallah and
Du [32] use parallel executions of Yao’s Millionaires’ protocol for each component,
with a blinding of each individual comparison. Sang and Shen [197] use prefix-
encoding and a privacy preserving prefix test. At last, the solution proposed by
Ibrahim [127], is based on secret sharing, in particular, a subroutine to transform
multiplicative shares in additive ones, that requires several invocations of 1 out
of 2 Oblivious Transfer; if domination exists, this protocol discloses the sum of
the elements of both vectors.

The protocol presented in Section 2.3.Tl gives an implicit solution to the Vector
Dominance Problem. In fact, the result of the protocol is the answer to

NT.a >~ —n,

where IN is the matrix that has as columns the normal vectors of Bob’s hyper-
planes, and a and 1 have the same meaning as in the previous section. This
means that, given two bounded vectors ¢ and d (with components in the range
[—7,7]), each owned by a party, it is possible to privately determine if one of them
dominates the other if each party packs its own vector (cpacked and bpackea) in the
same way as Bob does with n in (21]), one party sends his packed and encrypted
vector to the other, who subtracts his own vector to this, and both run steps 3
to 6 of the presented protocol in order to obtain the solution to the dominance
problem.

2.3.4. Complexity Evaluation

We analyze both the communication and computation complexity of the pro-
tocols proposed in Sections 2.3.1] and Let N be the dimensionality of the
problem, K the total number of hyperplanes, m = [log,n| the bit size of the
modulus n, s the factor for Damgard-Jurik encryptions, [ the bit-size bound for
distances (|d,,| < 2'), and k the security parameter for the employed BITREP gate.
Finally, the communication (cm), computation (cp) and precomputation (pcp)
complexity for BITREP, as well as its round complexity (Rounds) are the ones
computed in Appendix 2.Al

As mentioned at the end of Section 2.3.1] we consider the case in which only
h of the K hyperplanes are packed together and the steps 1 to 3 of the protocol
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are executed in parallel. This number h is bounded by

h < Lm-s—(k+1)J.

[+1

Thus, the number of BITREP gates that both parties must run (in parallel)

in step 3 of the protocol is [%W, all of them executed on numbers of size n; =
h - (Il + 1) bits, but the last gate, that will be executed on a number of size

=K (5] - 1)

We denote by |Ep| the size of the threshold Paillier encryption. The commu-
nication complexity (cm) for the whole protocol is given by

K
CpXep, = (’7%-‘ - 1) (’EP| + Cchm,BITREP,nl)

+ (N + 5>’EP| + Cchm,BITREP,ng

The round complexity for the whole protocol can also be calculated, resulting
in
Rounds = Roundsgrtrep,min(n, K (1+1)) + Roundsp + 3,

where Roundsp represents the number of rounds needed for a threshold decryp-
tion operation.

Table 2.1] indicates the computation and precomputation complexity for the
protocol of Section 2.3l Taking into account that the server packing operations
can be performed before starting the interaction, as well as some operations in
the client side, as the initial encryptions, the computational complexity for each
party is given by equations (2.4]) and (Z5]), where Cpxy, Cpxp, represent the com-
plexity of encryption and threshold decryption operations, and Cpxy e, Cpxp,,c
denote the complexity of modular exponentiations and products in Z,.. The pre-
computation complexity for each party is indicated in equations (2.0 and (2.7),
where Cpxgyy,, and Cpxy , are the complexity of respectively left bit-shifts and
additions of [log, n]-bit numbers.

For the case of hyperelliptic regions (protocol of Section 2.3.2]), the communi-
cation complexity is

K
Cpxem = (’7%-‘ - 1) (‘EP‘ + Cpxcm,BITREp,m) + (2N +5)|Ep| + Cchm,BITREP,ng'

The round complexity corresponds to

Rounds = RoundsSgrtrep,min(ny,k (1+1)) + Roundsp + 3.
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Table 2.1: Computation (cp) and Precomputation (pcp) complexity for each
party (A,B) in the protocol presented in Section 23]

K
Cpxcp,A = CpXD + (’7;] - 1) Cchp,BITREP,nl + Cpxcp,BITREP,nQ + CpXX,nS‘*'l + (K - 1)CpXP,nS+1 (24)

K
Cpxcp,p = Cpxp + ([*—‘ - 1) CpXcp prmrer,n; T CPXep prTREp,ny

h
K
4[| V410 ot ss + O ) 4 (6 = 1)Cxp o (2.5)
Xpep, A = (’7 —‘ - 1) Cpxpcp BITREP,n; T CPchp BITREP,no T (N +1)-Cpxg (2.6)
Xpep, B — (’7;—‘ ) Cpxpcp BITREP,n1 + CpXE + CpXX nstl + (N + 1)(h ) : CpXSHL,nS
K
+((N+2)h—-1)- Cprn) (N+1)(K—(’VE—‘—1)h—1)~CpXSHL,ns

K
+ CpXpep prmrep,n, + CPxp + CPXX,nS-H + ((N +2) (K - ("ﬁ-‘ - 1) h) - 1) - Cpx g s (2.7)

Table 2.2: Computation (cp) and Precomputation (pcp) complexity for each
party (A,B) in the protocol presented in Section 232

K
Cpxcp,A = Cpr + (’7;—‘ - 1) Cchp,BITREP,n1 + Cpxcp,BITREP,nQ + CpXX,nS‘*'l + (K - 1)CpXP,nS+1 (28)
K
Cpx.p p = Cpxp + Wl 1) CpXcp prrrer,n; + CPXcp p1TREP, 0y
K
17| @GN 1) (Cpxx potr + Cpxp poia) + (K —1)Cpxp ot (2.9)
K
Cpocp,A = Wl 1 Cpocp,BITREP,nl + Cpocp,BITREP,nQ + (2N +1) - Cpxg + NCPXP,nS

K
CpxXpep, B = ([;—‘ - 1) (Cpxpcp,BITREP,nl +Cpxg + Cpxx ps+1 + (2N +1)(h+ N) - Cpxgpp, ns

+(3N + 1)h . CpXP,'rLS + ((SN + 2)h - N - 1) . CpXA,nS) + Cpxpsp,BITREP,ng + CpXE + CpXX,nS+1

e (1= ([5]-0)0) e+ (1 ([£] = 0) 01 -Comann
(v (- ([E]-0)0) - 1) o

Computation (cp) and Precomputation (pcp) complexity is indicated in Ta-
ble 2.2 following the same notation as for the complexity of the previous pro-
tocol. It is remarkable that performing the protocol on a region determined by
K hyperellipsoids is of the same order as the complexity of the protocol for one
polytope bounded by K hyperplanes. In fact, only some of the involved factors
are doubled, so the complexity when using an unconnected region determined
by K hyperellipsoids is less than twice the complexity of using a convex region
determined by K hyperplanes.

In order to observe the behavior that these equations present, it is necessary
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to take into account the complexity of the BITREP subblock (Appendix 2.A]). In
light of BITREP complexity, the following analysis will be based on the use of an
LSBs gate with non-constant number of rounds. Packing will slightly increase the
complexity of this gate, but it will also reduce the computational complexity of
the server.

Table 2.3: Communication (cm), Computation (cp) and Precomputation (pcp)
Complexity for each party (A, B) in the Point Inclusion Protocol with m = 1024,
k = 80 and [ = 40 for packed (k > 1) and unpacked (k = 1) hyperplanes.

cp [10° ops.] | pep [106 ops.]

N| K| h|cm[kB] AT B AT B

Rounds

1001100 1{| 20201]431,26|514,07|265, 69|266, 52 89
20|| 20510(436, 72|440, 88|268,80|268,66| 1647

51100 1{ 20177]431,26(436,21|265, 50266, 51 89
100l 10 1{] 2043, 5(43,156|51,429|26, 755|26, 652 89
10} 2072, 8|43,672]44,495|27,050|26, 855 827

Table gives a glimpse of the complexity of the whole protocol with rep-
resentative values of the parameters, comparing the effect of no packing with
packing the number of hyperplanes that gives the minimum server complexity.
The units employed for computation complexity are modular additions in the ring
Z,,, and we consider that additions have linear complexity O(sn), multiplications
have quadratic complexity O ((sn)?), and exponentiations, cubic O ((sn)?).

The number of packed hyperplanes/hyperellipsoids represents a trade-off be-
tween computation and precomputation complexity at the server side. We can
see that the second term in Cpxp (Eq. (Z.3)) is increasing in h, due to the non-
sublinear behavior of the BITREP complexity, while the fourth term is decreasing
in h. Thus, when N is high, the fourth term (the homomorphically performed
encrypted operations) is the dominating one, what justifies that the h that pro-
duces the minimum complexity is the maximum number of hyperplanes that can
be packed without increasing s; on the other hand, communication complexity
and the computation complexity for the client are still dominated by the BITREP
complexity, so their increase after packing is almost negligible. Nevertheless,
when N is low, the dominating term for server complexity is the second one
(BITREP), so there is no complexity gain with packing.

Finally, as mentioned before, using s > 1 produces an increase in the com-
plexity of every encrypted operation, as the size of the operands is multiplied by
this factor, so a value s > 1 is not justified for this protocol.
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2.4. Secure Linear Algebra

The second block of secure primitives that we address in this chapter consists
in protocols for solving systems of linear equations (SLEs). For all these proto-
cols, we consider two parties, A and B, both using an additively homomorphic
cryptosystem (for whose encryptions we adopt the notation [.]) in an asymmetric
scenario, where A can only encrypt, but B possesses also the decryption key, and
can perform both encryption and decryption. For the problem of solving an SLE
A -x = b [74], we will consider that A owns an encrypted version of the system
matrix [A], and of the independent vector [b]. This scenario can be straight-
forwardly reached from many initial situations, covering all the possible ways of
sharing A and b between both parties. For the sake of brevity, we focus on this
initial situation, and obviate the way of reaching it.

The assumption we make about the system consists in A being either a posi-
tive definite matrix or a strictly diagonally dominant matrix, in order to guarantee
both a solution to the system and the convergence of the studied methods, as will
be detailed later. This assumption is not a severe limitation, as many matrices
found in statistics calculations fulfill it [74].

Regarding the privacy requirements, we will assume that both parties are
semi-honest, in the sense that they will adhere to the established protocol, but
they can be curious about the information they can get from the interaction. In
this scenario, our protocols can be proven private; informally, both parties A and
B can only get the information leaked from the solution to the system, and no
information is leaked from the intermediate steps of the protocols.

As sparsity of the matrices cannot be used as an advantage under encryption,
we will focus only on direct methods for solving linear systems of equations (Sec-
tion 224.0]), and we will not cope with methods based in decompositions of the
system matrix (like LU or Cholesky decomposition). Furthermore, we will also
provide protocols for iterative methods of SLE solving (Section 24.2]) and matrix
inversion (Section 24.3]).

2.4.1. Direct method: Gaussian elimination

Firstly, we will implement the method of Gaussian elimination, using a secure
multiplication protocol (cf. Appendix 2.C]) for implementing the needed multipli-
cations. Due to the lack of a division operation under encryption, the obtained
result vector is scaled, but the scale factors are stored in a second vector s, so
that the solution can be recovered after decryption through a component-wise
division. The protocol ends with two vectors &’ and s, being the solution to the

/
system x; = 2t 1=0,..., L — 1
1
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Let A € Mpy(Z) be a quantized symmetric positive-definite matrix, or a
diagonally dominant matrix, and b € Z* be a quantized column vector. The
quantization step A is such that the absolute value of every quantized element is
upper bounded by a constant 7.

In our scenario, we will assume that B knows the decryption key of an additive
homomorphic cryptosystem, and both A and B can produce encryptions using
this cryptosystem; A possesses the encrypted matrix [A] and the encrypted vec-
tor of independent terms [b]. Both parties will engage in an interactive protocol
in order to obtain the solution @ to the linear system A -x = b. The protocol is
sketched next.

Following the Gaussian elimination algorithm, we will call G = G to the
concatenation of G = [A|b]. The algorithm is executed in L — 1 steps. At each
step k, the matrix G is modified for obtaining an equivalent system G*) in which
the k-th unknown is not present in the last L — k equations.

For the k-th step of the algorithm, the first £k — 1 elements of the L — k+1 last
rows of G¥*=1 are zero; A owns an encrypted version of the non-zeroed elements
of G*=1) ., The secure protocol proceeds as follows

1. A provides randomized encrypted versions of the submatrix C*) formed by
the last (L — k + 2) columns of the last (L — k + 1) rows of G*~Y;

2. B, through decryption and reencryption, calculates the (randomized) prod-
ucts of the (L — k) x (L — k + 1) matrices D®) and E® defined as

[{dg?@ﬂ = [{c((ﬁ)n 41 'Cyi)l,oﬂv and [[eg;)ﬂ = [[cgfg . cz(-i)u H]], and sends the
randomized encryptions to A.

3. A derandomizes the received encryptions and, using homomorphic opera-
tions, obtain the next iteration of G:

[G®] = <{H9§,§nl)ﬂ }Eg,mm> ,

OLfk,k‘ [[F(k)]]

where [F®] is an (L — k) x (L — k + 1) matrix with elements [[ff'ﬁi]] =
[e6] - L]

After L — 1 iterations, A has [G*~V], an encrypted upper triangular matrix
appended to an encrypted vector, that constitute a system with the same solution
as the original one.

In order to solve the system, both parties initiate the process of back substitu-
tion under encryption, consisting in L iterations: in each iteration, an element of
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the vector &’ and the corresponding element of the scale vector s are obtained. As
they will be revealed as the output, and they are needed in order to calculate the
subsequent elements of @', they can be decrypted before the next iteration in or-
der to lower the complexity by reducing the number of the needed multiplication
protocols. For the first step:

1. A sends {[[gl(f DH Ll and [[g(LL 11%]]

2. B obtains, through decryption the scaling vector s, with s; = ZL:T gl(f_l),

and the value 2/, | = géL 1.2 and sends them back to A.

In each subsequent k-th step, A calculates, using homomorphic operations:

L1
(L-1) ; SI
[[$L k]] = gL kL “SL—k+1 — E 91—k 'xls
I=L—k+1 L=k+1

and sends [27,_,] to B to obtain its decryption.

With the proposed protocol, we are not disclosing any element of the original
matrix A nor of the independent terms vector b. Furthermore, every step of
the protocol can be proven secure with semihonest parties, due to the semantical
security of the underlying homomorphic cryptosystem, the security of the used
multiplication protocols, and the fact that all the unencrypted values (besides the
result and the scaling vector) that each party can access are random and uncor-
related. Although the scaling vector reveals the diagonal of the upper triangular
matrix of an equivalent system, which gives information about the eigenvalues of
the original matrix, this information affects L scaled elements out of LH)

It must be noted that having the values of the principal diagonal of the upper-
triangular matrix of the equivalent system yields the possibility of calculating its
condition number, or at least, its bound
max; (|ug;|)

kU) >

min (|ug)

Thus, this disclosure constitutes a clear advantage in terms of conditioning
and efficiency: before executing the back substitution protocol, the rows of G(*)
can be multiplied by appropriate factors in order to lower the condition number
and minimize error propagation due to working with a fixed point precision. Also,
the vector of multiplicative factors s; can be adequately quantized in the clear to
achieve this same goal.
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As a last remark, this protocol does not limit the number N of SLEs sharing
the same system matrix A and with different independent term vectors b; that
can be solved in parallel; all the vectors b; can be appended to the system matrix,
forming a L x (L4 N) matrix Ge,; and in each step of the previous protocol, the
operations that must be performed on the last column of G® will be replicated
for the last N columns of G*)

ext"

2.4.1.1. Complexity

When solving one system A -x = b, the Gaussian Elimination (GE) protocol
is performed in (L — 1) rounds of communication, with total complexity

CpXepmap = (L* + L? — 2)
CPXepapa = % (L? +3L% + 2L — 6) Cpxp+
(2L° +3L* + L — 6) Cpxpy
(L +3L* + 2L — 6) Cpxp+

Cchp,GE,B =

(L? — L) (Cpxg + Cpxp).

wlwlele

The protocol of Back Substitution (BS) is performed in L rounds of commu-
nication, with total complexity

CpXemps = 2L+ (1 + ct)
1 1
CpXeppsa = é(LQ + L —2)Cpxgp + §(L2 — L)Cpxga

Cpxep ps,p = 2LCpxp.

2.4.1.2. Representable numbers

We have assumed that the coefficients of the system matrix A are quantized
versions of the real-valued coefficients, with a quantization step A. Furthermore,
the absolute value of the quantized coefficients is bounded by an integer 7 > 0.
Then, it is possible to estimate the value of 7 needed to fit all the performed
operations inside a cipher that can represent integers in the range [0,n) without
rounding problems.

For the first part of the protocol (the Gaussian elimination), each iteration
multiplies two numbers that were obtained in the previous iteration and adds
them up, so the previous bound gets squared and doubled:

1], [to], [ts], [ta] <7 = [t1 - b2 — b5 - ta] < 277
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Then it is straightforward to conclude that all the elements of the k-th row
of the resulting G*~ will be bounded by (22" ~1)72", and will constitute the
representation of their real-valued equivalents, quantized by A2 Thus, the
cipher must be such that n > (22" ~1)72" in order to fit all the numbers involved
in this protocol. This means that the bit size of the modulus of the cipher must
grow exponentially with the dimensionality of the system, what gives a poor
scalability.

For the second part of the protocol, after the diagonal elements are disclosed,
they can be requantized in order to make them relative to the lowest scale and
lower the bit-size requirements of the cipher; but in the worst case, without
requantizing the scale factors, the largest number present after running the whole
protocol will be 92" —L—1:2" =4 That will also constrain the size of the cipher.

2.4.2. Iterative methods: Jacobi’s Method

The general form of stationary iterative methods for solving SLEs is

2* ) = pr.2® e

Jacobi’s method is a particular case of stationary iterative methods, where
the system matrix is decomposed into A = D(L + I 4+ U), a diagonal matrix D,
a lower triangular matrix L and an upper triangular matrix U, having both L
and U zeros in their principal diagonals. Then, M = —(L + U) and ¢ = D 'b.
As divisions are not supported homomorphically, the previous iteration cannot
be implemented directly. Thus, the division is simulated by multiplying each row
of A by the diagonal elements of the remaining rows, what results in multiplying

the matrix M of Jacobi’s method by a scalar factor v = <HZL:_01 ai,-).
A'=-—yD ' (A-D)=+yM.

The factor v will be propagated at every iteration of the algorithm:

AVee®) = —y D! (A-D)- ARl L Ak D,

Let us assume that B can decrypt and both A and B can encrypt with an
additive homomorphic scheme, and that A owns encryptions of [A] and [b]
with this homomorphic system. In order to allow for efficient computation, the
following protocol is executed:

1. A can blind the principal diagonal of [A] and send it to .
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2. B decrypts it, both parties ending up with additive shares of the diagonal
elements {a;;}.

3. With this shares, both parties can securely compute shares of the diagonal
matrix (yD7').. = Hlfl o % through [log,(L — 1)] rounds of parallel

LF ]
secure multiplication protocols. They can also calculate the value of v, and
disclose it for use in the following steps of the protocol.

4. A can then calculate the encryption of [YM] = [-vyD™'] - [A — D] and
[ve] = [yD~'] - [b], invoking the secure multiplication protocol.

5. Then, A sends B a blinded and encrypted version of [yM], that B decrypts
for use in the following iterations.

After these initial steps, for the first iteration of the secure protocol both
parties agree in an initial vector (¥ and A calculates, through homomorphic
additions and multiplications, the encryption of [[”yw(l)]] = [yM] - x© 4 [~ve].

For each subsequent iteration, A calculates the encryption of v- [y*~'¢], and
then both parties use the secure multiplication protocol of Appendix 2.C] and
homomorphic additions in order to obtain the vector for the following step

[hkw(k)]] = [yM] - [hk—lm(k—l)]] Yoy [hk—lc]] ‘

It must be noted that the matrix [yM] does not have to be communicated
at each iteration, as its blinded version was stored by B at the initial step. Thus,
only two vectors per iteration are sent between A and B.

After each iteration, the factor v multiplies the result; thus, after a number
of steps, the cipher will not be able to accommodate the scaled number, and the
protocol will have to stop. This is studied in more depth in Section 2.4.4l It must
be noted that the accumulated factor is not only 7, but also the quantization
step A used for the initial quantization of the coefficients of both the system
matrix A and the vector b in order to make them integers so that they can be
encrypted. This factor must also be taken into account every time v multiplies
vector ¢, so that the homomorphically added vectors be quantized with the same
scaling factor.

Lastly, each step of the protocol can be proven secure with semihonest parties,
due to the semantic security of the underlying cryptosystem, the security of the
multiplication protocol, and the fact that the unencrypted values that each party
sees are random and uncorrelated.
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2.4.2.1. Complexity

The complexity of the initial part (Jacobi Initial, JI) of the protocol is

CpXgm.yr = 3L% + 2L[log,(L — 1)] — 3L +5 + ct
Cpxep 1.4 = (BL? 4+ 4L[logy(L — 1)] — 5L + 8)Cpxp 4+
(L* 4+ L[logy(L —1)] — L + 2)2Cpxpp
CpXyp 1. = (L* + L[logy(L — 1)] — L+ 2) (Cpxp 4 Cpxp+
Cpxg) + (L* — L+ 1)Cpxp.

The first iteration (J1) does not involve any interaction, and A incurs in a
computational complexity of Cpx,, j; 4 = L*(Cpxgp + Cpxpa).

The complexity of each of the subsequent iterations of this protocol (J) is the
following

Cchm,J — 2L

CpXepya = (3L* = 2L)Cpxpy + (2L — L)Cpxpp + LCpxy,
Cpx,p75 = L (Cpxp + Cpxp) + (L? — L)Cpxp + (L? — 2L)Cpx,.

After a number of iterations, either the solution can be disclosed, or an er-
ror metric can be obtained to determine whether convergence has been achieved.
While the choice of this error metric is arbitrary, one possibility is to homomor-
phically subtract [[a:(k)]] — [[a:(k_l)]], and either decrypt the result or perform L
parallel encrypted comparisons with a predetermined threshold.

2.4.2.2. Representable numbers

As for the direct method, we have assumed that the coefficients of the system
matrix A are quantized versions of the real-valued coefficients, with a quantiza-
tion step A, such that their quantized absolute value is bounded by an integer
7> 0.

For the first part of the protocol, where the factor v and the matrix yD~! are
calculated, 7y is the highest number that the system will have to represent, and it
is bounded by 7%; the bound for the elements of vD~! is 77!, Furthermore, as v
is disclosed in the following step, it can constitute a more accurate bound to the
encrypted coefficients of ¥ID~!. A bound for the absolute value of the coefficients
of YM and of vc is min(7%, 7).
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Lastly, the bound to which the elements of the first vector (! are subject is
L. 7t

In each iteration, the previous bound is multiplied by L- 7%, meaning that the
bound for the elements of the k-th iteration is LF-7%E+1 i.e., the needed bit-size
of the cipher is linear both in the dimension of the system and in the maximum
number of iterations that can be performed without errors. Furthermore, the
quantization step of the elements of ® will be A*L.

2.4.2.3. Convergence of the algorithm

When dealing with iterative algorithms like Jacobi’s, it is necessary to deter-
mine whether the algorithm can converge or not before applying it. In the general
case of stationary iterative methods, the necessary and sufficient condition for their
convergence with an arbitrary initial vector (¥ is that max; |\;(M)| < 1, where
A\i(M) are the eigenvalues of M. For Jacobi’s method, M = —D~' . (A — D).
Let us assume that A is a strictly diagonally dominant matrix with bounded
coefficients |a;;| < 7. By Ostrowski’s theorem [124], the eigenvalues of M are
located in the union of L discs

-1
L2 J{z €C: |z = my| < min{R;,C;}},

i=0
Q;i - .
where m;; =0, m;; = ol # 7, and

L-1

Ri= Y |myl,
j=0,j#i
L—-1

Ci= Y |mjl.

=0,j#i

As A is strictly diagonally dominant, Z]L;ol,j i laij| <'lai| = R; < 1. Thus,
it is possible to bound the moduli of the eigenvalues of M as

I\ (M) < 1.

Then, Jacobi method always converges for strictly diagonally dominant ma-
trices, and the test of convergence is not needed.

2.4.3. Matrix inversion through iterative methods

There are cases in which, instead of or additionally to solving a SLE, the
inverse of the system matrix is also needed, like the case of regression analysis
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in statistics. For these applications, the system matrix A must be inverted.
As the direct method (through Cramer’s rule) is computationally too expensive,
we will provide a secure protocol for performing the execution of an iterative
method, namely Newton’s method. One iteration of this method has the following
expression

x*®) — x(k=1) (21 — Ax(k—l)) :
where X *) will converge to A~

The secure protocol for Newton’s method will execute an initial iteration with
an agreed initial value X (©, performed uniquely with homomorphic operations.
Then, the following iterations make use of the secure multiplication protocol
(cf. Appendix 2.C]) and homomorphic sums. Each iteration needs two rounds of
communication:

1. The first one to calculate [Q®] = [A] - [X* V],

2. the second one to calculate [X®] = [X*=D] . (21 — [QW]).

As with any iterative method, the result gets multiplied after each iteration by
the quantization step of the used integers, so after a sufficiently high number of
iterations, as with Jacobi’s method, the cipher will not be able to accommodate
the scaled numbers, and the protocol will stop (cf. Section 2.4.4)).

Lastly, the protocol is provably secure with semihonest parties due to the
semantic security of the cryptosystem, and the security of the sequentially com-
posed multiplication protocols.

2.4.3.1. Complexity

The first step involves only one round of interaction, and its complexity is
given by

CPXcm,NEWI =L’
CpXep NEWIA = 2L°Cpxpp + (2L° — 2L + L)Cpxpy

CPch,NEWI,B =0.

The complexity of each of the subsequent iterations of this protocol is the
following

Cpxcm,NEW = 2Cchm,MULT(L> L,L)
Cpxep vew.a = 200X, prorra(Ls Ly L) + LCpxp 4
Cpxep vew,s = 2CPXep purr,s(L, L, L).
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2.4.3.2. Representable numbers

Let us assume that the elements of the matrix A are quantized with a quan-
tization step A, and their absolute value is bounded by 7 > 0. Then, the el-
ements of matrix resulting from the first iteration of the protocol are bounded
by L2 + 27. For each of the next iterations, the bound 7¢~Y is updated as
k) = (T(kfl))Q -7-L?+2-K. Thus, the order of the bound after m iterations is

o (2" 1. L2m+1*2>, i.e. the bit-size of the cipher is exponential in the number

of iterations, like for the direct algorithm of Section 241l

2.4.3.3. Convergence of the algorithm

The convergence of Newton’s method is assured whenever the initial matrix
X @ satisfies [|AX(® — I|| < 1. As the initial vector is chosen by both parties,
it can be such that this condition is fulfilled, given the bounds to the elements of
A and the bounds to the eigenvalues obtained by the application of Ostrowski’s
theorem. This way, as for Jacobi’s method, it would be unnecessary to check for
convergence through an additional interactive protocol.

2.4.4. Practical Implementation

We study a practical implementation of the proposed protocols for SLEs, and
comment on the obtained results. For this purpose, we have chosen Damgard-
Jurik [79] extension of Paillier cryptosystem, due to its flexibility for fitting larger
plaintexts with a constant expansion ratio. With the complexity calculations
shown in the previous section, we will exemplify the figures to which the presented
protocols lead, with different parameters.

Firstly, we evaluate the needed size of the cleartext group in order to safely fit
all the involved numbers without errors in their representation. Figure 2.1 shows
the bit-size of the plaintext group when coefficients are bounded by 23? and for an
SLE with L = 10 equations (10 x 10 system matrix), which are reasonable sizes
for common applications. The direct method needs plaintexts of about 2!% bits for
getting the solution of the system; this is a reasonable figure, taking into account
that the output will be directly the solution of the system. On the other hand,
the two studied iterative systems have a very different behavior, as anticipated
by the calculations of Section 2.4l While the needed size of the plaintext in the
protocol implementing Newton’s method grows exponentially with the number
of iterations, needing more than 2'6 bits to fit the represented numbers after 10
iterations, Jacobi’s method is far more conservative, needing less than 23 bits for
the same number of iterations, and with a linear growth.
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Figure 2.1: Logarithm of the bit-size of the plaintext group as a function of the
performed iterations for 7 = 232 and L = 10 dimensions.
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Figure 2.2: Logarithm of the bit-size of the plaintext group as a function of the
number of dimensions, for 7 = 232 and 5 iterations.
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Figure shows also the size of the plaintext, varying the dimensionality of
the problem; for the iterative algorithms, the number of performed iterations is
fixed at 5. This time the direct protocol shows its exponential dependence on the
dimensionality of the problem, while the protocol for Jacobi’s method is linear,
and Newton’s algorithm logarithmic. This is a factor that is worth considering
when inverting matrices with a high dimensionality.

Regarding the complexity of the developed protocols in terms of communi-
cation and computation given a maximum plaintext size, Figure plots the
communication complexity measured in bits for the three protocols when solv-
ing a system with 5 unknowns, and varying the parameter s of Damgard-Jurik
cryptosystem, that gives a plaintext size of s - m, where m has been fixed here
to 1024 bits. For this system, the minimum s accepted by the direct protocol is
s = 2. For the iterative protocols, the complexity is calculated for the maximum
number of iterations that the size of the cipher can correctly fit. This quantity is

indicated in Table 241

Table 2.4: Number of allowed iterations as a function of s, with 7 = 232 and
L =5 dimensions.

| s|2]3[4[5][6]
Jacobiliters] | 13 | 19 | 26 | 32 | 38
Newtonfiters] | 4 | 5 | 5 | 6 | 6
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Figure 2.3: Communication complexity of the presented protocols as a function
of s, with 7 = 232 and L = 5 dimensions.
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Figure 2.4: Computational complexity of the presented protocols as a function
of s, with 7 = 232 and L = 5 dimensions.

While the communication complexity of the three protocols is approximately
linear on s, the protocol for matrix inversion needs much more communication,
with a number of iterations limited by the maximum size of the plaintext. On the
other hand, the protocol that implements Jacobi’s method is much more efficient,
as it can perform a much larger number of iterations within the same plaintext
size, while incurring in a lower complexity.

The same behavior can be observed in terms of computational complexity
(Figure [24]), that is approximately quadratic on s for the three protocols, but
the multiplicative constants are much larger for Newton’s protocol than for the
other two. As a function of the number of dimensions, the protocol implementing
Jacobi’s method is also much better behaved than the other two methods, but
still needs a large plaintext size when a high number of iterations must be per-
formed. We have not included more plots illustrating this behavior due to space
limitations.

Summarizing, the needed bit size for the three protocols is relatively high,
and for the case of the protocol for Newton’s method it grows exponentially
with the number of performed iterations. Jacobi’s is far more efficient, as it
can accommodate a much larger number of iterations using the same maximum
plaintext size. The complexity of the protocol for Jacobi’s method is also lower
than the other two methods for a sufficiently high number of dimensions.

Nevertheless, in order to perform an arbitrary number of iterations, and to
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lower the complexity of the three protocols, it would be desirable to have a means
for renewing the cipher with a lower scale factor. It must be noted that, even
when having a full (algebraic) homomorphic cryptosystem, this problem cannot
be avoided. The full homomorphism would allow for performing all the operations
without interaction, considerably lowering the communication complexity, as well
as the computational complexity (depending on how the homomorphic operations
must be performed). Nevertheless, with a fully homomorphic cryptosystem the
growth of the ciphered numbers would be also unavoidable if the requantization
cannot be implemented homomorphically.

2.5. Secure Execution of Finite Automata

The third class of secure primitives presented in this chapter deal with the
problem of obliviously running an automaton. This can be informally stated
as an asymmetric function evaluation problem, in which one party possesses a
function f and the other party owns the input x to that function. One or both
of those parties want to obtain the evaluation of f(x), but neither party wants
to disclose his own data. Here, the function f is implemented as a finite state
machine (FSM), and the output f(x) encodes whether x was accepted by the
FSM.

More formally, let (Q, %, A, qo, F') be a deterministic FSM, whose description
is owned by party A. Let © = 2z ... 2x_1 € XV be an input to that FSM; x is
owned by party B. Both parties want to run the FSM on B’s input, in such a way
that A will not get any information about the input string  except its length,
and the only information B can get about the FSM is its number of states |Q)|.

2.5.1. Proposed Solution

For the oblivious run of an automaton in the presented scenario, both parties
engage in an interactive protocol, whose number of rounds is linear in the length of
the input string @. In particular, the protocol is composed of three subprotocols,
one for performing the first state transition, one for performing an arbitrary
transition of the automaton, and one for announcing the result.

The first subprotocol performs the first state transition of the automaton,
starting from its initial state, and reading the first input symbol of &. The sub-
protocol distributes shares of the following state to both A and B. Subsequently,
for each further state transition, the second subprotocol is executed. Starting
from the shares of the current state, it jointly calculates the transition to the
next state in an oblivious way. At the end of the subprotocol, shares of the sub-
sequent state are distributed to A and B. After all state transitions have been
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performed (i.e., all symbols of & have been consumed), the last subprotocol is
used to determine whether the computation of the automaton ended in a final
state.

In the following we assume that the encryption system is set up such that
B holds the decryption key; however, it can also be implemented with a (fair)
threshold encryption scheme requiring a joint decryption step. In the latter case,
the result is revealed to both parties.

Subprotocol: First State Transition

This subprotocol performs the first state transition of the automaton.

1. A generates a random n(ll) €r Zq|; then, he selects the column ¢y of A as
)

vector and blinds every element with iV

0! = Al qo) + 7Y mod |Q|, i=0,... |5 —1.

2. Both parties engage in an OTF‘, being A the sender and B the chooser, in
which B gets the element with index x¢ of v(®). This element corresponds
to

g + ) mod |Q|.

a

At the end of this subprotocol, both parties share the next state ¢ of the
automaton.

Subprotocol: k-th State Transition

In this step, both parties use their shares of the current machine state as
input, i.c., A holds r{"” and B holds r* = ¢® + r{* mod |Q).

1. A generates a random rit e R Z)q|, and blinds every element of the matrix

A with it. At the same time, A rotates the rows of A, r((lk) positions to the
left, obtaining the matrix A®) with elements
AW, g+ mod |Q]) = A(i,j) + i mod |Q].

2. B generates a binary vector e® of length |@Q|, consisting in all zeros and a
one at position rék). BB encrypts this vector [e] and sends the encryptions

to A.
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3. A performs the matrix-vector product v¥) = A®) . e*) under encryption,
making use of the homomorphic properties of the encryption operation,
obtaining the |¥|-length encrypted vector [v®)]. This result corresponds
to an encryption of the column at position rl(,k) of A® or equivalently, the
column at position ¢*) of A, the blinded transition vector for the current
state.

4. Both parties engage in an OT'lzl, being A the sender and B the chooser, in
which B gets the element with index z;, of [v®)]. This element corresponds
to the encryption of

q(k+1) _I_T((lk—l—l) mod |Q‘,

that can be recovered by B through decryption.

At the end of this subprotocol, both parties share the next state ¢*+b.

Subprotocol: Announcement of Result

Once all the elements of & have been consumed by A’s FSM, the last step
determines whether the reached state is a final state. Again, the parties use
shares of the reached state as private inputs, i.e., A holds r$™) and B holds
i = g™ Y mod Q)

1. A generates a random binary vector f as

fG+rY mod |Q)=[j€F], j=0,...,]Q -1,

whose Boolean elements encode whether a state j is a final state, having
ones in the indices corresponding to acceptance states and zeros in those
indices corresponding to non-acceptance states. This vector is shifted, so
that the index rl(,N) that B possesses represent the position of the acceptance
of the actual final state.

2. Both parties engage in an OT‘lQl, being A the sender and B the chooser,
in which B gets the element with index rlgN) of f. This element gives the
binary output of the FSM.

2.5.2. Complexity Evaluation

As 1-out-of-m oblivious transfer (OT7") can be implemented with linear com-
munication complexity, the communication complexity for each subprotocol is
O(|Q| + |X|). Furthermore, as one subprotocol needs to be performed for each
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symbol of the input string, the communication complexity for obliviously running
a FSM on an input of length N is

O(N-(IQ+ X))

Thus, the complexity is linear in the number of states and in the size of the input
alphabet (instead of linear in their product, as for previous approaches). This
implies a great improvement in complexity with respect to generic approaches for
big input alphabets and high number of states.

Regarding the computational complexity, we will use the OT protocol of Naor
and Pinkas [I68] for implementing OTY?, as this protocol has an amortized com-
plexity of O(m) products for the sender and O(1) products for the chooser. With
these magnitudes for the OT subblocks, it is easy to see that the total com-
putational complexity for A is O(N - |X| - |@Q]), being the matrix multiplication
performed at each step the most costly operation. On the other hand, the amor-
tized complexity for B is just O(N - |@Q|), being the encryption of the vector that
determines the shifted current state (e*)) the most costly operation. It must be
noted that the operations in the protocol can be transposed, in such a way that
(e™™)) represent the current symbol, and the result of the matrix multiplication in
step 3 of the k-th state transition subprotocol produces a vector of blinded next
states for the current symbol. In this way, the roles of the dimensions |@Q| and
|X| are interchanged. Thus, the amortized complexity for B can be reduced to
O (N -min(|Q], [2)).

2.5.3. Extension to Transducers

The basic protocol described above can be extended to transducers, while
keeping the same order of complexity. This can be achieved by including some
additional steps at each state transition, and omitting the last subprotocol (an-
nouncement of results).

Following the notation of Section [2.2.2.4], the modifications for implementing
each type of transducers are described in the following:

s Moore machines: The output depends only on the current state, so A will
have a vector A € (Z|H|)|Q‘, such that A; holds the output for the state j.

For the initial step, the output is trivial (A(g)), and it can be sent to B.
For the k-th state transition protocol, a modification must be made in its
third step, in which besides the homomorphic calculation of A®) . e®) A
also rotates A

ABG+r mod |Q]) = Ay,

k

computes the encryption of ()\(k))T-e( ), and sends the result (one encrypted

scalar) to B.
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s Mealy machines: In this case, the output depends on the state and the
input, so A will have a matrix A € Ms|x|g|(Zm|), such that A(i, j) gives
the output for input ¢ and state j.

In the first state transition, two OT|1EI are run in parallel on vectors v(®
and column ¢y of A. This gives B the blinded first transition and the
corresponding output.

For the k-th state transition protocol, its third step must be modified, such
that besides the homomorphic calculation of A®) . e®) A also rotates A

AB G, + ) mod |Q]) = A4, 5),

and computes the encryption of w® = A® . e®): the following OT‘lEI
protocol is run in parallel on both vectors v*) and w®).

2.5.4. Security

Due to the asymmetry of the problem in terms of inputs to the protocol, the
security definitions are slightly different from the framework commonly used for
general two-party secure function evaluation. Nevertheless, the problem can be
restated as two-party secure function evaluation in the following way.

Let G be a functionality that, given the description of a function as a FSM
f()=(Q,%, A, qo, F) and its input x, gives as output G[f(.),x] = f(x). Then,
the problem for the asymmetric function evaluation may be stated as a two-party
computation problem in which party A holds the input f(.), and party B holds
the input «; both parties want to evaluate GG on their inputs.

We assume the semi-honest attacker model, where neither party deviates from
the protocol execution, but try to infer some information about the other party’s
inputs. Note that the protocol allows A to infer NV and B to infer (f(x),|Q)]), as
this information can be obtained by inspecting the output of the protocol, the
length of the computation and the amount of transmitted information. The goal
is to show that all the information that each party can infer from the execution
of the protocol about the other party’s input is no more than what they could
infer from the above mentioned quantities. For A, the framework is exactly the
same as in the general two-party computation case: A should be unable to decide
which length-N string over ¥ was used by B as input. For B, we can consider
the protocol to be secure if B cannot extract from his output more information
about the tuple (A, qo, F') than he would be able to infer from the output of
the automaton when it is run as a black box. More formally, we can state the
following definition, using a standard simulation argument:
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Definition 2 We say that a protocol 11 privately evaluates A’s FSM M =
(Q,3, A qo, F) on B’s input string x if, given the views for both parties

V,l/-ll = ((|Q|7 |E|7A7QO7F)7m17‘ .- umt7N)
Vg = <(|Q‘7 |E|7w)7m1> s amtaf(w))v

where my; is the i-th message interchanged between both parties, N is the length of
x, and f(x) is the output of the automaton M, there exist two polynomial time
algorithms Sa(|Q|, |Z|, A, qo, F, N) and Sg(|Q|, ||, z, f(x)) producing simulated
views, which are computationally indistinguishable from the respective views of
the parties, 1i.e.,

Vi = 54(1Q1 =], A, g0, F, N)
Vi = Sp(1Q, 2], =, f(=)).

Considering semi-honest participants, we can state the following claim:

Claim 1 Using a semantically secure encryption scheme and a secure OT prim-
itive, the proposed protocol privately evaluates A’s FSM on B’s input.

Proof (Sketch) We will first sketch a simulator S for A’s view of the protocol.
The input to Sa is given by (|Q|, |X|, A, qo, F, N). By our assumption of OT
being secure, we can assure the existence of two simulators S. and S, which
produce views that are indistinguishable of those of the chooser and the sender
respectively. S4 composes the simulated view by first using Ss to provide one
OT view in order to simulate the subprotocol corresponding to the first state
transition; subsequently, it outputs N times (once for each invocation of the
state transition subprotocol) encryptions of a random vector e of length |Q|
and an OT view generated by Ss. Finally, S4 uses S5 once more to simulate the
subprotocol announcing the result. Note that in the protocol a new fresh random
value is generated at each state transition for blinding the transition matrix and
the current state, thus the inputs to each OT protocol are statistically blinded
and mutually independent. Note further, that due to the semantic security of the
encryption scheme, the encryptions of the random vector cannot be distinguished
from encryptions of the vectors sent by B in the protocol. A standard hybrid
argument finally shows that the simulated view, consisting of N + 1 views of the
OT and N encrypted vectors, is computationally indistinguishable from A’s view.

It remains to construct a simulator Sg on input (|Q|, |X|, z, f(x)) for B’s view
of the protocol, which proceeds along similar lines as S4. The simulator uses S.
to produce B’s view of the OT protocols and generates encrypted vectors indis-
tinguishable from e again thanks to the semantic security of the encryption.
Finally, for the announcement of the result, the last OT is performed on a fake
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vector f whose elements are all equal to the true output f(xp). The security of
the OT primitive guarantees the indistinguishability of the simulated view from
B’s view (B cannot decide whether there is a one or a zero in those positions
different to the chosen one), while the output of the simulator is correct. Again,
a hybrid argument shows that the simulated view is computationally indistin-
guishable from B’s view. n

Furthermore, it is easy to see that the protocol is correct:

Claim 2 The proposed protocol correctly evaluates A’s FSM on B’s input.

Proof It is straightforward to see that each subprotocol is correct: if both parties
follow the protocol, the transition function is correctly calculated at every step,
and the output is correctly computed. By induction, the claim follows. |

2.6. Conclusions and Further Work

A new primitive for securely solving the N-dimensional point inclusion prob-
lem in polytopes and in hyperellyptic regions has been presented. The primitive is
useful in many applications, including biometrics, classification, database queries,
positioning and watermarking (cf. Chapter d]). We have analyzed the commu-
nication, round and computation complexity of the protocol and proposed input
packing as a complexity reduction strategy when the number of dimensions is
high.

Although the protocol is presented for the semi-honest model, a sketch for
extending it to malicious parties is provided in the appendices. Extending the
protocol for use with more than two parties is straightforward and requires a
convexity proof when the polytope is shared among several parties.

Regarding Systems of Linear Equations, this chapter proposes new privacy-
preserving protocols that make use of homomorphic computation and secret shar-
ing. These protocols implement a direct method (Gaussian elimination), as well
as iterative methods for solving SLEs (Jacobi’s method) and matrix inversion
(Newton’s method). These protocols are secure with semi-honest parties, and, to
the best of our knowledge, they are the first iterative methods under encryption
proposed up to date.

There are some difficulties in the implementation of iterative methods that
have been pointed out in this chapter, namely the growth of the ciphered numbers
and their change in quantization scale (cipher blow-up). A more thorough analysis
of this problem and some countermeasures are presented in the next chapter.
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Finally, this chapter also presents an efficient protocol for the secure execution
of finite automata that will find application in many fields, as shown in Chapter 4l

2.A. Complexity of BITREP

The main block of the point inclusion protocols is the BITREP primitive, that
represents also the most significant contribution to their complexity. This ap-
pendix is devoted to the study of the complexity of this subblock, in order to
have a complete understanding of the complexity of our protocols.

In these calculations, we have considered only semi-honest parties, but the
extension to malicious parties is straightforward (Appendix R.B]). With the same
notation as before, the communication complexity of BITREP can be expressed as

m

2
Cchm,BITREP = 7 (2(m + 1)|EP| + Cchm,CE(Comp))
+ 2’EP| + Cchm,CE(add) + Cchm,C’E(sub)v

where Cpx,,, o represents the communication complexity for a circuit evaluation
with a comparison (comp), addition (add) or subtraction circuit (sub).

The basic operation for the circuit evaluations is the multiplication protocol.
This protocol can be performed as indicated in [71], and its communication (cm),
computation (cp) and precomputation (pcp) complexity in the two-party scenario
is the following:

Cchm,MULT = 6|Ep|,
CpXCp,MULT — 3CpXP7ns+1 + CpXD + CpXX7nS+1,

CPchp,MULT = Cpxg,
and it has a round complexity of 3 rounds.

The complexity of the employed circuits can vary depending on the implemen-
tation, and the trade-off between round number and total complexity. Choosing
constant round protocols, the complexity is increased, as redundant operations
are introduced in order to parallelize the computations and achieve a round num-
ber independent of the size input. On the other hand, if only the strictly needed
operations are performed, the complexity will be minimal, but the number of
needed rounds will increase with the input size.

On the other hand, if the inputs are bounded—as in the application of the
presented protocol—it is possible to run a light version of BITREP, which the
authors of [199] denote LSBs gate (see Section 2.2.2.3)).
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As a numerical example, for a modulus of size 1024 bits and s = 1, considering
as measure units kBytes for communication complexity and modular additions
and multiplications with n-bits numbers for computation complexity, the obtained
results for BITREP and LSBs gates for 943 bits numbers with constant number and
non-constant number of rounds are shown in Table 2.5

Table 2.5: Communication (cm), Computation (cp), Precomputation (pcp) and
Rounds Complexity comparison between BITREP and LSBs gates using 1024 bits
modulus and 943 bits numbers with constant and non-constant number of rounds.

Constant Rounds ||Non-Constant Rounds|| Units

BITREP| LSBs || BITREP| LSBs
CPXomprmer || 3-546.686]1.450.497] 27.223 1712]] kBytes
CpxX,p aprmer ||11-503,85) 4.700,19| 73,94 12,57|| 10° ops.
Cpx,, g prmee ||11-503,85] 4.700.19| 73,94 12,57|| 10° ops.
CpXpep aprmrep || 5-750,28] 2.272,90{| 41,93 7,72| 105 ops.
CPXpep pprmrep|| D-754,47| 2.272,90| 46,13 7,72| 105 ops.
Roundsgrgep 269 102|| 9.213 1.889| rounds.

In Figure 2.5 the evolution of the complexity as a function of the bit-size of
the modulus for BITREP is shown, while Figure compares the complexity of
BITREP and LSBs gates as a function of the bit-size of the encrypted number, with
a fixed modulus size of 1024 bits, maintaining always a security parameter of at
least 80 bits for the LSBs gate. As these figures show, the LSBs gate is much more
efficient than the BITREP one, imposing only a little additional constraint on the
bit-size of the encrypted number. Furthermore, the complexity for the LSBs gate
are linear in the number of bits (/) of the encrypted integer:

CpXpmrsps = 20m(s + 1)l — 14m(s — 1)
’ N————

Aem

s+1)?
CPXep 4 1sBs = ( 5 ) (3s(2s + 1) +26m(s+ 1) + 32)l

— (s + D211 +7Tm(s+1) +s(2+ s))

7

VvV
Gep

(s+1)2

CpX.p B isps = (3(12+ s(s+2)) — aep + 26m(s + 1))1
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Figure 2.5: Communication (Cm), Computation (Cp) and PreComputation
(PCp) complexity evolution as a function of the bit-size of the modulus for Con-
stant Rounds (CR) and Minimum Complexity (MC) BITREP

Cpocp,A,LSBs = Cpocp,B,LSBs = 2(8 + 1)2<2m<3 + 1) + 1)(2l - 1)

J

v~

Qcpp

Roundsisgs = 21 + 3.

This means that the packing of numbers will affect LSBs complexity in a
slightly negative way; given the additive constants a, in the previous equations
and a fixed s, the difference in complexity between running ~A LSBs and running
one LSBs with h packed integers will be (h — 1)a, (independent of the bit-size [
of the integers), while the number of rounds will increase in 2/(h — 1), as without
packing the h gates can be parallelized.

On the other side, the computation complexity is O(s?), so using Damgard
Jurik encryptions would suppose a considerable increase in complexity, what jus-
tifies the preference for packing only using s = 1.
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Figure 2.6: Communication (Cm) and Computation (Cp) complexity evolution
as a function of the bit-size of the number, for 1024-bit modulus for Constant
Rounds (CR) and Minimum Complexity (MC) BITREP and LSBs

2.B. Point Inclusion with Malicious Parties

When considering a malicious party in the point inclusion protocol (Sec-
tion 2.3]), it is necessary to include some Zero-Knowledge proofs in order to
preserve the other party’s privacy. The needed proofs are enumerated in the
following, and it is indicated where they are used inside the protocol. Note that
all of them can be made non-interactive substituting the verifier challenges by
collision resistant hash functions.

In the following, the needed proofs for a malicious client are enumerated, and
it is indicated where they are used inside the point inclusion protocol.

2.B.1. Proof of Knowledge of an Encrypted Value

This is a proof used for correct encryption, and it is based on proofs of knowl-
edge of a discrete logarithm. Let x € Z,s, r € Z} be known by the Prover, and
c = ¢*r™ mod n**! be the encryption whose validity has to be proved.
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1. The Prover generates z; €g Z,s and ry €g Z; at random, and sends ¢; =
g®rY mod n®! to the Verifier.

2. The Verifier generates a random challenge e €x {1,...,2'}, and sends it to
the Prover.

3. The Prover sends to the Verifier the values o = z; + ez mod n® and
ro =11 - 17° mod n.

4. The Verifier checks that

s _
c1 = ¢™ry ¢ ¢ mod n*th,

As stated, this proof is complete, as it always succeeds for correct inputs,
computationally sound, being ¢ the security parameter, and computationally zero-
knowledge, due to the computationally hiding property of Paillier encryptions.
This proof must be used every time the malicious party sends to the other party a
new value not homomorphically computable from the already presented encryp-
tions.

2.B.2. Proof of Correct Multiplication

Given n,c, = Epjlal,c, = Epy[bl,c; = Epy[f = a - b], the prover knows b,
but she does not know a, and wants to demonstrate that cy corresponds to the
product of the value encrypted in ¢, by the one hidden in ¢,. The protocol is the
one described in [71], Section 8.1.2], extended to Damgard-Jurik encryptions.

This proof is needed for checking that the multiplicative blinding of D is
correctly performed.

2.B.3. Range Proof

Given an encryption ¢, = ¢%r™ mod n® + 1, and a public interval [a, b],
the prover knows the values z € Z,s and r € Z;, and wants to prove that
xr € [a,b]. This can be done using Boudot’s range proof [47]. The problem
with range proofs is that they are implicitly designed to work with concealed
values in hidden order groups, what is not fulfilled by Paillier cryptosystem. One
straightforward solution consists in generating a commitment, using for example,
Damgard-Fujisaki scheme [78] for the same encrypted value and construct the
range proof for this commitment, sent with a proof of equality [47] to show that
the encryption and the commitment hide the same value, as indicated in [80].

This proof is used for checking the correct bounding of the inputs.
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2.B.4. Non-Zero Proof

To prove that a random number x € Z,,, whose encryption c, is known by the
Verifier, is not zero, the Prover can generate another random number r, multiply
both numbers mod n, and give ¢, = Epjy[r]|, ¢ = Epy[zr mod n| and the
opening of xr # 0 to the Verifier, with ZK proofs of correct encryption and
correct multiplication.

The Verifier checks the proofs and the opening of the product, and accepts if
and only if all of them are correct.

The proof always succeeds if x,r € Z;, and can only fail when = or r are
zero divisors, but finding a zero divisor in Z, is equivalent to factoring n (and
breaking the cryptosystem), so the failure probability is negligible (257).

This proof is needed for checking the validity of the multiplicative blinding of
D.

2.B.5. Square Proof

Given two encryptions ¢, = ¢“r™ mod n® + 1 and c,2 = g:”QTgS mod n® + 1,
the prover knows the values x € Z,s and r,ry € Z;, and wants to prove that c,2
effectively hides the squared value of the number hidden in ¢,. This can be done
using the proof presented in [47], that is designed to work with Fujisaki-Okamoto
commitment scheme, adapting it for working with Damgard-Jurik encryptions.

This proof is employed for demonstrating the correct squaring of the input
coordinates of the client when working with hyperelliptic regions.

2.C. Secure Multiplication Protocol

In order to multiply two encrypted matrices, as there is no multiplication
operation in an additively homomorphic cryptosystem, it is necessary to execute
an interactive protocol in order to perform each product. The generic protocol
for secure multiplication gates has been known since [69]. In this work, we use
a variant for non threshold encryption, that is included in this appendix for
clarification and completeness. Let us assume that there exists an additively
homomorphic cryptosystem with plaintext in Z, such that B can decrypt and
both A and B can encrypt. A owns two encrypted scalars [x;] and [z3] and wants
to multiply them under encryption. In order to do that, A generates two random
values ry,ro € Z,, and uses them to blind both numbers, using homomorphic
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modulo-n sum obtaining [z1] = [x1] + r1 mod n, and [23] = [z2] + 2 mod n,
and sends them to B.

Due to his decryption capabilities, B can obtain z; and z in the clear, multiply
them, and reencrypt the result [z; - z5]. B sends this encrypted product to A,
who, through homomorphic sums, can obtain the desired result, as

[x1 - z2] = [z1 - 22] — 71 [x2] — 7o [21] — 712

In the scenario of a threshold homomorphic cryptosystem, the procedure is
analogous, with the exception that the random values must be generated by both
parties [77].

For the case of the product of an L x M matrix and an scalar, the protocol is
exactly the same as the scalar-scalar case, with L x M scalar products in parallel.

For the case of matrix-matrix product, the extension is also straightforward,
as all the scalar products are performed using the scalar-scalar product protocol in
parallel, with only one randomization per matrix coefficient, and the remaining
operations are sums, that can be performed homomorphically. Obviously, in
order to minimize the computation and communication complexity, A may let B
perform all the partial additions that B can do in the clear and A would need to
do homomorphically.

Neglecting the complexity of the random number generation algorithms, the
complexity of the whole protocol, when multiplying an L x M matrix and an
M x N matrix is

Cchm,MULT(LaM:N) M-(L+N)+L-N
Cpxeppvrra(L, M,N) =L+ N - M - (3Cpxgy + 2Cpxgp)
Cpxep yurr,p(Ls M,N) =M - (L + N)Cpxp + M - L - NCpxp+

L-N-((M-1)Cpxy + Cpxp).

When the previous expressions are used in this work without the parameters
L, M, N it will be assumed that the product is performed between two scalars
(L=M=N=1).

2.D. Novel Zero-Knowledge Subproofs

In this appendix, we present several novel zero-knowledge proofs that will be
used later on in this thesis (cf. Chapter @); they give a solution to two non-linear
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operations widely used in signal processing and in many secure protocols, namely
rounded square root (together with a mapping needed for the square root proof
to succeed), modulus and or.

2.D.1. Zero-Knowledge Proof that a Committed Integer
is the Rounded Square Root of another Committed
Integer

Adelsbach et al. presented in [24] a proof for a generic function approximation
whose inverse can be efficiently proven, covering, for example, divisions and square
roots. Here, we present a specific protocol for proving a rounded square root that
follows a similar philosophy, we study its communication complexity and propose
a mapping (presented in Section that makes possible this zero-knowledge
protocol to prove the correct calculation of square roots on committed integers
(not necessarily perfect square residues):

PKqily, 1,72 : Cy = ¢gh"" mod n AC, 5 = g"Vh"™  mod n].

Let C, be the commitment to the integer whose square root must be calcu-
lated. The protocol that Prover and Verifier would follow is the next:

1. First, the Prover calculates the value x = round(,/y), its commitment C,,
and the commitment to its squared value C)2, and sends both commitments
and Cy to the Verifier.

2. The Prover proves in zero-knowledge that C,2 contains the squared value of
the integer hidden in C,, through PK{x,ry,r : C, = ¢*h™ mod n,Cy2 =
g h"> mod n}.

3. Then, the Prover must prove that x> € [y—=z, y+z], using a modified version
of Boudot’s proof [47] with hidden interval, that consists in considering also
randomness in the commitments of the interval limits calculated by both
parties at the first step of the proof. Using this interval instead of the
one indicated in Appendix 2.D.3] the zero values are also accepted with no
ambiguity when the maximum allowable value for y is below the order of the
group generated by ¢g. The counterpart is that there are two possibilities for
the square root of integers of the form k% + k, with k an integer, namely k
and k+1. The effect of this relaxation on the conditions imposed before is a
small rise in the rounding error, smaller as k grows; if we take into account
that the numbers that are considered integers are actually the quantization
of real numbers using a step that is fixed by the precision of the system,
the error is of the same order as this precision. Nevertheless, the need of
working with null values without disclosing any information requires this
adaptation.
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4. At last, it is necessary to prove that x € [0,4/m], if m is the order of
the subgroup generated by ¢. If it is known—by the initialization of the
commitment scheme—that log,(m) = [, then proving that x € [0,2//271]
is enough; if the working range for the committed integers is [—7, 7|, with
T < y/m (as it will be if the bit length of 7 is at most {/2 — 1), then it
suffices with the proof that z is in the working range: = € [0, 7].

The communication complexity in bits of this protocol is

CDX o pice = 48| F| +9|7] + 18B + 53k + 6]n| + 39.

Claim 3 The presented interactive proof is computationally sound and statisti-
cally zero-knowledge in the random oracle model.

A sketch of the proof for this claim is given in the following: Completeness
and soundness of this protocol are held upon the validity of the mapping of

Appendix 2.D.3

Proof Completeness: If both Prover and Verifier behave according to the pro-
tocol in Appendix 2.D.J] then the Verifier will accept all the subproofs and all
its tests will succeed. If = is generated as the rounded square root of y, the
square proof and both range proofs will be accepted because of the validity of the
mapping of Appendix and the completeness of these subproofs.

Soundness: Taking into account the consideration about integers of the form
k? + k, the binding property of the commitment guarantees that the Prover
cannot open the generated C, and C,2 to incorrect values; thus, appealing to
the uniqueness property of the mapping of Appendix 2.D.3] the computational
soundness of the range and squaring subproofs guarantee that a proof for a value
that does not fulfill that mapping will only succeed with negligible probability.

Zero-Knowledge: We can construct a simulator SV for the Verifier’s view of
the interaction. SV must generate values C, and C,> as commitments to random
values, that will be statistically indistinguishable from the true commitments, due
to the statistically hiding property of the commitment scheme. Furthermore, the
statistical zero-knowledge property of the squaring and range subproofs guaran-
tee that simulators for these proofs exist and generate the correct views, and the
generation of C, and C,2 does not affect these views, due to their indistinguisha-
bility with respect to the true commitments, and that the simulators do not need
knowledge of the committed values in order to succeed. |
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2.D.2. Zero-Knowledge Proof that a Committed Integer
is the Absolute Value of another Committed Inte-
ger

This proof is a zero-knowledge protocol that allows the application of the
absolute value operator to a committed number, without disclosing the magnitude
nor the sign of that number!

PKapslw, 11,79 Cp = g7hT" mod n A Cly = g‘;'hg? mod n].

Let C, = ¢g7h;" mod n be the commitment to a number z, whose sign is not
known by the Verifier, and C, = glf‘h? mod n the commitment to a number
which is claimed to be the absolute value of . The scheme of the protocol is as
follows:

1. Both Prover and Verifier calculate the commitment to the opposite of z,
with the help of the homomorphic properties of the commitment scheme:

C_,=C "

2. Next, the Prover must demonstrate that the value hidden in C), corre-
sponds to the value hidden in one of the previous commitments C,,C_,,
using the ZK Proof of Knowledge described in Appendix 2.D.4]

3. At last, the Prover demonstrates that the value hidden in C, is |z| > 0,
using the protocol proposed by Lipmaa [146].

The communication complexity, in bits, of this protocol is

CPXem pi,,, = 191F| + 6|7| + 16 B + 24k + 15.

Claim 4 The presented interactive proof is computationally sound and statisti-
cally zero-knowledge in the random oracle model.

'As in a residue group Z, there is no notion of “sign”, we are using the commonly known
mapping:
. _f1, ze{o,[2]}
sign(z) = { Lae ELSJ Fln-1);

taking into account that —z = ¢ — z mod ¢, the mapping is consistent.
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Proof Completeness: If both parties adhere to the protocol, then when Cj,
hides the absolute value of the number concealed in C,, the protocol always
succeeds due to the completeness of the OR proof and the non-negativity proof.

Soundness: Due to the binding property of the commitments, the Prover
cannot open C, and C);| to incorrect values. Furthermore, due to the soundness
of the subproofs, if C|,| hides a negative number, the proof in step 3 will fail, so the
complete protocol will fail (except with negligible probability); on the other hand,
if C|; does not hide a number with the same absolute value as the one hidden by
C., the proof in step 2 will also fail (except with negligible probability). Thus, the
whole protocol will only succeed for a non-valid input with a negligible probability
given by the soundness error of the proofs in steps 2 and 3.

Zero-Knowledge: We can construct a simulator SV~ such that the real inter-
actions have a probability distribution indistinguishable from that of the outputs
of the simulator. The statistical zero-knowledge property of the OR and non-
negativity subproofs guarantees that simulators exist that can produce sequences
that are statistically indistinguishable from these protocols’ outputs, so the only
quantity that the simulator SV has to produce is C_,, whose true value can
be generated directly from C, due to the homomorphic property of the used
commitment scheme. Thus, the whole protocol is statistically zero-knowledge. R

2.D.3. Mapping for Rounded Square Root

Current cryptosystems are based in modular operations in a group of high
order. Although simple operations like addition or multiplication have a direct
mapping from quantized real numbers to modular arithmetic (provided that the
number of elements inside the used group is big enough to avoid the effect of
the modulus), when trying to cope with non-integer operations, like divisions or
square roots, problems arise.

In the following, a mapping that represents quantized square roots inside
integers in the range {1,...,n — 1} is presented, and existence and uniqueness of
the solutions for this mapping are derived. The target is to find which conditions
must be satisfied by the input and the output to keep this operation secure when
the arguments are concealed.

The mapping must be such that if y € Z* and z = /gy € R, then
ny/Y := round(x). For this mapping to behave like the conventional square root
for positive reals, it is necessary to bound the domain where it can be applied.
The formalization of the mapping would be as follows:

n/- i A={yeZy<n} - B={xecZ |z <round (vn)}
Yy — x =, /y =round (\/y) .
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In order for this definition to be valid, and given that the elements with which
this mapping works are just the representatives of the residue classes of Z,, in the
interval {1,...,n — 1}, it is required that:

Lemma 1 (Existence and uniqueness of a solution) A wunique =x €
[1,2,,) N ZT exists, such that for all y € {1,...,min(z? + z,,,n — 1)}, x, <

[Vl -1,

z? modne[y—x,y—i-iv)n, r <y,

where [,), represents the modular reduction of the given interval.

Proof Eristence: Given y € Z*, its real square root admits a unique decompo-
sition as an integer and a decimal in this way:

Vy=z+d, z=round(\/y) € Z",d € [-0.5,0.5).

Squaring the previous expression, both sides of the equality must be integers,
SO:

(Vy)? = 2%+ d* + 2du
22 =y — 2z — d,

and taking into account that y is integer, 2dz + d? must be also an integer, and
it is bounded by:

2dx 4+ d* € [~ +0.25,2 +0.25) = 2dx + d* € [~2 + 1,1].

Substituting this last equation in the previous one gives the desired result:

ely—zy+a—1].

Thus, the modular reduction of z? is inside the modular reduction of the
interval, and x exists.

Uniqueness: Here uniqueness is concerned with modular operations, and the
possibility that the interval [y — z,y + z) include integers out of the initial repre-
senting range {0, ...,n— 1}, which would result in ambiguities after applying the
mod operator. In the following, all the operations are modular, and thus, the
mod operator is omitted. The intervals also represent their modular reduction.

The proof is based on reductio ad absurdum. Let y € {1,...,2% + z,,}, and
let z,2" € [1,2,] NZ* two different integers such that both fulfill x =, |/y,
2" =, /Y. This means that

B ely—xy+a)NZ,
?ely—a y+a)NZ.
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Combining the previous relations, x and 2’ must be such that

v —a2?e(—x -2 x+2)NZ.

Let us suppose, without loss of generality, that z > /. If both =,z are less
than z,, < [y/n]—1, then their squares are below n, and follow the same behavior
as if no modular operation were applied. Squares in Z can be represented by the
following recursive formula

Yy =k’ =y t+k+k—-1=
k—i—1 . .
. 2k -0)+k+i, k>
oy =2 52 =1 )

what means that, in order for 2% and z? to be spaced less than x + 2’ the next
inequality must be satisfied:

' —z—1 z—z'—1

Z 2 —l)+x+2' <z+2 = Z 2(x —1) < 0.

=1 =1

Thus, the only solution is x = .

If, on the other hand, x = x,,, and taking into account that:

ely—rytr—1]eyc [:1:2—3:—1—1,332—{—33],

there are two possibilities:
lLLye{z?—x+1,...,n—1}: if ¥ # 2, then 2’ < round(y/n), so the range
(2"* — ', 2" + 2] cannot include y, and x is the only admissible solution.

2. ye{l,...,2% +x —n}: this is only possible if 22, + z,, > n; in such case,
given the condition imposed on x,,, then:

yﬁxiﬂtfnm—ng\/52—1+xm—n::cm—1.

As x = x,,, this means that y < z, which violates one of the conditions
established at the beginning.

One issue in the previous exposition is that it is possible that the mapping
is not defined over the entire set {1,...,n — 1}. Instead, if the modulus is not
public, the full working range is not known, and it becomes necessary to upper
bound the integers with which the system will work. In this case, the upper
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bound can be set to ¥, = 22, + ,,, and the mapping can be applied to the
full working range; furthermore, the condition that x < y can be eliminated, as
x € {l,...,x,} already guarantees that there is no ambiguity.

A similar reasoning can be applied when the working range includes negative

numbers:
n

{—L§J,...,o,...,(gw—1}.

In this case, it is enough if z € {1,... ,round(,/3)}, and y € {1,...,[%] -1},
as 2 covers all the range of positive numbers in which ¥ is included, and there are
no ambiguities with the mod operation, as the overlap in intervals can only be

produced with negative numbers, already discarded by the previous conditions.

Limiting the working range is the biggest issue of this method; with sequen-
tial modular additions and multiplications in Z,, it is only needed that the result
of applying the same sequence of operations (without applying the modulus) in
Z belongs to the interval {1,...,n — 1} to reach the same value with modular
operations. In the case of the defined square root, it is necessary that the op-
erations made before applying a root also return a number inside the interval
{1,...,n— 1}, and it is not enough that the final result of all the computation is
in this interval.

2.D.4. Zero-Knowledge Proof that a Commitment Hides
the same Value as one of two given Commitments

This proof constitutes a mixture of a variation of the proof of equality of
two commitments [47] and the technique shown in [I93] to produce an OR proof
through the application of secret sharing schemes.

Given three commitments C,, = ¢i*hi', Cy, = ¢32h3? and C, = ¢g"h", the
Prover states that = x; or that x = z5. The notation used for the security
parameters (B, 7, k, F' = C(k)) is the same as in Section [[LT.T.3} the structure of
the proof is the following:

1. Let us suppose that z; = x, and z; # z, with 4,5 € {1,2}, ¢ # j. Then, for
xj, the Prover must generate the values
U Ul y—ey
Vle = gj]hjj ij 7,
Wiy = g h"2C %,
such that e; is a ¢-bit randomly chosen integer (e; € [0,C(k))), u; is ran-

domly chosen in [0,C(k)72%), and uj; and wjo are randomly chosen in
[0, C(k)257+25).
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For x;, the Prover chooses at random y; € [1,C(k)72%) and 743,74 €
[0, C(k)2B+2%) and constructs

o Yip T
Wii = g;"h;*,
Wiy = ghhis.

Then, the Prover sends to the Verifier the values Wi, Wia, Woy ,Was.

2. The Verifier generates a random ¢-bit number s € [0, C'(k)), and sends it to
the Prover.

3. The Prover calculates the remaining challenge applying an XOR e; = e; ®'s,
and then generates the following values:

u; = Y; + 6T,
U1 = T3 + €14,

Ujp = T4 + €T,
and sends to the Verifier eq, uy, u11, U12, €2, Ug, Usq, Usa.

4. The Verifier checks that the challenges e, e; are consistent with his random
key s (s = e; @ ey), and then checks, for k = {1,2}, the proofs

gU e Ot = Wi,
U, u —€
g O = Wiy,

The completeness of the proof follows from its definition, as if one of the zy
is equal to x, then all the subproofs will succeed.

The soundness of the protocol resides in the key s, that is generated by the
Verifier. This protocol can be decomposed in two parts, each one consisting in the
proof that x = z; for each x;. Both are based in a protocol that is demonstrated
to be sound [47]. So, without access to e; at the first stage, the only way for
the Prover to generate the correct values with non-negligible probability is that
x; = x; if x; # x, he must generate e; in advance for making that the proof
succeeds. With this premise, one of the e; must be fixed by the Prover, and he
indirectly commits to it in the first stage of the protocol; but the other value e;
is determined by e; and by the random choice of the Verifier s, so for the Prover
it is as random as s, guaranteeing that the second proof will only succeed with
negligible probability when z; = x.

The protocol is witness hiding, due to the followed procedure for developing
it [193]; thanks to the statistically hiding property of the commitments, all the
values generated for the false proof will be indistinguishable from those of the
true proof. Furthermore, the protocol is also zero-knowledge, as a simulator can
be built that, given the random choices of the Verifier (s) can construct both
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proofs applying the same trick as for the false proof, and the distribution of the
resulting commitments will be statistically indistinguishable from that of the real
interactions; in fact, the original protocol was honest-verifier zero-knowledge, but
adding the additional XOR on the Verifier’s random choice for the true proof
makes that the resulting value is completely random, at least if one of the parties
is honest (it is like a fair coin flip), so the zero-knowledge property is gained in
this process.

Applying the technique shown in [41], the previous protocol can be trans-
formed in a non-interactive zero-knowledge proof of knowledge, by using a hash
function H, so that s = H (Wi ||Wia||Wa1||Wa2), and eliminating the transmission
of Wiy, Wig, Way, Was. This way, the Verifier checks that:

e1® ey =s=H (" h{" C. |g" B> Cr 7 |g3*hy™ O g "> O %)
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Chapter 3

Secure Adaptive Filtering

This chapter addresses the privacy problem of adaptive filtering,
one of the most important and ubiquitous blocks in signal processing
nowadays. It presents several use cases for adaptive signal processing,
studying their privacy characteristics, constraints and requirements,
that differ in several aspects from those of the already tackled lin-
ear filtering and classification problems. The chapter highlights the
impossibility of using a strategy based solely on current homomor-
phic encryption systems, and proposes several novel secure protocols
for a privacy-preserving execution of the LMS (Least Mean Squares)
algorithm, combining different SPED techniques, and paying special
attention to the error analysis of the finite-precision implementations.
The best trade-offs are sought in terms of error, computational com-
plexity and used bandwidth, showing a comparison among the differ-
ent alternatives in these terms, and providing the experimental results
of a prototype implementation of the presented protocols, as a proof
of concept that showcases the viability and efficiency of the novel so-
lutions. The obtained results and the proposed solutions are straight-
forwardly extensible to other adaptive filtering algorithms, providing
a basis and master guidelines for their privacy-preserving implemen-
tation.

The work shown in this chapter has been partially presented at
IEEE ICASSP 2011 [22§], and IEEE Trans. on Information Forensics
ans Security [229], and as a UVIGO Technical Report [227]; some
of the technical developments have been filed as patent applications
(Patent pending, Application No. 61/443823).

73
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3.1. Introduction

After highlighting the goals of efficient privacy preservation that Signal Pro-
cessing in the Encrypted Domain pursues, the previous chapters present several
protocols and blocks related to generic primitives of use in many signal processing
applications, describing the available tools and technologies for achieving those
goals, mainly homomorphic processing, secure circuit evaluation and garbled cir-
cuits, and interactive protocols. During the (still) short lifetime of the discipline
of SPED, many efficient and secure techniques have been developed for specific
applications, building up a set of tools that evidence the potential of this tech-
nology.

But within this set of tools, the most efficient SPED primitives are those
that exploit the properties of homomorphic encryption for performing some lin-
ear fixed operations; most of the times Signal Processing needs to go further,
resorting to adaptive filtering algorithms, due to their greater flexibility, higher
responsiveness when tracking the changes in the environment, their convergence
to the optimal fixed solution when working in a stationary environment, and the
fact that they are the optimal solution in settings where the information about the
signal characteristics is not complete, offering a much better performance than
fixed filters. Hence, a considerable number of practical signal processing applica-
tions make use of adaptive filters. As this chapter shows, current homomorphic
cryptosystems cannot directly deal with adaptive filters due to cipher blowup
after a given number of iterations; on the other hand, full homomorphisms, like
Gentry’s [104], able of executing any circuit without the need of decryption, are
still not practical, due to the huge size needed for the ciphertexts. In fact, the
existence of practical fully homomorphic cryptosystems is still an open problem.
Even though there are some linear transforms and basic operations that can be
directly translated into homomorphic processing, the set is too limited, and when
privacy is a concern, the solution cannot impose that these operations be replaced
by simpler non-adaptive algorithms, as the negative impact on performance could
virtually destroy the usefulness of the algorithm. This is especially true when the
involved signals are not stationary, and the filter must track their changes over
time.

This chapter establishes the framework of Secure Adaptive Filtering, and di-
rectly tackles the cipher blowup problem through several secure solutions for
privacy-preserving adaptive filtering that involve homomorphic processing, gar-
bled circuits and interactive protocols, in order to overcome the limitations of
the three technologies, while profiting from their respective advantages. We take
the LMS algorithm as a prototypical example of a relatively simple but powerful
and versatile adaptive filter, and compare the privacy solutions for the execu-
tion of the algorithm in terms of computation and communication complexity.
Furthermore, we also perform a comparison in terms of the effect of fixed-point
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arithmetic on the error that the algorithm produces. We show the trade-off
that the combination of these different technologies establishes between preci-
sion, computational load and required bandwidth, and we look for the optimum
configuration by proposing novel interactive protocols aimed at efficiently solving
the cipher blowup problem, coming to several solutions that reach an optimum
balance among the involved performance figures.

The rest of the chapter is structured as follows: in Section [3.2] we recall the
fundamental algorithms for adaptive filtering whose secure processing versions
we provide. Section [3.3] presents several exemplifying adaptive filtering scenarios
where privacy constraints make necessary the use of a privacy-preserving protocol,
together with the trust model in use within those scenarios. In Section [3.4] some
basic concepts are introduced. SectionB.5reviews the existing solutions for SPED
primitives, and their relationship with the posed problem of secure adaptive sig-
nal processing. Section presents our solutions for privacy-preserving adaptive
filtering. Section 3.7 is devoted to the evaluation of the presented protocols, in
terms of bandwidth and computational complexity. A special attention is devoted
to finite precision effects and error analysis in Section B.7.2 as the private pro-
tocols work with fixed-point arithmetic. Finally, Sections [3.8 and [3.8.1] describe
the practical implementation guidelines of the proposed algorithms, based on the
prototypes we have built, and present the obtained results for their complexity
evaluation. Section [7] gives some conclusions and anticipates future research lines
following those initiated in this work.

3.2. Iterative algorithms for Adaptive Filters

As a brief introduction to the implemented methods, we present a summary
of the most representative adaptive filtering family of algorithms, the Stochastic
Gradient Algorithms.

Stochastic Gradient Algorithms are characterized by the use of a non-
deterministic estimate of the gradient, opposed to other gradient descent meth-
ods. The Least Mean Squares (LMS) algorithm, developed by Widrow and Hoff
in 1960 [240], is the most characteristic algorithm of this family, for being a sim-
ple yet powerful and widely used adaptive filtering algorithm. It comprises two
processes that jointly form a feedback loop: 1) a transversal filter w, with Ng
coefficients applied to the input sequence u,, and 2) an update process of the
coefficients of the transversal filter, based on the instantaneous estimation error
e, between the output of the filter y,, and a desired response d,,. For real signals,
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these two processes are expressed as

Yn =W, Uy, (3.1)
Wp41 =Wy + Uy (dn - yn)a
———

€n
where p is the step size and .7 denotes transpose.

One of the variants of the LMS algorithm that does not update the filter
coefficients after each output sample, but after a block of N, samples, is known
as Block LMS [63]. It has the advantage of being computationally more efficient
and allowing parallel implementations, at the price of a slightly higher error
excess. The update equations of this algorithm are the following

2 /
Wp4+1 =Wy + Tlu d)na (34)
~—
I

where X, is an N, x Ng matrix in which the ith row is the vector u? Noti =
[Un Ny iy UnNyti1s 5 UnNyri-Ngs1), and ¢, = xTe, is the vector representing
the opposite of the scaled averaged estimate of the error gradient for the NN,
samples of the nth block (the scale constant is already embedded into p). Fur-
thermore, for the same convergence speed, the BLMS algorithm presents, in some
cases, better numerical accuracy than the standard LMS. A study on the numer-
ical accuracy for the BLMS algorithm is undertaken in Section

There are many other variants of the LMS algorithm, but we will constrain
our analysis and designs to only these two forms. For more complex adaptive
algorithms, the difficulties of a privacy-preserving implementation are essentially
those derived from the cipher blowup problem and, additionally, those derived
from the implementation of nonlinear functions. The latter is a problem that
does not come specifically from the adaptive filtering scenario and, thus, falls out
of the scope of this chapter. Hence, the chosen forms of LMS are representative
enough, as they hold the essential characteristics of adaptive filtering, and at
the same time they are practical developments widely used in a vast number of
applications, as those sketched in Section 3.3 in the context of a privacy-aware
scenario.

3.3. Privacy Scenario and Trust Model

For all our protocols, we will consider two parties, A and B, both using an
additively homomorphic cryptosystem in an asymmetric scenario, where B can
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only encrypt, but A possesses also the decryption key, and can perform both
encryption and decryption.

For the problem of private filtering, the studied scenario represents a problem
of private data processing, in which one party possesses the input signal and other
party possesses the reference signal or the system model for driving the filtering
of the input signal.

Hence, we will assume that one party B has clear-text access to the to-be-
filtered sequence u,,, while the other party A will provide the desired sequence d,,;
both parties’ inputs must be concealed from each other. The system parameters
can be known by both parties or be provided by one party; in our case, we assume
that the update step p is agreed by both parties. The output of the algorithm (the
filtered signal) is provided in encrypted form, in order to be input to a subsequent
private protocol.

Regarding the privacy requirements, we will assume that both parties are
semi-honest, in the sense that they will adhere to the established protocol, but
they can be curious about the information they can get from the interaction. In
this scenario, our protocols can be proven private (cf. Section B.6.1]); informally,
both parties A and B can only get the information given by the disclosed output
of the system, and no information is leaked from the intermediate steps of the
protocols.

Adaptive filtering has a considerable number of applications in the field of
signal processing. They can be classified in four categories, namely identification,
inverse modeling, prediction and interference cancellation. Within these cate-
gories, numerous applications are subject to privacy constraints and can benefit
from the primitives presented in this chapter. In the following paragraphs, as
illustrative examples of the applicability of our secure protocols, we briefly in-
troduce some of them, mainly related to multiuser communications where the
privacy of the users must be protected from each other and, in the cases where
it exists, from the central processing server. We also provide details of the appli-
cation of our protocols to these scenarios.

3.3.1. Private Interference Cancellation

The scenario in which a received signal must be cleaned due to the presence
of interfering signals is one of the prototypical applications of adaptive filtering,
when the characteristics of the involved signals are not constant over time. It is
in the setting involving multiuser channels, with the interfering signals coming
from other users, where privacy is a concern and each user’s signals must be
concealed from other users’. Here, the filtering must be done in such a way that
each receiver gets no information about the signals that it must cancel, and other
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users get no information about the receiver’s desired signal. This is the scenario
where our framework is most directly applicable.

In the secure scenario that we are depicting, the signal that reaches the receiver
is digitally sampled and encrypted before any processing, in order to protect the
privacy of the involved parties. The decoding stage can be implemented using
a privacy-preserving protocol that replicates the steps of the digital decoder in
fixed point arithmetic, using the rounding protocols presented in the following
sections when needed. The description of the secure decoding protocol is out
of the scope of this chapter, but it must be noted that a demodulator (with
linear filters) followed the linear stages of a decoder can be directly implemented
just with homomorphic processing, in such a way that the party that runs the
decoder can obtain an encrypted soft decoding output without any interaction
of the signal owner, and then run an interactive private decisor to obtain the
encrypted decoded symbols. From now on, we will represent the composition
of these protocols that take the encrypted input digital signal and output an
encrypted decoded symbol sequence as a block called private decoder.

There are several possibilities when using an adaptive filter like the LMS for
interference cancellation, that are described in the following paragraphs:

» One particular case is to use an adaptive line enhancer (ALE), in which the
reference signal d,, is the input u,,_a delayed an interval of A samples, called
prediction depth or decorrelation delay. This setup is used for detecting a
sinusoidal signal buried in a wideband noise background [248], and it is one
of the simplest configurations of the LMS filter; the ALE does not directly
support the use of our protocols as they are presented, because all the input
signals are in possession of one of the parties.

= More elaborated designs of adaptive cancellers make use of information
about the interfering signals; one example is joint decoding, in which the
interferer provides a training sequence and/or the timing of the interfering
signals; this (private) information can be used to perform a first decoding
stage (with a private decoder block) that extracts the interfering signal, that
can be used later as the reference signal within the private LMS protocol,
in order to extract the cleaned signal.

The second scheme is shown in Figure [3.Tal where the private decoder extracts
the needed information about the interfering signals; this information constitutes
the input to the private filtering block that provides the adaptive weights applied
to the received signals in order to clean the desired one. The contents of the
interfering private signal are not disclosed.

As a specific example, we can devise a scenario of a multiple access channel
within an ad-hoc network, with several users transmitting simultaneously and
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asynchronously private signals; a decentralized multiuser detection (MUD) al-
gorithm (cf. [234] 249] [169]) is used for decoding the signals addressed to each
of the K receiving users (each one with his own decryption keys and reference
signals d, ; or signatures), through a channel estimation step and an interference
subtraction step. The signatures {d,,;}i—1. x and the sent messages {yni}ti=1,. .k
must be kept private to each of the corresponding receivers. The detection al-
gorithm is run collaboratively between pairs of receivers to clean their desired
signals, in such a way that each user will not have access to the signals that are
not addressed to them.

3.3.2. Private Adaptive Beamforming

Adaptive beamforming is a spatial application of adaptive filtering where a
system composed of an array of antennas changes the directionality of the trans-
mitted /received signal without mechanically moving the antennas. In the most
common setting, the system must determine the spatial direction of the interfer-
ing signal and/or that of the target signal, and filter the sensed signals in order
to cancel the former and extract the latter; it finds use in communications, radar,
sonar or speech enhancement. The interfering signal comes usually from another
source. The trust model in this scenario deals with, on the one hand, the protec-
tion of the transmitted /received target signal, and, on the other hand, the pro-
tection of the interfering signal and the spatial position of the interfering source.
The two parties involved in the scenario are represented in the beamformer by the
adaptive filtering mechanism that cleans the desired signal, and the model and
pilot information for the desired signal. Again, this model fits perfectly in our
framework, and the protocols that we present can be straightforwardly adapted
to this scenario. The private filtering block (Figure B.1D]) provides the adaptive
weights applied to the received signals in order to adjust the directivity of the
antenna array, without disclosing the contents of the interfering private signal;
as in the private interference cancellation scenario, it must be complemented by
another private block, denoted private beamforming block, that processes the
mixed signals while concealing the private information.

Descending to a lower abstraction level, there are several possibilities for im-
plementing an adaptive beamformer, but the most practical ones are those that,
once known or calculated the directions of arrival of the desired signal and the in-
terfering ones, make use of the LMS algorithm in order to suppress the interfering
signals: wu, would be the input received from the interfering directions (6;) and
d,, the input coming from the direction of the desired source 64; the LMS filter
minimizes the power of e, = d,, — y,, that is taken as the output of the beam-
former. Hence, the LMS minimizes the influence of the interfering signals. Using
the same terminology as for generalized sidelobe cancellers (GSC), the sequences
coming from the antenna array must be filtered by a filter bank (represented
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Figure 3.1: Private Interference Cancellation (a) and Private Adaptive Beam-
forming (b) Scenarios.

by a signal-blocking matriz C,) that takes only the subspace of signals coming
from 6;, and another filter (represented by the quiescent-weight vector w,) that
takes the signal coming from ;. The LMS algorithm gives the weights of the
adjustable-weight vector w, that filters the output of the signal-blocking bank.
Informally, the LMS algorithm drives the adjustable-weight vector for obtaining
the part of the interfering signals that is still present in d,,. The filters C, and
w, must be applied privately (being linear filters, homomorphic computation is
enough for their implementation) to the input sequence, and they constitute the
private beamforming block shown in Figure 31D} there are two possibilities for
the calculation of these filters:

» When the direction of arrival (DOA) is provided by the sources, C, and w,
are fixed.

= When the direction of arrival of each signal is not known, a privacy-
preserving implementation of a DOA algorithm (MUSIC — MUltiple SIgnal
Classification, or ESPRIT — Estimation of Signal Parameters via Rotational
Invariance Technique) must be used for calculating these directions and the
corresponding C, and w,.

As a specific example of this scenario, we could pose the problem of a cellular
smart antenna, property of a mobile operator receiving signals (mixed into a signal
u,,) from his own users and also from users of a second operator that subcontracts
the infrastructure of the former. The latter operator (party .A) has decryption
capabilities (and reference signals d,,; for each of his users) and wants to perform
adaptive beamforming to clean the signals y,,; from the clients without disclosing
to the former (party B) their positions or the contents of the cleaned signals, in
such a way that the information of the users of B is also not disclosed to A.
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3.3.3. Private Model-Reference Adaptive Control (P-
MRAC)

There are many control applications [207] where the parameters of the con-
trolled system are either not fully known or vary over time. Adaptive control
yields a solution for maintaining consistent performance in these cases. It is used
in many industrial contexts like, to name a few, robot manipulation, ship steer-
ing, aircraft control or metallurgical /chemical process control. Model-Reference
Adaptive Control (MRAC) is one approach for constructing adaptive controllers.
An MRAC system is composed of four elements:

= A plant with a known structure but unknown parameters.

= A reference model that specifies the desired output of the control system
to the external command. It should match the performance specification
while being achievable by the control system.

» A feedback control law (controller) with adjustable parameters. It should
guarantee tracking convergence and stability.

= An adaptation mechanism for updating the adjustable parameters.

The trust model in this scenario can be devised as a two party model (in-
volving privacy of system users at the plant and at the controller), where the
plant outputs must be kept secret from the party that runs the controller, and
the reference model that the controller applies must also be kept secret for the
parties in the plant. In order to adaptively control the plant while keeping the
privacy constraints, the same philosophy that we apply to LMS can be used to
straightforwardly translate the protocols that we present for their use in this
scenario.

The MRAC setting corresponds to a system identification problem where d,,
is the signal coming from the reference model and wu,, is the signal coming from
the plant; the LMS algorithm provides the corresponding adaptation mechanism,
yielding the coefficients that must be applied to the plant in order to conform to
the reference model; finally, the feedback control law is given by the minimization
of the MSE between the output of the plant and that of the reference model. The
LMS algorithm might be a very simple control mechanism in this case, but it cap-
tures the essence of the adaptive control problem, and more complex adaptation
mechanisms can be directly obtained by appropriately pre-processing the signals
coming from the plant and the reference model, and post-processing the filter
coefficients before they are inputted to the plant. The implementation of these
pre- and post-processing modules must also preserve the privacy constraints to
have a globally secure protocol.
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As a specific example for this scenario, we could devise a spacecraft control
system working with classified information coming from a vehicle in orbit, using
an antenna under the control of a non-trusted party; the control information
cannot be disclosed for keeping secret the management of the vehicle behavior.
In this case, the party that emits the control (reference d,,) signal has decryption
capabilities, while the non-trusted party that receives the vehicle’s signals (u,)
can only encrypt.

Current privacy-preserving solutions cannot be directly applied to these sce-
narios due to the cipher blowup problem, that prevents the use of homomorphic
computation alone. We will present in the subsequent sections our novel solutions
to that problem; they have a direct application in the aforementioned scenarios
and present efficient private protocols that overcome cipher blowup, finding an
optimal trade-off between precision and complexity.

3.4. Secure Computation and Garbled Circuits

In this chapter we make use of and evaluate several already introduced con-
cepts:

» Homomorphic encryption (cf. Sections and Z2.277)): as before, we do
not restrict the used cryptosystem for the presented protocols, as long as it
presents an additive homomorphism; additionally, for evaluation purposes,
we employ the Damgard and Jurik’s cryptosystem (cf. Section 2:2.2.1]), for
which we propose several efficiency improvements, shown in the Appendices.

» Secret sharing (cf. Section 2.2.2.7)).

» General Secure Multiparty Computation (cf. Section [LT.IT]) and interac-
tive protocols.

Besides these tools, we also make use of garbled circuits, that were not ex-
plored in depth in the previous chapters.

Garbled circuits are based on the solution that Yao initially proposed for
the Millionaire’s problem; it consists in two parties evaluating a given circuit,
gate by gate, without knowing the output of each gate. Yao’s solution was not
efficient, and later, many protocols based on other principles like homomorphic
computation or secret sharing were proposed in order to efficiently perform other
operations in a secure manner.

Nevertheless, while homomorphic computation and secret sharing are very
efficient for implementing arithmetic operations, circuit evaluation is still more
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efficient when dealing with binary tests [77]. Thus, there exist efficient proto-
cols for binary comparison [77, I73] or Prefix-OR [77] that will be needed, with
some modifications, for the implementation of our solutions. Traditionally, the
search for efficient solutions has led to proposals for changing between integer
and binary representations in order to efficiently implement both arithmetic and
binary operations; e.g., there are solutions like the BITREP protocol [199], that
converts Paillier encrypted integers to Paillier encryptions of their corresponding
bit representation (cf. Chapter [2).

For the garbled circuit constructions in this chapter, we use the efficient pro-
tocols developed in [141], and for the transformation from Paillier representation
to a binary representation suitable for usage in a garbled circuit, we employ the
protocols in [140)].

3.5. Related Art

Previous work on private linear filtering has been presented as part of the
SPEED project [9], dealing with the privacy problem in a two-party setting where
one party has an input to a linear filter and another party holds the filter coeffi-
cients. Such efficient privacy-preserving solutions are based solely on homomor-
phic processing, as it fits perfectly the linear filtering operation without imposing
any overhead on communication. Within the area of linear filtering, we can point
out the works by Bianchi et al. [44] 43 214], dealing with encrypted DFT and
DCT transforms and frequency-domain linear filtering. Additionally, these works
discuss also the problem of disclosing data derived from the inputs without any
dimensionality reduction, as the original data can be inferred from the disclosed
outputs.

There have been also some contributions for more complex operations, in-
volving the combination of garbled circuits and homomorphic processing, most
notably those from Kolesnikov et al. [140], in which homomorphic processing is
used for the linear operations, while garbled circuits deal with non-linear opera-
tions.

Regarding the privacy considerations in iterative algorithms, there are some
contributions in the area of private collaborative filtering, like those by Canny [53]
and Erkin [90]. In the former, Canny developed a privacy-preserving iterative
conjugate gradient algorithm for the calculation of the SVD decomposition of a
shared preference matrix P. The setting in [53] is different from ours in several
aspects: a) It involves multiple parties, and the gradient estimate in each iteration
is calculated as the sum of the contributions from each of these parties; b) the
result of every iteration is decrypted and disclosed before the next iteration;
hence, it does not involve successive products of encrypted values, as each party



84 3.6. Proposed Protocols

uses only clear-text values for producing the results at every iteration; c¢) as a
drawback, the disclosure of the approximation of the preference matrix and the
global gradient calculated at each iteration are publicly known; hence, the security
relies on those matrices having a very high dimension and the system having a
very high number of users. In this chapter, we are dealing with protecting the
signals coming from one party during their adaptive filtering by another untrusted
party; in this setting, Canny’s solution loses its privacy properties, as the value
disclosed after each iteration allows each party to calculate the secret input from
the other party. Furthermore, we must keep all the intermediate values encrypted
in order to effectively preserve the privacy of the involved users, and this involves
repeated products of encrypted numbers that will have direct consequences on
the viability of the used privacy-preserving techniques due to the cipher blowup
problem.

Other private iterative algorithms involve K-means clustering of a database
shared between two parties, like the one proposed by Jagannathan et al. [I31];
again, in this setting, the results of each iteration (the current classification of
the elements) are disclosed before the next, and the security relies on the dimen-
sionality of the databases, unlike the case of private adaptive filtering.

Hence, to the best of our knowledge, there are no specific solutions within
the emerging field of Signal Processing in the Encrypted Domain for securely
executing iterative or adaptive algorithms besides [220] (cf. Chapter [2), nor any
study performed on the impact that an iterative implementation has on the range
of representable numbers when the results of each iteration cannot be disclosed.
Hence, our solutions are presented here as the first ones dealing with privacy
preserving adaptive filtering algorithms.

3.6. Proposed Protocols

In this section, we present different approaches in order to tackle the private
implementation of the LMS algorithm, and to overcome the limitations that the
sole application of current homomorphic encryption and garbled circuits has in
our scenario.

3.6.1. Homomorphic processing

The LMS algorithm, and most of the adaptive filters currently in use, while
having an essentially non-linear behavior due to their adaptive nature, comprise
only linear operations. Thus, it is foreseeable that homomorphic processing can
yield a quite efficient solution. Unfortunately, there are two drawbacks in follow-
ing this approach:
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s There are no practical fully homomorphic cryptosystems (cf. Chapter [@));
the most promising contribution in this sense is Gentry’s poly-time and
poly-space fully homomorphic cryptosystem, whose constant factors make
it impractical [I04]; hence, using only additive homomorphic processing
implies resorting to interactive protocols for performing multiplications be-
tween encrypted values, or for any other more complex operation.

= The inputs to the secure protocol must be quantized prior to encryption.
Hence, it is necessary to work in fixed point arithmetic, keeping a scale
factor that affects all the values under encryption. This factor will increase
with each encrypted multiplication, limiting the number of allowed itera-
tions of the adaptive algorithm, until the encrypted numbers cannot fit the
cipher, when it is said that the cipher blows up.

There are two approaches for devising a private LMS protocol, depending on
whether the output is either disclosed or given in encrypted form. The simplest
approach is the one in which the output of the LMS algorithm can be disclosed
to both parties; in this case, a secure protocol could be quite efficient, as the
problem of the increased scale factor can be easily solved by requantizing the
outputs in the clear after every iteration with no additional overhead, requiring
only homomorphic additions and multiplications and interactive multiplication
gates. Nevertheless, besides its simplicity, this scenario is of no interest due to
the fact that disclosing the output gives both parties all the necessary information
for retrieving the other party’s private input and rendering the privacy-preserving
solution unnecessary and unusable.

The private output scenario is more realistic, and it is the one on which we will
focus, as it corresponds to the case where the LMS block can be used as a module
of a more complex system whose intermediate signals must not be disclosed to
any party. We will adhere from now on to this scenario, and we will begin by
presenting a protocol that uses only homomorphic computations (Algorithm [I),
in order to have a complexity reference and show its limitations. In Algorithm [IJ,
interactive multiplication protocols are avoided due to the division of the roles
of both parties: the party that provides the private input u, without decryption
capabilities, is the one that will perform the homomorphic operations between
the encrypted intermediate values and w. In this case, there is a constant scaling
factor (updateFactor) that is accumulated after every iteration, and that forces
to scale the inputs and the intermediate results in order to have the correct
output. This accumulated factor limits the maximum number of iterations that
the protocol will be able to execute before the cipher blows up:

Nmax iter —

Necipher : (3 5)
n, + log,(updateFactor)

where n, bits are used for representing each input, and ncipner is the bit size of
the maximum representable number inside the cipher.
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The communication complexity of this protocol, assuming Damgard-Jurik en-
cryptions, is

Cchm,HP = (2Niter + NE - 1)|E‘; (36)

where Njie, i the number of performed iterations, Ng is the length of the filter
and |E| represents the number of bits of an encryption.

It is important to note that the iteration limit imposed by this protocol, due
to cipher blowup, is a serious drawback and impedes the use of only homomor-
phic processing (in its current development stage) to perform adaptive filtering.
For typical values of the used precision (48-bit numbers, 24 bits for the fractional
part) and medium-term security (2048 bits for Paillier modulus), this protocol is
limited to approximately 17 iterations, what is insufficient even for reaching the
steady-state regime, and prevents its use in any practical application. Therefore,
we present it as a reference that sets the minimum of computation and commu-
nication complexity that can be achieved for a private LMS. It must be noted
that this iteration limit could be improved through the use of a different encoding
of the inputs, like the logarithmic encoding presented in [95], but such approach
comes at the price of an increased communication and computation complexity
even for additions and multiplications.

In the following subsections, we propose several novel alternatives and exten-
sions, through the combination of other privacy-preserving techniques, aimed at
overcoming the cipher blowup problem with the minimum overhead in communi-
cation and computation complexity, while preserving an acceptable excess error
with respect to the infinite precision non-private LMS algorithm.

Algorithm 1 Homomorphic Processing (HP) PrivateLMS Protocol
Inputs: A: d,, wo; B: u,,wq
Outputs: [y,].

A

| B
Initialize carriedFactor= 2"/, updateFactor= 23"s.
Encrypt inputs and send [d,,] to B. \

for k =1 to Njier

Perform the vector multiplication [yx] =
[[wk]] c UL .
Scale [d}.] = [di]-carriedFactor.
Obtain [e}] = 1+ (Id4] — [e])-
Perform the scalar multiplication [Awy]
[e}] - us.
Update the coefficients vector [wii1] =
[wg]-updateFactor+[Awg].
Update carriedFactor=carriedFactor-updateFactor.

| Output [yi].

endfor
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Security

Regarding the security of this protocol and the ones presented in the following
sections, it can be proven, using a simulator argument, that all of them are statis-
tically secure under the random oracle model, assuming semi-honest parties: due
to the use of sequentially composed secure subblocks and the semantic security
of the underlying cryptosystems, the views that each party gets are statistically
indistinguishable from a random sequence, and the parties cannot derive from
those views any extra information about the private inputs of the other party.
We will not go into details about these proofs, as they are rather straightforward.

3.6.2. Garbled Circuits Implementation

This protocol represents the whole LMS algorithm as a binary circuit, in
which we include a rounding operation in each multiplication circuit in order to
preserve a constant bit-size for the handled numbers. The protocol is sketched
as Algorithm 2L It is straightforward to derive the binary circuit implementing
Egs. (31)) and (:2), so we do not detail its construction in Algorithm 2} as for the
garbled implementation, we use the XOR-free version of [I41], with the efficient
extensions for the Oblivious Transfer (OT) protocol of [129], and an Elliptic Curve
version of ElGamal [139, [147] for the encryptions. This implementation uses fixed
precision, and rounds the numbers after every multiplication in order to preserve
this precision. Hence, it overcomes the quantization problems that the previous
one presents, but it requires working at a bit level, thus being its performance
highly dependent on the bit-size of the represented numbers.

Additionally, every transferred bit must be independently encrypted, which
also multiplies the communication complexity of the whole protocol by a large
factor, resulting in

Cpxcm,GC :lEl (4n;2z (Niter + 2]\[E]\/viter) + 2”;8(_1 + 10Niter + 4Niternf + 2NE(1 + 5Niter + 4Niternf))
—ANjter(5+nf(3+ny) + Ne(7T+2ns(3+ny)))), (3.7)

where N is the length of the filter, | E| represents the number of bits of an EC-
ElGamal encryption, n, is the total number of bits for representing each number,
and ny is the number of bits used for the fractional part.

The complexity has, as expected, a linear dependence on the product of the
number of iterations and the size of the filter, while it has a quadratic dependence
on the bit-size of the used numbers and the bit-size of the fractional part, due to
the presence of multiplication circuits. The communication complexity is much
higher than in Algorithm [I, due to the need of communicating the whole garbled
circuit prior to its execution.

A remark worth noting on Algorithm [2is that inputs get to the circuit once per
iteration, even when they could be joined all together (in long enough blocks) and
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apply OT reduction techniques [129] for lowering the computational complexity
of the whole protocol. The reason behind this structure is that we are assuming
that the system must work with some real time constraints, and offer the outputs
at the same rate as the input, without a significant delay. Hence, the inputs might
be packed together for reducing the computation overhead of the OTs in small
blocks, whenever the delay is affordable; it must be noted that the communication
overhead is not reduced though: the reduction techniques in [129] replace public
key encryptions with computationally lighter hash functions; since we are using
elliptic curves for the public key encryption, their size is comparable to that of a
collision resistant hash for the same security level. The effect of the OT reductions
is shown for the hybrid block protocol in Section [B.8.1]

Algorithm 2 Garbled Circuit (GC) PrivateLMS Protocol

Inputs: A: d,,wq; B: uy,, wy.
Outputs: [y,]s-
A | B
Obtain the bit representation of their respective inputs.
Execute generateGC() for the first m < Nijger
iterations, and send the garbled circuit and
the keys corresponding to her inputs to B;
the garbled gates for the remaining iterations
can be generated and sent in parallel with the
execution of the previous ones.
for £ =1 to Niter
Perform parallel OT protocols so that B get the input keys to initialize the circuit corre-
sponding to the k*" iteration.

Execute the circuit, using the received input
keys from A.
Output [yk]s.

endfor

3.6.3. Hybrid Implementation

In order to overcome the quantization problem in Algorithm [I] and lower the
communication complexity of Algorithm 2 we have developed a hybrid algorithm
(Algorithm [3)) that uses homomorphic processing for the bulk of the algorithm,
and a quantization circuit to avoid carrying factors. Conversion protocols from
homomorphic encryption to binary representation and vice-versa are used to con-
nect both parts of the protocol.

There are several possible combinations of homomorphic processing and gar-
bled circuits that yield different results in the complexity balance. We can argue
that the optimal point for applying quantization in terms of efficiency is at every
iteration, when the scaled output of the filter y; is obtained (cf. Algorithm (), us-
ing a quantization step of 2% to recover the initial precision of ns fractional bits.
When this strategy is chosen, only one scalar value is input to the quantization
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circuit at every iteration, which means reaching the minimum of communication
complexity for the used garbled circuit. Furthermore, this quantization allows
to keep a constant scaling factor for the rest of the handled values, avoiding the
rescaling operation that is performed in Algorithm [I] for every input value and for
the filter coefficients; hence, the computation complexity also reaches its mini-
mum with this strategy. Lastly, the bounded size of the represented values makes
possible the use of a packing strategy for the homomorphic processing, such that
more than one input value can be packed into the same encryption. This will be
further commented in Section [3.6.41

The communication complexity of the protocol is
CPXem ity = (2Niter + Np — )| Eg| + Nier| Ec| (197, + Tngee + 24ny5),  (3.8)

where Ng is the length of the filter, |Ey| and |F¢| represent the bit-size of a
homomorphic and a garbled encryption respectively, n, is the total number of
bits for representing each number, ny is the number of bits used for the fractional
part, and ng.. is the number of security bits used for the conversion protocols.
As the circuit part involves only rounding operations, and the multiplications
are performed homomorphically, the complexity is linear on the bit-length of the
inputs and the number of iterations, instead of quadratic, as in the garbled-circuit
solution.

In this case, the quantization step used for the filter coefficients is not the
same as the one used for the input/output values: filter coefficients are quantized
with a finer step, using 3 - ny bits for their fractional part, instead of ny. This
is needed in order to keep the bit-size of the outputs constant and avoid any
further quantization operations. Furthermore, as stated in Section B.7.2, the
quantization step of the filter coefficients is the one that has the highest impact
on the quantization error that is propagated to the outputs, so this measure will
make this method have a much better behavior than Algorithm [ in terms of
mean square error (MSE).

3.6.4. Hybrid Block Protocol and Packing Strategy

As pointed out in the preceding section, the hybrid implementation of the
algorithm has the advantage of working always with bounded numbers, and it
allows for a parallel block implementation in the form of packed coefficients within
a cipher, as introduced in [230].

Typically, the numbers involved in signal processing calculations can be
bounded, and their bit-size represents just a very small fraction of the size of
a secure cipher modulus; the extra bit size is unused, but it is necessary due to
security constraints on the cryptosystem. Nevertheless, this space can be utilized;
assuming that every involved calculation result x is bounded at the moment of
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unpacking such that it occupies at most ny bits (i.e., |z| < 2™~ for the hybrid
protocol, n, = n,+3-ny), every K inputs {z;}1 5", with K < |2 | (heing
Nsec the number of security bits needed for the conversion protocol), can be packed
in only one encryption as [Tpackea] = [Sor—p(Tm +2%71) - 277] being 2" a
shift factor for considering only positive numbers!. This packing allows for the
computation of vector products and additions with a reduced complexity (it gets
divided by the number of packed elements), taking advantage of the unused huge
space that the cipher allows.

Algorithm 3 Hybrid (Hy) PrivateLMS Protocol
Inputs: A: d,,, wo; B: u,, wq.
Outputs: [y,].

A

Encrypt her inputs.

Execute generateGC() for the rescaling cir-
cuit in each of the first m < Nje, iterations,
and send the garbled circuit to B; the remain-
ing circuits can be generated and sent during
the execution of the previous ones.

for £ =1 to Niter

Perform the vector multiplication [y,] =
[wy] - wg.
Convert [y;] to its bit-representation using the bit conversion protocol.
Perform parallel OT protocols so that B get the input keys to initialize the circuit corre-
sponding to the k" iteration.

Execute the rescaling circuit [yx]s =

[H 2;?.?,2 f”]b’ using the received input keys

from A.

The shared output of the circuit [yx]s is converted back to a homomorphic encryption [yx].
Obtain [¢;] = 7 - ([d] — [o]).

Perform the scalar multiplication [Awy]
[ef] - wr.

Update the coefficients vector [wii1] =
[we] + [Aws].

Output [yx].

endfor

This strategy was later generalized to an arbitrary base in [44], but due to
the use of binary circuits, 2™ is the most efficient choice, as divisions and multi-
plications by this factor in the circuit are just implemented for free as bit-shifts
in the clear.

While the packing operation improves the efficiency of the homomorphic com-
putations, on the garbled circuit side of the protocol, it has the effect of increasing

!The shift factor fixes the sign convention between the bit representation (—a = 2™ — a)
and the modular arithmetic (—a = n — a), working always in the range [0,2"), and avoiding
errors in the conversion between both representations. Hence, it is not an integral part of the
packed formulation, and shall only be applied before a conversion protocol.
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the size of the used circuits, multiplying it by the number of values packed into
the same encryption. Thus, the complexity of the executed garbled circuits is pre-
served after packing (lowered if OT reduction techniques are used for each packed
block), while the conversion protocols also get an increase in performance, as only
one conversion is needed for each encryption containing several packed numbers.

Turning to the secure hybrid block protocol, the packed elements must be
processed all together, applying the same coefficients to all of them. Hence, the
normal LMS algorithm cannot take advantage of packing, as the filter is kept
constant for each group of packed samples, and the update equation has to be
slightly modified in order to account for the average error of the whole set of
packed samples instead of the error of individual samples; this filter is known as
the Block LMS algorithm [63], in which the update equation is

Ny—1

Wy = Wy + § Up-Ny+i * En-Ny+is (39)
1=0

where N, represents the size of the block. The usual choice of N, for the Block
LMS filter is N, = Ng, as it yields the minimum computational complexity.

Since the packing factors 2™ are chosen to be powers of two, the bit-conversion
protocol automatically unpacks the numbers without any extra complexity, and
the conversion to homomorphic encryption after the circuit evaluation is per-
formed for each unpacked number in parallel.

The communication complexity of the hybrid block protocol, taking into ac-
count that the XOR gates are free of communication for the used implementation,
is exactly the same as for the hybrid protocol:

Cpxcm,HB = (NE — 1+ 3Njter + 5NE’Niter)’EH| + NiterlEC|(19na: + TNgec + 24nf)

(3.10)
This complexity is linear in the number of iterations, the size of the filter and the
bit size of the numbers, and it is independent of the number of packed coefficients.

3.6.5. Fast Implementation

The hybrid block protocol is far more efficient than the one based solely on
garbled circuits. Nevertheless, the conversion protocols introduce an overhead,
and the fact that the input values to the rounding garbled circuits are generated
on the fly prevents much of the preprocessing that garbled circuits would need to
compensate the complexity of the oblivious transfers. The gap in computational
complexity with respect to the solution based on homomorphic processing is too
big (cf. Section B.8T]), especially when using a high precision bit representation.
Thus, we have come to a much more efficient solution that, in order to tighten that
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gap, avoids the use of circuits, and substitutes them by an approximate rounding

protocol with statistical security. The block implementation can also profit from

the use of this solution, with a decrease on the maximum packing efficiency, as
Ncipher

now the number of packed coefficients is bounded by Nb(FB) < Lmj, instead

of NéHB) < an‘ph+;nsecj, where n, = n, + 3ny is the maximum number of bits
that a coefficient can occupy, and ng.. is the number of security bits required for
the protocol. In this case, the approximate rounding protocol also performs the
unpacking of the results; it is described in its complete form in the next subsection.
The implementation of this fast protocol replicates exactly the implementation
of the hybrid protocols, without the generation and use of the garbled circuits,
substituted by the much more efficient approximate rounding protocol; thus, for
the sake of brevity, we omit its sketch. The disadvantage is that the rounding
error rises with this protocol; however, it is compensated by a reduction of the

complexity gap with respect to the solely homomorphic solution.

Algorithm 4 Hybrid Block (HB) PrivateLMS Protocol
Inputs: A: d,, wq; B: u,,wq.
Outputs: [y,].

A B

Encrypt her inputs.

A executes generateGC() for the unpacking, | Pack the input vector as X J(»k) =
parallel rescaling and output circuits in each ENb—l ona+3ny
. . =0

of the first m < Njier iterations, and sends 0 Ne —1

= Vi and {0,...,Ng —1}.
these garbled circuits to B; the circuits for
the remaining iterations can be generated
and sent during the execution of the previ-
ous ones.
for k =1 to [Niter/Ns|

Uk Ny+i—js ]

Perform the packed vector multiplication
[yl = [wi] - X*.

Convert [yi] to its unpacked bit-representation using the bit conversion protocol.

Perform parallel OT protocols so that B get the input keys to initialize the circuit corre-
sponding to the k" iteration.

Execute the unpacking and parallel rescaling
circuit, using the received input keys from A.
The output of the circuit [yg.n,+ils,¢ = {0, ..., Ny — 1} is converted back to a homomorphic
encryption [yg.n,+i],¢ = {0,..., Ny — 1}.

Obtain [epmrd = 4 (o] —
[yk-ny+i]), i = {0,..., Ny — 1}
Perform the scalar multiplication [Awy] =

k+1)-Np—1
SR el - tio N,

Update the coefficients vector [wii1] =
[wi] + [Awg].
Output [yg.n,+i],¢ = {0,..., Ny — 1}.

endfor

The communication complexity of the fast implementation, in normal and
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block forms respectively, is

1
Cchm,FP = (4Niter + NE - 1)‘EH‘7 Cchm,FB = ((3 + ]Vb> Niter +NE - 1) ‘EH‘7

(3.11)

where NN, is the number of packed coefficients for the block protocol. This

complexity is of the same order as that of the protocol that uses only homomorphic
processing.

3.6.5.1. Approximate Rounding and Unpacking protocol

We have developed several protocols for quantization under encryption. In
Appendix B.Bl we present two versions of them, with unconditional blinding of
the used values; one is an exact protocol that produces the same results as the
clear-text quantization, and the other is an approximate faster version; both use
comparison circuits for performing the quantization operation. We sketch in Al-
gorithm [5] a third version of the secure quantization protocol where a statistical
blinding is used instead of an unconditional one, avoiding the need for compar-
ison circuits. The security of the algorithm is controlled by the parameter ng.,
chosen such that 27" is negligible; then, the distribution of the blinded values
is indistinguishable from a random sequence (a distinguisher will succeed with
probability 27"s¢); hence, due to the sequential composition of statistically se-
cure protocols and the semantic security of the encryption system, the protocol
can be proven statistically secure under the random oracle model using a simu-
lator argument.

It can be seen that the rounding error that it introduces is higher than that of
a linear quantizer, and it is not uniform between [—%, %), but triangular between
[—1,1), thus duplicating the quantization MSE.

The communication complexity of the protocol is
CpxXem rp = (Ny +1)| Enl, (3.12)

where N, is the number of packed elements in one cipher, and |Ey]| is the bit size
of a homomorphic encryption. Due to the great benefit in efficiency with respect
to the impact on accuracy (cf. Section B.7.2), this is the chosen protocol for the
fast implementation of the private LMS algorithm.

We must point out that this solution to the cipher blowup problem repre-
sents the minimum increase in computation and communication complexity with
respect to plain homomorphic processing. We have discarded the possibility of
using a different number encoding due to the following reasoning: our approx-
imate rounding protocol is approximately equivalent to a secure multiplication
protocol in terms of bandwidth and total computation (at most, one per iteration
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in the implementation of the whole LMS); using a different encoding like the one
in [95], would introduce the overhead of working with triplets of encryptions for
each number, adding two multiplication protocols per encrypted multiplication,
and twelve multiplication protocols and two comparison protocols per encrypted
addition; hence, our solution is notably more efficient.

Algorithm 5 Approximate Rounding and unpacking Protocol

Inputs: A: Quantization step A = 2! and a security parameter ngec;

B: [[Z'packﬂ — Hzf\go—l - 2i<(nb+nsec+1)ﬂ’ A — 2l’ Nsec

Outputs: {[Q4(x)]} .
A

B

Generate I’Eb) €p {21 . 2wl 4
2motnsee} = {0, ..., N, — 1}, with which he
shifts and additively blinds the packed en-

cryptions: [[a:z(;a)]] = [Zpack] + [[Zf\ibo_l xz(‘b) :

2t (netnsect D] homomorphically.
Send [[aci(,a)]] to A.
Decrypt and unpack the received encryp-
tions, obtaining {an)}f\Q’Jl.
Apply a linear quantizer with step A = 2 to their clear-text vectors component-wise, ob-
taining {QA(CC,E@))};V:bo_l and {QA(;U(.b))}Nb()_l, respectively.

KA =

Encrypt her quantized vector component-
wise, and send the encryptions back to B.

Unblind the quantized encrypted
values obtained from A,  obtaining
the encrypted quantizations of the
original  values  {[Q (z:)]} %" =

{[Qa (™) — Qa(a!)}Neg 1.

3.7. Evaluation

In this section, we perform a comparison of the developed protocols in terms
of bandwidth, computational complexity and finite precision effects, providing
also an evaluation of the chosen techniques for each of the solutions, and their
suitability for the application scenarios. In the next section we also introduce a
practical implementation of our protocols, that we have used for measuring actual
execution times on real machines.

3.7.1. Bandwidth

In terms of communication complexity, the estimated transferred bits for each
of the protocols have been given together with their description in the previous
section. All the protocols have a communication complexity linear on the number
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of iterations, the size of the filter and the size of the encryptions; nevertheless,
the constants are not the same and the difference is perceptible and significant
for normal values of the LMS parameters. As an exemplifying case, Figures 3.2a]
and [3.20 show the number of communicated bits for each of the protocols for a
varying number of iterations and filter length respectively; the length of the en-
cryptions is chosen for mid-term security (2048 bits for Damgard-Jurik modulus,
224 bits for the elliptic curve modulus, and 80 bits for the statistical security
parameter used in the conversion protocols).

The obtained results using 32-bit numbers with 16-bit fractional precision are
shown for a 5 tap filter in Figure [3.2al and for 50 iterations in Figure [3.2Bl It can
be seen that the bandwidth of the garbled circuit solutions—only garbled circuits
(GC) and hybrid protocol (Hy)-is several orders of magnitude higher than that
of the solutions including only homomorphic processing (HP). While the HP pro-
tocol needs to transfer two encryptions per iteration (8192 bits), the GC protocol
communicates around 165 Mb per iteration for the chosen parameters. Hence, the
communication complexity for the HP protocol and the fast protocols (FP and
block FB) is higher than that of the clear-text protocols, but still practical; on the
other hand, the bandwidth needed by the solutions that include garbled circuits
make them almost totally infeasible for practical purposes, even when using small
encryptions based on Elliptic Curves. The hybrid protocol presents, though, an
intermediate complexity, due to the overhead, w.r.t. the HP solution, imposed
by the use of conversion subprotocols for changing between bit-representation
and homomorphic encryptions. This overhead will be translated in a decrease in
computation load for the hybrid block protocol (cf. Section B.8T]).
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Figure 3.2: Communication complexity as a function of the number of executed
iterations with Ng =5 (a) and the filter length with 50 iterations (b) for |Ey| =
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3.7.2. Error Analysis and Finite Precision Effects

One of the limitations of the presented protocols, inherent to privacy-
preserving techniques that deal with encryption based on finite-fields, is the need
of using fixed point arithmetic. This is actually not a severe issue, as current
implementations of the traditional insecure algorithms also work with finite pre-
cision, but the flexibility of floating point yields a much wider range of repre-
sentable values, and greatly improves on the quantization error propagated to
the outputs of the algorithm. Numerical stability and numerical accuracy of the
filters, that determine the resilience to quantization errors, come into play when
dealing with fixed-point arithmetic.

While this issue is commonly avoided or mitigated by the use of a sufficiently
large plaintext size to accommodate the needed precision, we believe that it is
necessary to devote some space to calculating which is the needed precision and
plaintext size for keeping the output Mean Square Error (MSE) within a given
bound. In this section we review the error analysis of adaptive algorithms working
with fixed-point arithmetic and apply it to the specific cases that our protocols
involve. We assume that the inputs and outputs are quantized with ny bits for
their fractional part (of the total n, bits used for coding), and the filter coefficients
and some intermediate results are quantized with n,s bits and n;¢ bits for their
fractional part respectively. The use of a different quantization level for vector
coefficients is explained in Section [3.6

Neglecting the overflow effects and assuming stationary d,, and u,, with vari-

ances o3 and o2, i.i.d.> w,, and uniform and independent quantization errors

—2n
of the inputs (with variance 02 = 2 ") and intermediate values (with variance
—2n —2n,, . .
0? =2 12”, and 02, = 2 L for the filter coefficients), it can be shown that

the average power of the error (MSE, or Mean-Square Error) at the output in
steady-state is [54]

2 rR 1
o2(c,d) =02 + % + (Hw*HQ + §ua§1inNE) o +cot+
Ngo? +d-trRo? + p? - 02 ((1 + cj—i + ||w*||2> trR + afnmNE>
2u — ptrR ’
(3.13)

where the first two terms correspond to the error of the LMS filter with infinite
precision, and the rest of the terms stem from quantization. In Eq. (3.13), 02, =

min —

2The calculations can be generalized to any u,, through the rotated or uncoupled coordinate
space [31], but the i.i.d. case is representative enough of the effects of fixed-point precision on
the output error.
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02 — w*E{d,u,} is the error of the optimum Wiener filter w*, trR represents

the trace of the input covariance matrix, and ¢ and d are factors that depend on
the way quantization is handled in multiplications:

. — [ 1, if only the result of wl - u, in (3J) is quantized
" | Ng, if each intermediate product of wl - u, in @) is quantized.
(3.14)

J— 1, if the product pe, is quantized before multiplying by w,, in ([3.2])
~ 1 0, if there is no intermediate quantization in pe,u,, in (3.2).

(3.15)

Equation ([B.I3]) is not exactly the same as in [54], as we have considered
the most general case of having different quantization levels for inputs, filter
coefficients, and also for intermediate values.

If only the inputs are quantized, but the intermediate operations do not per-
form any additional quantization, then the MSE at the output will be, following
a derivation analogous to [54],

2 o tr R

2
o1 = Ot
0l min 2 —utrR

1
+ (IIw*II2 + §u<ffmnNE> o, (3.16)

Hence, for the studied non-block protocols, the error at the output can be
expressed as

012{P = Jg,QD 0(230 = Jg(NEv 1)7 UIQ{y = 03(17 0) (317)

For the fast protocol, the quantization error has a different shape, but the
independence assumptions can be applied exactly as in the other protocols, du-
plicating the power of this quantization error of the intermediate values, that
becomes o7 = 272"1f /6.

3.7.2.1. Block LMS protocol

Following a similar derivation to that of Caraiscos and Liu [54] for the BLMS

algorithm?, with the same independence assumptions, it is possible to generalize
their formula to provide the following approximation to the error in the Block

3The full derivation is rather direct but lengthy, and it is completely shown in Appendix B.Cl
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LMS implementation:

2
pos . trR N 1
s (112 + GnodiNe ) o2 + cof

NE<72

2
Ko +d- <NE Me—lo? + a?tr(R)> +u?-o? ((1 +eZh + ||w*||2) R+ GfmnNE)
2u — u2NptrR

Ug,Bk(C» d, Np) =0min +

(3.18)

where ¢ has the same meaning as in Eq. (313), IV, is the block size, and d = 1
when each product in p )", epuy, in ([B4) is individually quantized, and d = 0
otherwise.

This result is coherent with the one obtained by Eweda et al. [92] for the
adaptive system identification problem, but Eq. (B.I8) is more general and takes
into account more parameters that allow for a greater flexibility in predicting
the error of our implementations. It can be seen that for the same step size pu,
both infinite-precision LMS and BLMS have the same misadjustment (first two
terms in Eq. (3I8])) and the same average time constant. For the finite-precision
algorithms, Eq. (8I8)) shows that the BLMS reduces the sensitivity to the quan-
tization error in the filter coefficients when d = 0 (first term of the numerator),
but the sensitivity to the quantization of the inputs is not altered (third term in
Eq. (8I8))); quantization of the filter coefficients has a much more critical and
noticeable effect than the quantization of the input values when o2 and o2 are
comparable, what motivates the conclusions in [92] about the better behavior of
BLMS; nevertheless, when ¢ > 02 the averaging performed by BLMS has a
neglibible impact on quantization error resilience, as shown in Section B.7.2.3}
hence, for the same convergence speed, BLMS presents an MSE similar to that

of LMS.

3.7.2.2. Transient Deviation due to Finite Precision

As shown in the previous sections, the use of fixed-point precision affects the
stationary regime of the algorithms, producing a higher level of noise. Actually,
the effect of finite precision is also noticeable in the transient period, introduc-
ing errors during tracking and altering the adaptation behavior. Following a
similar derivation to that in [30], we have extended the theoretical adaptation
curve to the BLMS algorithm. The result for the weigth vector misadjustment
M, =F [Ang'wn], for the same assumptions as in previous sections (cf. Ap-

pendix B.CTl), is

A
Y=

2
(1="")] + lef:“; (1-7%"), (319

My =p? Ny - Ng - {A%wz("*l)-&- s (" =) +

1—~2

with
A=222 w2, B =02 [0®(1+ [ |?) + co?] + 0202, 7 =1—uNpol. (3.20)
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Eq. (BI9) gives the evolution of the MSE of the filter coefficients that the
finite precision algorithm introduces with respect to the infinite precision LMS
during the adaptation period. The notation and parameters are the same as
for Eq. (8I8). This error evolves with a fixed time constant, equal to that of
the infinite precision algorithm, until reaching the stationary state for which the
output error is given by Eq. (8I8). This evolution is shown in Figure for
the hybrid protocol for different values of the adaptation step and used fractional
bits. For a fair comparison, it must be taken into account that the index n refers
to successive updates of the vector coefficients, that in BLMS are produced every
N, output samples instead of every sample.

3.7.2.3. Comparison and Evaluation

Figure[3.4lshows a representative case of the excess MSE (i.e., E{e*} —07 ;5. )
with respect to the infinite precision LMS, obtained for each of the proposed pro-
tocols for varying bit-size of the fractional part. The theoretical approximations
given by Eq (BI8]) are labeled with the subindex th, and the experimental re-
sults, with the subindex exp. The Garbled Circuit implementation presents the
highest error, mainly due to the use of the same bit size for vector coefficients as
for input quantization, and the quantization performed after each multiplication.
The hybrid protocol is the most robust against quantization errors, due to the use
of a higher resolution for the vector coefficients, and the presence of quantization
only in the outputs, and in no other internal calculations. On the other hand,
the fast protocol presents a MSE slightly higher than the hybrid protocol, due to
the approximate quantization of the outputs. Finally, the MSE produced by the
block protocols is virtually the same as the MSE of the corresponding non-block
implementations, due to the predominant effect of input quantization over that
of filter coefficients quantization. The experimental results are obtained as the
average error after running the algorithms for 40,968 iterations in steady-state
regime, for the system identification setup with o2 = 0.25, 02 = 0.2821, p = 278,
02 = 2.5-107% and 07 ;4 = 2.5147 - 107°. The homomorphic processing pro-
tocol is not shown, as its cipher blows up before reaching the steady-state in
practical cases; e.g., a modulus of 2048 bits can only hold 28 iterations using 48
bit numbers with 8 bits for the fractional part. Nevertheless, in theory and with
a big enough cipher, it would be the most robust protocol due to the absence
of intermediate quantizations. Besides this protocol, the concordance between
the theoretical approximation and the experimental results in all the other proto-
cols is remarkable, given the magnitude of the errors with which we are working,
assessing the validity of the initial assumptions for obtaining Eq (B.18)).

There are several effects noticeable in Figure B.4] that deserve a comment: on
the one hand, the experimental results for the Garbled Circuit protocol are not
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Figure 3.3: Excess error during the Figure 3.4: Steady-state excess error for

transient period for the hybrid proto- varying fractional precision, with n, = 48,

col, with n, = 48, and a 4-tap adap- and 12-tap adaptive filter, packing N, =

tive filter. Ng = 12 coefficients in the block proto-
cols.

shown, as for the used bit-sizes the precision used for filter coefficients is too
low (equal to that of the inputs and intermediate results), and it suffers from
stalling effects, that prevent it from converging; as a consequence, it needs a
much higher precision in order to avoid stalling, and even when converging, as
shown in the plot, the error that it produces is significantly higher than that
of the other protocols. The second observable fact is that the gap of precision
in block protocols is almost negligible when o > ¢2. This difference is not
noticeable in Figure [3.4] and it would only be significant with very long blocks
Ny > 1 or with 02 ~ ¢2. The way our protocols are designed avoids this second
condition, as they use always a higher precision for the filter coefficients than for
the inputs/outputs.

At last, the value of N, is limited by the maximum plaintext size and the
number of bits used for representing each number. Thus, Eq. [BI8) can be

used together with the packing limits for the block protocols Nb(FB) < | Dedpher |

Np+Nsec
NP < | meme—= | for finding a trade-off between the committed error due
to the used precision, and the complexity of both protocols, dependent on the
number of coefficients that are packed together.

3.8. Practical Implementation

In this section, we present and comment the results of a practical implemen-
tation of the proposed protocols. For this purpose, we have chosen the Damgard-
Jurik [79] extension of Paillier cryptosystem, due to its flexibility for fitting larger
plaintexts with a constant expansion ratio. For the protocols involving garbled
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circuits, we have chosen the XOR-free garbled circuit solution in [I41], and the
efficient oblivious transfer protocols of [129] with EC-ElGamal encryptions, aim-
ing to the most efficient algorithms currently available for implementing garbled
circuits.

For the evaluation of computational complexity, we have implemented the pre-
sented protocols and their block versions in C++ using the crypto++ library [I]
for the elliptic curves cryptosystems, and the GNU GMP library [3] for multipreci-
sion arithmetic, and we have provided our own implementation of Damgard-Jurik
encryptions, with some efficiency improvements in modular exponentiations, de-
tailed in Appendix[3.Al We use these implementations in order to plot the execu-
tion times of the three protocols and compare them in terms of CPU usage. We
have made the whole software package of our implementation available at [21§].

3.8.1. Computational Load

We have measured the computational load of the developed algorithms
through the total computation time that their efficient implementation yields
on a PC with no parallelization, for a fair comparison. Nevertheless, these pro-
tocols, and especially their block versions, are easily parallelizable, obtaining a
great reduction in execution time when several cores are available. The exper-
iments were performed using our C++ implementation on an Intel Core2Duo
processor at 3 GHz with 4GB of RAM running a 64-bit linux distribution. In
order to measure only computation times, we have neglected the communication
stack, and we have run in the same core the client and the server sequentially,
obtaining the aggregated computation times for both parties.

Figure shows the aggregated computation time for the 48 initial iterations
of each of the presented protocols, as a function of the filter size. The three
protocols involving garbled circuits are the most expensive ones, due to the load
that oblivious transfers impose. While this load is normally absorbed through
precomputation, with an adaptive algorithm it is not possible to perform the
heavy encryption operations a priori, as they involve the results generated in
each iteration; hence, no precomputation is applied to any of the performed
operations. This has also an impact on their parallelization, as each oblivious
transfer round involves only the bits of one input. This is especially critical in
the case of the hybrid protocol, as the small OT's in each iteration cannot be joined
together into a longer and more efficiently reducible OT. On the other hand, the
packing performed in the hybrid block protocol allows for this reduction, greatly
improving computational load as the number of packed coefficients (chosen to
equal the size of the filter) increases.

Finally, the execution times of the fast protocols are several orders of mag-
nitude below those of the garbled circuits solutions, and slightly increase the
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complexity of the homomorphic computation protocol due to the addition of the
rounding protocols. This is a remarkable result, taking into account that with-
out this rounding subprotocols, the whole homomorphic computation protocol is
completely unusable due to cipher blowup. For the fast protocol, the block-based
one does not improve on the computational load, as the fast rounding protocol
requires a whole unpacking protocol for each of the packed numbers, and it does
not yield the same improvement as in the hybrid block protocol. Hence, the fast
protocol is more time-efficient than its block version.
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107

time [s]

10°
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Figure 3.5: Aggregated computation time for 2048 bits moduli, |E¢| = 224,
Nsec = 80, Ny = 32, ny = 16, 48 iterations and increasing filter size and maximum
packed coefficients.

3.9. Conclusions and Further Work

Addressing privacy in adaptive filtering applications is an important open is-
sue in the field of Signal Processing in the Encrypted Domain. This chapter has
presented the problem of privacy-preserving adaptive filtering, with several rep-
resentative scenarios and their trust model and privacy requirements. Due to the
impossibility of using a practical full homomorphism, we have proposed several
novel solutions employing different techniques, like garbled circuits, additive ho-
momorphisms and interactive protocols, looking for the optimal trade-off in terms
of complexity and output error; we have also provided several private quantiza-
tion algorithms of independent interest to tackle the cipher blowup problem; we
have implemented all our novel protocols for the Private LMS algorithm in a
working prototype, and we have performed a comparison in terms of bandwidth
and computational complexity, concluding that garbled circuits are still far from
providing an efficient solution to adaptive filtering, and interactive approximate
protocols with statistical security can yield much more practical solutions.
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We have also tackled the issue of the limitation to fixed-point precision when
working with encrypted values, resorting to analytical studies on the impact of
finite-precision in the output error of the used adaptive filters, during the tran-
sient period and in steady-state regime, particularizing the expressions to each of
the studied cases. The fast protocols that we have introduced are almost as ro-
bust as the original (B)LMS algorithm with respect to quantization errors, while
presenting low computational and communication complexity.

This chapter covers the two main problems of any secure adaptive filtering
algorithm, namely cipher blowup and precision limits due to the use of fixed point
arithmetic. Further research will aim also at the implementation of more complex
nonlinear functions, being this problem not specific of adaptive filtering. Hence,
the present work opens the door to further improvements in secure adaptive
filtering, setting the basis and a reference implementation for the development of
new solutions.

3.A. Fast Encryption and Decryption for
Damgard-Jurik Cryptosystem

Encryption and decryption are two of the most costly operations, due to
the heavy modular exponentiations that they must perform. For our implemen-
tations, we have used a different version of the decryption operation, and for
the private encryption of the Paillier cryptosystem (and the Damgard-Jurik ex-
tension) that enhance the performance of the original methods. This appendix
describes both methods. Modular exponentiations are the most computationally
demanding basic operations, whose complexity is linear in the exponent size |e|
and quadratic in the modulus size |n| (i.e., O(|e||n|(|n| — 1))). Thus, reducing
the bit size of the involved operands yields important efficiency gains. The pre-
sented reductions are based on using the knowledge of the factorization of the
public modulus n, enhancing all decryption operations and encryption operations
performed by a party with decryption privileges (private encryption). Looking
at the most common two-party scenarios of homomorphic encryption, the party
that owns the data and owns the decryption keys is usually the client, that nor-
mally has a processing power lower than the server; hence, it makes sense to
optimize the operations that this party must perform, and this is exactly what
our modifications do. We will preserve the notation used in Section 2.2.2.1]

Decryption

Let Lo(b) be defined as L,(b) = &=L, for b = 1 mod a,0 < b < d?, as in
Paillier’s work. In [79], it is suggested that the decryption operation, after the
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exponentiation ¢! mod n*™!, be divided into two parts, using L/ (¢?) = L,(c*)-q7"

and L} (c?) = Lg(c?) - p~" instead of L,(c?), and then joined using the Chinese
Remainder Theorem (CRT). While this strategy can provide a speed-up in the
computations, as each part of the decryption works with half-sized numbers, the
initial exponentiation is still the most costly operation. We next show how the
knowledge of the factorization of n allows also for breaking up this exponentiation
into two parts.

For a message z, its encryption ¢ = (1 4+ n)%r™ mod n**!, can be reduced
modulo p**™! and ¢**!, obtaining two partial encryptions with half the size of c:
¢, = (1 4+n)*r™ mod p*™ and ¢, = (1 +n)r™ mod ¢*™'. By Carmichael’s
Theorem, the order of the units in the group Z,s+1 (resp. Zg+1) is a divisor of
p*(p—1) (resp. ¢°(¢ —1)). Hence, the minimum exponent that cancels the effect

of 7" is p — 1 (resp. ¢ — 1), that is

Ly t) =Ly (L4 my 2 00 g

= (1+x(p— 1)n + (I(p; 1)) n?4 ...+ (x(ps— 1)> ns) mod p°,
(3.21)

and analogously for ¢q. Applying the decryption algorithm with p and ¢ for both
parts, and multiplying afterwards each of them by the inverses of p—1 and ¢ —1,
the desired result is obtained:

dy = decys (4 1)-(p—1)"' =2 mod p*, dy=decy(cI)-(¢—1)"' =2 mod ¢
(3.22)

The application of the CRT yields that, if a, and a, are two integers such that
a, p*+a,-q¢*=1,thenz=d, a, ¢ +d, a, p* mod n’.

Finally, as the values of (p —1)~! mod p*, (¢ —1)"! mod ¢*, a,-¢* mod n?*
and a, - p° mod n can be precalculated, and the L' functions can be executed
once for the highest power of p and ¢ and subsequently modularized for the rest of
the iterations of the algorithm (as Ly(a mod ') = Ly(a mod b**') mod ¥),
neglecting the complexity of a modularization and the addition/subtraction of a
unit, the total decryption complexity is reduced to

2 (X(s+;)|n7z + D(5+;)\n| + Py + Z <(/{5 — 1)(P@ + Ak|2n)>> + Ayl (3.23)
k=2

where X, ; is the computational complexity of an exponentiation with modulus
size a and exponent size b, A, and P, are the complexity of a modular addition and
product with modulus size b respectively, and D, is the complexity of an integer
division with dividend’s size a. This results can be compared to the complexity
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of a regular decryption, performed as stated in [79],

X(esnmpinl + Disvym + Y (k= 1) (e + Agin))) - (3.24)

k=2

The reduction factor in complexity due to splitting the exponentiation is almost
four.

Encryption

For regular encryption there is no additional gain to the one pointed out in
Paillier’s original work, by virtue of which taking g = 1 4+ n reduces the expo-
nentiation ¢g* mod n? to a product ¢g* = (1 4+ z -n) mod n?, generalized in [79]
to n**! as a sum of s chained products; the exponentiation 7™ is, in principle,
unavoidable. Nevertheless, when the encryption is performed by a party with
decryption capabilities (“private” encryption), the knowledge of the private key
allows for further improvements on efficiency, applying the same rationale as for
fast decryption. In this case, the reduction seeks partitioning the exponentiation
™" into two exponentiations with half-sized base and exponent.

. S
Given a,s+1 and a,s+1 such that a,s+1 - p°7 + a 41 - ¢ = 1. ¥ mod nst!
P q p a 5
can be calculated as

B Tps(qs mod (p—1)) mod szrl’ ry = rqS(Ps mod (g—1)) mod q8+1’

T, =
“t1 mod n®tt.  (3.25)

n’ _

1
T = T'p : aqs+1 . qS-‘r + Tq . a,ps+1 - p

Precalculating the values of ags+1 - ¢*™ mod n*™ and ays+1 - p**' mod n**,
the complexity of each encryption is reduced to

2X(s+1>\”|7(s+;)\n| +2(s + 1)P(S+1)|n| + 2s - A(S+1)‘n|, (3.26)

2

compared t0 X (s11)jn,(s+1)n| +25  Pls+1)jn| +(25—1) A(s41)jn| of @ normal encryption,
which yields a complexity reduction almost by a factor of four.

3.B. Cipher renewal: quantization under en-
cryption

In order to renew the cipher and eliminate part of the excess of precision
accumulated by the lack of a division operation, it is necessary to quantize the
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encrypted values. For this purpose, and to preserve perfect secrecy, we have de-
veloped interactive protocols of independent interest for performing quantization:

Let [z] € Z, be a class in Z,,, and z its positive representative in the interval
xz € [0,n). A and B possess their respective shares 4,25 of z (i.e. x4 +zp =2
mod n). Both A and B want to requantize x with a step A € (2, [n/2]), with a
maximum quantization error of A. Let us assume that A knows the decryption
key of an additive homomorphic cryptosystem, and both A and B can produce
encryptions using this cryptosystem. The scenario can be plotted also with a
threshold homomorphic cryptosystem, with straightforward modifications.

If B owns an encryption of [z], then he generates a random zg € Z,, blinds
with it the encryption of [z], and sends the result [z + zp mod n] to A, who
decrypts x4 = x + xp mod n. Then, both parties start with a share of x.

Each party quantizes his/her share x4 = [X—ZJ, Tpo = [X—‘;’QJ; with these
values, both parties can obtain the bit representation of their respective quantities
and run a binary comparison protocol (cf. Appendix B.Dl) zpg > [AL/zJ — TAQ,
ending up with an encryption of the binary comparison.

Then, A can obtain [Qr(2)] = [zag]+[zso] — [AL/QJ : [[xBQ > [AL/Z—‘ — IAQ]] :
We denote the result Qr(z) because it does not coincide exactly with the quan-
tization Q(z) when performed in the clear, because Qg(z) is quantized with a
precision of A/2; but the split in two shares introduces an error of £1 in the
quantization of x. Thus, even when the obtained precision is A, the resulting
encrypted number must be scaled by A/2 after decryption in order to obtain the
true quantized value.

The previous protocol could be thought of as a fast version of the quantization
protocol, that has the drawback of introducing some noise due to the independent
quantization of both shares. When the quantization must yield exactly the same
results as in the clear, we can use an exact version of the previous protocol, that
provides a perfect quantization, with the same result as if performed in the clear,
at the cost of an increased computation and communication complexity. We now
describe this exact solution.

After splitting x in two shares x4 and xp, each party quantizes his share with
step A, obtaining respectively x4 = VKAJ’ Tar =74 mod A, and xpg = (IKBJ,
rp, = rp mod A; both have the quantity nn = n mod A in the clear. The
quantization of z as a function of the previous four values can be expressed as
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Q)] = leacl + [onal + (12 fon = [ 5 |]) - (1=00r (Joar 2 |5]] oo 2 [ 5]]))
([rartom e [[3]. 2] + (kae #2850 € Tosl = fear w2 [[2]. 2]

Tno 2 [2]-wac]) - [2] [rmo 2 [2] -], o)

As the only needed binary operation is the exclusive-OR, for efficiency rea-
sons we avoid the use of garbled circuits and implement it homomorphically as
zor(a,b) = a+b—2a-bin Z,. The set I, represents an interval reduced modulo

2A:
7

nA

- { Hﬂw:ﬁ,’(@ﬂ iZifﬁj e 2 H | (3.28)

being [, )oa the modular reduction of the interval with modulus 2A.

The binary comparisons 4, = [T 4, > ’—%-H and rp, = [xp, > ’—%-H are per-
formed by each party independently. A can encrypt [z 4] and send it to B, who
can perform (1—2[zg, > [2]]) (1 — zor([zas] , [zps])) using only homomorphic
operations. Each of the two needed interval checks can be performed through two
comparison circuits and a homomorphic sum ([z € [a,b)] = [z > a] — [z > b]).
After obtaining these values, the whole expression can be evaluated with 5 ho-

momorphic sums and 3 invocations of the secure multiplication protocol.

The total complexity calculated for the exact protocol, for a modulus bit-size
In| =1, is

CPXem, 5@ (M A) =|E| + 3Cpxep, murr +4C0PXem, comp ([logs AT+ 1)
n
+ Cpxem,comp ([Iogg ED ,
Cpxcp pQ, AN A) =Cpxpycpit +3CPXep muLT, A +4CPXep comp,a ([logy AT +1) +
n
Cpxcp,comp,a ([103;2 ZD )
Cpxcp,pq,B(n, A) =Cpxg + 2Cpxgp + 10Cpxg 4 + 3CpX,p prurT, B+

n
4Cpxcp comp,i ([loga AT+ 1) + Cpx,p comp,B ([108;2 ZD )

where | E| represents the number of bits of an encryption (or share). The subindex
cm stands for communication complexity, and cp for computational complexity for
party A or B, being Cpx,, rr the corresponding complexity of the interactive
multiplication protocol; Cpxy,, Cpxpp respectively denote the computational
complexity of a homomorphic addition and product (by a known scalar) for the
used cryptosystem (or secret sharing scheme), Cpxy and Cpxpg,.p; represent
the computational complexity for encrypting (sharing) an integer in Z, or a bit
respectively, and Cpx,, conp(l) is defined in Appendix 3.Dl
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The fast protocol has complexity

CpXem, por(n, A) =|E| + CpXep comp ({108;2 %1 + 1) ,

n
Cpxep,pQf,a(M; A) =CPXy comp,a (ﬁ"gz ZW + 1) ’
CpXep,pof8(Ms A) =Cpxg + Cpxpp + 2Cpx g+

Cpxep.compB ([108;2 %1 + 1) :

3.C. Finite-precision error analysis of the Block
LMS protocol

Starting from Eqgs. (33) and ([B34]), we will follow a derivation similar to that
of Caraiscos and Liu [54] to obtain the steady-state error of the BLMS algorithm
in the presence of quantization errors. We assume stationary d, and wu, with
variances 02 and o2, i.i.d.* u,. We will use the same notation of primed symbols
for quantized values and unprimed symbols for infinite precision ones, and Greek
letters for the corresponding quantization error. The inputs and outputs are
quantized with ny bits for their fractional part (of the total n, bits used for
coding), and the filter coefficients and some intermediate results are quantized

with n, s bits and n; bits for their fractional part respectively, producing errors

2 272nwf 2 272n1f
of power 0;; = =45 and o7 = =45—. Let us assume that there are no overflows

in any of the computations, and a value a is quantized with its corresponding bit-

size for the fractional part (i.e., ny, bits), producing a uniform and independent
2 2_2nf,u,
a 12

quantization error of power o . For the input sequences,

where «,, and f3,, are white, mutually independent, and independent of the signals,

2 = 2712;f , while the filter coefficients are such that

with zero mean and variance o
w, = Wy, + Py, (3.29)
being p, a vector of quantization errors of length Ng.
Finally, the output is

1Ty

Yy, =W, Uy, + 1, = wgun“‘pzun +w£an+77na

4The calculations can be generalized to any u,, through the rotated or uncoupled coordinate
space [31], but the i.i.d. case is representative enough of the effects of fixed-point precision on
the output error.
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where n, is an approximately white sequence of quantization noise independent

of the signals and the rest of the error sequences, with zero mean and variance
2 .

c- o7, with

.o 1, if only the result of w! - w, in B is quantized
" | Ng, if each intermediate product of wl - u, in 1) is quantized.
(3.30)

Hence, the estimation error €/, is

e, = dn — 1)y = dn — WUy, — (PL Uy + W] 0, + 1) -
—————

€n

Up to this point, the analysis does not deviate from that of the LMS algo-
rithm, and the only difference resides at the calculation of w,,, and that all the
Yn-nyiro & =10,..., Ny—1} share the same wy,.y, & = Wn.n,, K =1{0,..., Ny—1}.
For the sake of clarity, we will use the subindices n and %k as w,, = w,.n, and
ar = Gp.N,+k, When there is no ambiguity. Besides that, the same independence
assumptions made in [54] are applicable here:

» «y, B and 7 are independent of the data and of each other; hence, pluy,
'wg; oy, N and B are uncorrelated.
m ¢, is also uncorrelated to wfak, M, and Gy.

= p, depends on data up to time n/N, — 1.

Then, the total output mean square error is

E[e}] = Ele}] - 2E[explu] + El(pruws)’] + El(wy aw)’] + E[).  (3.31)

E[ei]: This term is the MSE of the infinite precision (B)LMS, and it is given
by [L18]
2 rR
E 21 = 52 HO min )
[ek] Omin + 2 ,utrR
E[(wlay)? = Elwlw,|c* For the BLMS, the update equation (3.4 can be
expressed as

MN 2 TLNb—l
b —
Wpy1 = Wy — T Fb Z uer, (332)
l:(n—l)Nb
9.

being %n =V, + N, the estimate of the true gradient V,, used for the gradient
descent algorithm, together with an additive zero-mean estimation noise IN,,.
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When w,, is near the optimal Wiener solution w*, the gradient approaches zero,
and the estimate captures only the estimation noise IN,, ~ &—3 ?:]\23;11) N, Wil

being e; and w; uncorrelated. Hence, the covariance of the gradient is®

5t

k,m

4

= —F
Ny

cov(IN,,)

A4
Z (uger) (Umenm) ] = F{?E

k,m

4 4
= ¥ Xk: E[e}] E [upu)] ~ NbaﬁﬁnR.

Each of the previous steps is justified by the independence assumptions, and
the last approximation comes from considering the error F[ef] when w, ap-
proaches w* equal to that of the optimum Wiener filter o2, . Substituting the
weight-vector noise v, = w, — w* in (B.32) and developing

N,
Wy = Wy + u (_Vn - Nn)

2
N N
:>,vn+1:vn+%(_2R'vn_Nn):vn<I_MNbR>—% n-

In steady-state regime, the mean of v,, is zero and its covariance is

M2N2
cov(vy) = (I — uN,R)? cov(v,,) + 1 b cov(N,,)

= (I — uN,R)? cov(v,) + 2 Nyo? R

= (2uN,R — i’ N RR) cov(v,) = i’ Nyorn R
= (2I — pNyR) cov(v,,) = po>, I

The last step neglects “TN”J?L < 1. Finally,

El(wlap)?] = Elw!w,]o* = E[(w, — w* + w*)T (w, — w* + w*)]o?

= (Hw*H2 + E[vz'vn]) ol = (Hw*H2 + tr (cov(vy))) o’ =

N
(ol + 25502 )

E[(plu)?): For this term, we have that

El(ppur)’] = tr {E [p,pn] R} . (3.33)

5For the sake of clarity, we will omit the ranges of the indices from now on where there is
no ambiguity.
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The update equation with finite precision is

Wy =Wl ) we + S
k
= w), + {1 Z Uk — M Z uku;‘fpn — W Z ukwfak
k k k
Yy w(Be—me) Y e + S, (3.34)
k k

where g, is the error produced by the quantization in the sum p ), uje;. In
the case of the Block LMS, the quantization is only performed after the sum:
Q (1>, ure}), producing an error of power o2; for completeness and to cover
all the practical cases, we will preserve the same parameter d used for the LMS,
with a slightly changed meaning:

d— 1, if each product of the sum ), exuy is individually quantized in (3.4)
~ | 0, if there is no intermediate quantization in p ), exuy in ([B.4).

From (3.:29) and (B3.34)), the coefficients error vector p has the following update
equation
Pn+1 = ann + bnv (335)

with

F, :I—/LZukug,
k

b,=pu (Z ww! oy, + Z wp(Br — ) + Z ak€k> + Sk
k k k

After operating, we obtain
E [pnﬂpgﬂ] - F [ananF,f] 4o (E [wnwﬂ Nyo?R+ Ny (02 + co?) R+ NbUQE[ei]I> +o2I
+d ((Ny — 1)o% I + Nyo?R)
~FE |:annp£FE]

+ 12 (Jlw*|[PNpyo® R+ Ny, (02 + co7) R+ Nyo?oz I) + 021 +d ((Ny — 1)o2 I + Nyo? R),

Qn
(3.36)

where the last approximation comes from the steady-state regime assumption.
Using the same approximation for the first term as in [54, (A14)] (neglect PRP
w.r.t. Rtr(RP,)), and denoting P, = E[p,pl], we get

P, ~ P, — uN, (RP, + P,R) + |2N2Rtr (RP,) + Q...

In steady-state P, ,; = P,, and

B tr(Qn)
(R = 5o e (3.37)




112 3.C. Finite-precision error analysis of the Block LMS protocol

Substituting in (3.37) the definition of Q,, (3.36), and the result in ([3.33)), we

obtain

2
w2 Nyo? ((1 + CZ—g + Hw*HQ) tr(R) + NEcrfmn) + NgoZ +d (Ng(Ny — 1)02, + Nyo?tr(R))
2uN, — p2N2trR

El(pfur)?] =

Due to the independence of p, and data at time n and due to (335, the
term —2E[e,plu,| is zero. Substituting back each of the terms in (3:31]), the
final expression shown in (BI8) for the MSE in the Block LMS implementation
is obtained.

3.C.1. Transient Deviation due to Finite Precision

Following a similar derivation to that in [30], we have extended the theoretical
adaptation curve to the BLMS algorithm. The target is to calculate the evolution
of the weight vector misadjustment, defined as M,, = E[plp,] = tr(E[p.pl]).
Using the same notation as in the previous section, and the same independence
assumptions, the quantization error propagated to the prediction error signal is

e —en=> (B —m — (pows + wiou + play)).
k

Operating on ([3.34)) and including all the second order terms, we get

Wn+1
7\

Wyt + Pryl = Wy + 1 Z urer +z, + B,p,
k

= Pn+1 = bn + anna

we redefine F,, and b,, to incorporate the neglected terms in the previous formu-
lation

F,=1- ”Z (wrup + wpey, + ouuy, + agay )
P

b, =6, +u Z ((Br—me — wlhay) - (ug + o) + o) - (3.38)
K

Since the errors are assumed to be uncorrelated,
P, = E[anrlpZ:Jrl] = E[annngn} + E[bnbg]- (3.39)

For the first term, splitting F}, = I — Z upu; — Z (uray, + aguy, + agoy,),
P p

N AN 7
g

FO F:(sz)
and developing each of the terms of the product
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E [(Egl) + F,g2)> PPt (Egl) + F,gQ))], assuming i.id. w, (i.e., the auto-
correlation matrix is diagonal and its eigenvalues matrix is A = R), neglecting
o* < 02, we obtain

E[F.p.pl F,) = (I — uNyA)? = 2uNyo? (I — pNyA) + 44> Nyo®A) P, (3.40)

For the second term, b, can also be split into two uncorrelated terms (due to
the errors being uncorrelated and zero-mean)

by @
b= 1y (exew + (B — my) wy — wpwy i — apafwy) + 6o + 1y (B = mi) ).
k k

Hence, the second term, neglecting o%(0? + 0%), is

E[b,b]] = (1PNyo?Elel]) +oo) I+ N, (%] |wi|| + 0® +07) A, (3.41)

Substituting (3.40) and (B41) in (3.39),
P, = (I — uNyA)? — 2uNyo® (I — ulN,A) + 4p° N,o®A) P,
+ (WPNyo®Elel] + o2) I + (° Ny (0®||wa| | + 0 + 07) A. (3.42)

Neglecting the second order effects of the gradient noise, and taking into
account that for BLMS, the update matrix for the error given by the direct-
averaging method [118] is E[I — uY_, usu}] = I — uN,R, the functions Ele?]
and ||w,||* can be respectively approximated by

NE 1
El] ~ o2, + Z Aewi? - (1 — pNpAg)™" (3.43)
Ng—1
[Jwn]” ~ Z wi? - (1= (1= pNyAp)"™)?, (3.44)

being wj the kth component of the optimum Wiener filter, and \; the kth eigen-
value of R; for an iid. wu,, \y = 02, k = {0,...,Ng — 1}. Taking this into

account, substituting (3.43) and (Bﬂ) in (Bﬂ), and neglecting po? < 1, we
have

A B

—_—N——
Mapi1 =52 Mp + 2 NyNg | 20262 ||w*||? (72" — 7”) +02 (02(1 + [|w*|?) + CO'I) +0202, | + Ngo2,
(3.45)

with v = 1 — uNyo2. Finally, solving the difference equation, Expression (3.19)
follows.

~
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3.D. Secure Comparison Protocol

For our purpose of comparing two numbers in the asymmetric case where
A can both encrypt and decrypt with an additively homomorphic cryptosystem
and B can only encrypt, both parties have their respective integer quantities x 4
and zp in the clear. In a generic case, we will have to resort to the protocol
in [77] or the one in [I73]. But for the cases we deal with, we have assured that
0 < x4,z < 2! (v4 and zp are [-bit numbers). Both parties want to compute
an encryption of [x4 > x| (the other three possible comparisons, <, >, < can be
straightforwardly obtained with trivial changes to the presented protocol).

We are in the case where both parties can obtain the binary representation of
their respective numbers, so A obtains the encryption of [—z 4], with { bits (in
two’s complement), and sends the [ encryptions to B. B has to execute a binary
adder circuit with the binary representation of xp and the received encrypted
binary representation of [—z4],. The carry bit of this circuit gives the result of
the comparison. At the end of the protocol, B has the encryption of [z4 > xp].

We avoid the use of garbled circuits, that would increase the complexity of
the protocol, and we rely on an additive homomorphism of the used cryptosystem
(or secret sharing scheme), so that this circuit can be implemented in [ rounds
with the following complexity:

Cpxem,comp(l) =UE| + (I = 1)Cpxep pu Lt
Cpxep.compall) =(1 = 1)Cpxe, purr,a + ICPX prepits
Cpxep.compi(l) =2Cpxgp + 2Cpxgy + (I — 1)(Cpxey murrs + 3Cpxgp
+ 5Cpxp4).

|E| represents the number of bits of an encryption (or share); the subindex cm
stands for communication complexity, and c¢p for computational complexity for
party A or B, being Cpx,, rr the corresponding complexity of the interactive
multiplication protocol; Cpxp 4, Cpxpp respectively denote the computational
complexity of a homomorphic addition and product (by a known scalar) for the
used cryptosystem (or secret sharing scheme), and Cpxg,,.p;; is the computational
complexity for encrypting (sharing) a bit.

We are not imposing any limitation to the number of rounds, as we are looking
for the lowest computation complexity, but in case of constant round protocols,
we would have to resort to the Prefix-OR protocol in [77], obtaining a larger
computation complexity which, in any case, is in the same order O(l) as the
previously exposed protocol.



Chapter 4

Applications

There are many application scenarios where SPED can be used
to protect the privacy of the users whose sensitive signals are being
processed. This chapter is focused on a set of application scenar-
ios for which privacy-preserving solutions based on SPED are pre-
sented. These scenarios are Secure Watermark Detection with sym-
metric key, Cloud Computing and, in particular, Medical Clouds, and,
as a specific medical application, private approximate searches on
DNA (Desoxyribo-Nucleic Acid) strings, that convey the most sen-
sitive information about an individual.

The work shown in this chapter has been partially presented at
ACM MMSEC’06 [222], SPIE’07 [223], EURASIP Journal on Infor-
mation Security [224], CISE 2010 [225], CLOSER 2011 [192], VPH
2010 [226] and CCS 2007 [221]; some of the technical developments
have been filed as international patent applications (Patent pending,
PCT Application No. PCT/IB2008/051771).

4.1. Introduction

There are multiple privacy-sensitive signal processing applications where the
primitives presented in Chapter [2] and other SPED primitives may be used to
fulfill the privacy requirements. This chapter firstly explores several of these
applications, that are briefly sketched in the following classification, exemplifying
the use of the solutions from Chapter 21

= Biometrics: The most evident application of biometrics is authentication.
Here, the server has information regarding the biometrics of a person. Due
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4.1. Introduction

to its fuzziness, the region of acceptance may be modeled as a convex poly-
tope in the features space. The user presents her features as a feature vector,
and both parties may run the presented secure point inclusion protocol (cf.
Section 23) for determining the correctness of the user’s claimed identity.
In this process, the biometric features of the client are protected from the
server, and the region of acceptance is not disclosed to the user. Further-
more, the whole interaction consists of encrypted values, thereby protecting
the information against an eavesdropper.

Comparing this method with the typical Helper Data Systems [232] em-
ployed in biometric authentication, the complexity of the proposed protocol
is higher, but its main advantage is its flexibility, as it allows to perform
fine-grained adjustments of the detection boundary.

Classification: The point inclusion problem with a convex polytope can
be regarded as a classification problem. In this case, the spatial region is
interpreted as a fusion of linear classifiers, each one represented by one of
the hyperplanes that form the polytope boundary. Thus, the protocol of
Section 2.3]implements a secure classifier. The case of hyperellipsoids corre-
sponds to a one-layer RBF (Radial Basis Function) network with threshold
activation function.

Database queries: The developed point inclusion protocol can also find an
application in non-orthogonal database queries, where a query, represented
as a convex region in the measurable terms space, is matched with an entry,
represented by a vector of terms. In this case, the query is not revealed to
the database server, and the server can keep the entries secret until they
match a query.

Positioning: 1f the point inclusion protocol is restricted to two or three
dimensions, it can be applied to the problem of secure positioning. Here,
a party wants to check whether one particular location is inside a region
whose definition is owned by another party, but neither of them want to
disclose their own data to the other party. The work in [I97] is a typical
example of a secure positioning application in a pervasive sensor network,
where a user wants to know if his current position is being sensed, but the
monitoring party does not want to disclose the sensing area.

Watermarking/Fingerprinting: Classic symmetric watermarking and fin-
gerprinting schemes require disclosure of the embedding key during detec-
tion. In case the party performing watermark detection is malicious, it can
use the key to remove a watermark [I81]. Thus, traditional symmetric wa-
termark detectors are not applicable in this case. The secure point inclusion
protocol can be applied in a secure watermark detector, where the detection
region is a convex polytope in a multidimensional space. This makes it pos-
sible to run the detection protocol without disclosing either the detection
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region to the party that presents the possibly watermarked work, nor this
work to the party that owns the description of the detection region. Next
in the chapter, a novel solution for secure watermark detection without the
use of the point inclusion protocol is explored.

n Secure Approximate Searching and Matching: This problem can be related
to several error metrics, but it is commonly associated with the Edit or
Levenshtein distance [144], that is the used metric in the developed oblivious
automaton execution protocol (cf. Section 2.5]). This distance measure
accounts for three types of errors, namely symbol substitutions, deletions
and insertions. Given two strings @ and y, the Edit distance is defined
as the minimum number of Edit errors that & must undergo in order to
be transformed into y. If this number is below a given threshold, both
sequences are said to approximately match; in case of a match, a sequence
alignment can be computed, which associates the symbols of  and y, up to
insertions and deletions. Approximate string searching deals with a short
sequence x (the pattern) searched in a longer sequence y, while tolerating
Edit errors. This is also applicable to DNA Sequences, as will be shown in
this chapter.

» Regular expression matching: As the protocol presented in Section al-
lows the efficient privacy-preserving execution of an automaton, it can be
also applied to any problem with a need of privacy preservation that can
be stated in terms of a regular expression. There are plenty of applications
where regular expressions are commonly used, like password format vali-
dation or data parsing. In general, a regular expression can indicate the
format that a given text must conform to in order to be considered valid,
and this is normally the first step of a validation process that protects the
validator from entries that are out of domain and would likely cause errors.
Whatever the validated information is, the need for privacy in the validator
extends also to the need of privacy for the format checker.

s Secure file parsing: another application of regular expressions, where some
text is erased, substituted or inserted in some parts of the file; this can
be done through the application of a finite automaton with output. When
security is a concern the input text has to be protected, and the presented
protocol may be applied. A specific case of the above is word or pattern
finding in a document, a commonly used technique in spam checkers for
electronic mail or virus analyzers. When dealing with confidential mails
or private software, they must be protected from the party that runs the
checker or analyzer. The application of the protocol for these scenarios is
straightforward.

= As for sequential transducers, they represent an efficient approach for large-
scale dictionaries [164, [165], used for computational linguistics, in lexical
analysis, morphology and phonology, syntax, text-to-speech synthesis, or
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speech recognition. All these applications can also be handled by the se-
cure automata execution protocol presented in Section 2.5, when there is
the need of protecting the recognized sequence.

s Linear systems: The resolution of systems of linear equations is the nu-
cleus of many signal processing applications, from common optimization
problems to many other more complex data mining systems that perform
statistical calculation on private data, like channel equalization, maximum
likelihood detection, beamforming, systems and control, etc.

In the next sections, we develop several specific applications with detailed
privacy-preserving solutions described in depth, namely:

» Digital Watermarking Security (Section [£.2]): we present an efficient secure
watermark detector that does not reveal the secret key to the party that
runs it, achieving an improved robustness against sensitivity attacks.

s Cloud Computing (Section E.3]): we provide a conceptual approach to a
high-level architecture for private processing in Cloud Computing, exempli-
fied in Medical Clouds.

» Privacy in Biological Signals (Section[d.4]): as a specific medical application,
we present a privacy-preserving system for detecting DNA diseases using
the oblivious automata execution protocol of Section 2.5l

4.2. Digital Watermarking Security

This section reviews the topic of watermark security and the basics of key
protection and sensitivity attacks in blind watermark detection; two previous
detectors and one novel proposed detector are compared in terms of robustness
against sensitivity attacks, showing how Zero-Knowledge detection fits in this
scenario. Subsection details the novel detection protocol and an improved
version, giving also a complete security (Subsection 2.0 and complexity (Sub-

section L2.7)) analysis.

Watermarking technology [37, [88] has emerged as a solution for authorship
proofs or dispute resolving. In these applications, there are several requirements
that watermarking schemes must fulfill, like imperceptibility, robustness to at-
tacks that try to erase a legally inserted watermark or to embed an illegal water-
mark in some asset, and they must also be secure to the disclosure of information
that could allow the breakage of the whole system by unauthorized parties. These
three factors and their interplay have been a matter of discussion and research for
many years within the watermarking community. In this section we are concerned
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with watermarking security; good surveys on this topic can be found in [I81] 97].
There are numerous alternative countermeasures for protecting the security of
watermarking systems, or, more specifically, for protecting the security of the
secret key used to generate and embed the watermark on the host assets. While
some of these countermeasures are targeted at making more difficult the estima-
tion of this key from several observations of marked (and/or unmarked) assets,
there is another important group of countermeasures whose primary objective is
to protect the secret key.

Up to now it has been shown that the most sensitive part of watermarking
schemes is the embedding key; once this key is disclosed, the whole system is
compromised, so the less information about this key the watermarking scheme
leaks, the better for security. Nevertheless, symmetric schemes [37] use the same
embedding key also for detection/decoding of the inserted watermark, and this
represents a security hole. There are two approaches for protecting the embedding
key during the detection/decoding process, namely asymmetric watermarking and
zero-knowledge watermarking.

4.2.1. Asymmetric Watermarking

The goal of asymmetric schemes is to make the process of detec-
tion/decoding independent of the embedding, by using different keys in these two
steps. Although sometimes the terms public-key and asymmetric watermarking
are used indistinctly, they have a different meaning, pointed out in most of the
works in this area

s Asymmetric watermarking: The keys used for embedding and for extraction
are different.

» Public-key watermarking: The key used for extraction (public key) holds
enough information to accomplish the detection/decoding, while not allow-
ing to remove the watermark or forge illegal contents if the key used for
embedding (private key) is kept secret.

Currently, there is no truly public-key watermarking method, although many
efforts have been done in order to achieve an asymmetric scheme that fulfils also
the requirements of public-key watermarking. In [163], Miller states that key
asymmetry is not sufficient to achieve a valid public-key scheme, and he wonders
whether it would even be necessary if some scheme applicable in an open-cards
scenario existed. In fact, the presented asymmetric schemes up to date are not
really public-key, while their improved security when not publishing any keys
comes from the higher complexity of the watermarking regions [38], leading to
better security when increasing the order of the detection function [98] [126].
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4.2.2. Zero-Knowledge Watermarking

Zero-knowledge watermark has arisen as a solution to conceal all the security
parameters needed for detection/decoding in symmetric schemes. This way, when
using a zero-knowledge watermarking protocol between two parties (Prover and
Verifier), only the fact that a watermark is present or absent is disclosed to the
Verifier, but all the security parameters remain secret. This solves the problem
posed by tampering attacks (cf. [I81]), and provides a better protection against
sensitivity attacks (cf. [I81]), as only blind attacks may succeed.

The concept of zero-knowledge was introduced by Goldwasser et al. [112] in
1985. It basically consists in convincing an adversary of an assertion without giv-
ing him any knowledge but the assertion whose validity is proven. Zero-knowledge
protocols are widely used in cryptography, generally to force a malicious adver-
sary to behave as stated by a determined protocol.

These protocols are based on interactive proofs [112, [113] and arguments [48],
and especially on proofs of knowledge [162]. All of them are based on the intuitive
notion that it is easier to prove a statement through an interaction between both
parties (Prover and Verifier), than to write a proof that can be verified by any
party without interaction. The concealment of data involved in this interaction
is measured in terms of knowledge complexity [110], related to the similarity
between random sequences and the sequences produced by the interaction. Zero-
knowledge is the result of the indistinguishability of both types of sequences.

The first attempt of application of zero-knowledge to watermark detection
was undertaken by Gopalakrishnan [I16]; it consists in a protocol that allows
to detect an encrypted watermark in an encrypted image, through the use of
RSA [191]. Later, Craver [72] proposed several schemes of watermark detection
with minimal disclosure, based on permutations using Pitas’s scheme [I85], or
ambiguity attacks to generate a set of watermarks indistinguishable from the real
one.

Adelsbach et al. [22] proved afterwards that all the preceding works had some
flaws that made them non zero-knowledge, as they give information about the
embedded watermark when using the detector as an oracle.

The formalization of zero-knowledge watermark detection was given by Adels-
bach and Sadeghi [26]; they proposed the use of commitment schemes [76], [198] for
concealing the secret parameters of the detector; also in this work, they presented
a truly zero-knowledge detection protocol for Cox’s additive spread spectrum
watermarking algorithm [68], as a high level protocol that uses existing zero-
knowledge proofs as subblocks; it benefits from the homomorphic properties of
some commitment schemes [96), [78] for alleviating the communication complexity.
Following the same philosophy, Piva et al. [187] also presented a zero-knowledge
detection protocol for ST-DM.
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Nevertheless, there are some security issues that must be taken into account
when developing zero-knowledge watermarking protocols; they have been pointed
out by Katzenbeisser in [137], and are mainly related to the correct concealing
of protocol inputs and the problem of guaranteeing the correct generation of a
concealed watermark. To overcome the latter issue, Adelsbach et al. [23] proposed
several new zero-knowledge protocols that can be used to prove that a given
sequence follows a determined probability distribution.

Although zero-knowledge protocols could seem an utopical solution to many
security problems, they have advantages and also drawbacks [I59]. Their main
advantages are their null security degradation when used several times, and their
resistance against clear-text attacks; their main drawback is their efficiency, as
they commonly produce communication and complexity overheads that are much
bigger than those presented by public-key protocols; as an example, a complete
complexity study of the zero-knowledge version of Cox’s non-blind detection
scheme [68] is developed in [25]. Moreover, many techniques that are based
on zero-knowledge lack a formal proof of zero-knowledge or even validity, due
to the choices of parameters to improve efficiency; actually, many of the con-
cepts related to zero-knowledge are asymptotic and cannot be directly applied to
practical protocols.

4.2.3. Sensitivity Attacks

The watermarking schemes that have been used up to now are symmetric, as
they employ the same key for watermark embedding and watermark detection; as
pointed out in the previous section, the fact that the secret key must be given to
the party that runs the detector, which in most cases is not trusted, constitutes a
security hole that can be tackled through the use of Zero Knowledge watermark
detection, like in [26], where a Prover P tries to demonstrate to a Verifier V the
presence of a watermark in a given asset.

Nevertheless, such minimum disclosure of information still allows for blind
sensitivity attacks [64], that have arisen as very harmful attacks for methods that
present simple detection boundaries. The ZK detection protocols presented to
date—Adelsbach and Sadeghi [26] and Piva et al. [I86]—are based on correlation
detectors, for which blind sensitivity attacks are especially efficient.

Hence, this section presents a novel zero-knowledge blind watermark detection
protocol based on the spread spectrum detector by Hernandez et al. [121], which
is optimal for additive watermarking in generalized Gaussian distributed host
features (e.g. AC DCT coefficients of images). The robustness to sensitivity
attacks comes from the complexity of the detection boundary for certain shape
factors. Thus, when combined with zero-knowledge, it becomes secure and robust.
This protocol will be compared in terms of performance and efficiency with the
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previous ZK protocols based on additive spread-spectrum and Spread-Transform
Dither Modulation (ST-DM), and rewritten in a form that greatly improves its
communication and computation complexity.

4.2.4. Blind Watermark Detection

Some of the concepts involved in Blind Digital Watermarking Detection,
needed for the development of the studied protocols, are briefly introduced before
describing the protocols in the next subsection.

Given a host signal x, a watermark w and a pair of keys {Kemp, Kqet} for
embedding and detection (they are the same key in symmetric schemes), a digi-
tal blind watermark detection scheme consists of an embedder that outputs the
watermarked signal y = Embed(x, w, Kenp,); and a detector, that given a possibly
attacked signal z = y 4+ n, where n represents added noise, the watermark w and
the detection key K¢, outputs a Boolean value indicating whether the signal z
contains or not the watermark w, without using the original host data x.

Three detection algorithms will be compared in terms of their Receiver Op-
erating Characteristic (ROC), namely Additive Spread Spectrum with a correla-
tion based detector (SS), Spread-Transform Dither Modulation without distortion
compensation (ST-DM), and Additive Spread Spectrum with a Generalized Gaus-
sian maximum likelihood (ML) detector (GG). In all of them, the host features x
are considered i.i.d. with variance 0%, the watermarked features are denoted by
y = X + w, and z represents the input to the receiver, which may be corrupted
with AWGN noise n, that is considered also i.i.d with variance o%. The binary
hypothesis test that must be solved at the detector is:

Ho:z=x+n, Hi:z=Xx+Ww+n.

Table 1] summarizes the Probabilities of false alarm (P;) and missed detec-
tion (P,,) for the three detectors [37, 180} 182].

Table 4.1: Probabilities of false alarm (P;) and missed detection (P,,) for the
three studied detectors.

AddSS ST-DM GG
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Figure 4.1: Block Diagram of the watermark embedding process for ST-DM

4.2.4.1. Additive Spread Spectrum with correlation-based Detector

In SS, the watermark is generated as the product of a pseudorandom vec-
tor s, that we will consider a binary sequence with values {£1} (with norm
||s||> = L) and a perceptual mask « (that is assumed to be constant to simplify
the analysis), that controls the trade-off between imperceptibility and distortion

(Do = § X4y Blui} = E{a}} = o).

The maximum-likelihood detector for Gaussian distributed host features is a
correlation-based detector:

1 &
.= zzzksk 21,
k=1 H()

where 7 is a threshold that depends on the probabilities of false alarm (Py) and
missed detection (P,,), as indicated in Table 1]

4.2.4.2. Spread Transform Dither Modulation

Given the host features x and the secret spreading sequence s, which will be
considered here binary with values {£1}, the embedding of the Watermark in
ST-DM [59] (similar to Quantized Projection QP [182] [I80]) is done as indicated
in Figure [Z.11

The host features x are correlated with the projection signal s, and the result
(rz) is quantized with an Euclidean scalar quantizer Q4 (.) of step A, that controls
the distortion, and with centroids defined by the shifted lattice A £ AZ + A/2.
Let p = (Qa(ry) — rp); then, the watermarked vector is given by

1
y-x+w-x+zps.

In order to detect the watermark, the host features, possibly degraded by
AWGN noise n, are correlated with the spreading sequence s, and the resulting
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Figure 4.2: Block Diagram of the watermark detection process for the GG detec-
tor.

value r, = 25:1 2rSk 1s quantized and compared to a threshold 7 to determine
whether the watermark is present:

|Qa(r.) — 72| S 0.

Due to the Central Limit Theorem (CLT), the computed correlations can be
accurately modeled by a Gaussian pdf.

4.2.4.3. Additive Spread Spectrum with Generalized-Gaussian Fea-
tures

Figure shows the detection scheme for this case. The host features are
assumed to be the DCT coefficients of an image, what justifies the Generalized
Gaussian model with the following pdf:

2) — Ae-lBale _ 1 /TB/¢) V2 _ e
Pl = A U(F(l/c)) AT

The embedding procedure is the same as the one described for SS. For detec-
tion, a preliminary perceptual analysis provides the estimation of the perceptual
mask o that modulates the inserted secret sequence s. The parameters c and 3 are
also estimated from the received features. The likelihood function for detection
is

Ha
(y) =D B8 (IYal° = Yy — agsil) =2, (4.1)
k Ho
where 7) represents the threshold value used to make the decision.
As shown in [121], the pdf’s of [(Y") conditioned to hypotheses Hy and H; are

approximately Gaussian with the same variance o, and respective means —m;
and my, that can be estimated from the watermarked image [121].
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Figure 4.3: Theoretical ROC curves for the studied detectors under AWGN at-
tacks, with DWR=20 dB, WNR=0 dB, L=1000, and Generalized Gaussian dis-
tributed host features with ¢=0.8.

4.2.4.4. Comparison

The three detectors can be compared in terms of robustness through their
Receiver Operating Characteristic (ROC), taken from the formulas in Table [£.11
The correlation-based detector is only optimum when ¢ = 2, and when ¢ # 2 the
Generalized Gaussian detector outperforms it; ST-DM can outperform both for
a sufficiently high DWR (Data to Watermark Ratio, DWR = 101log;y(c% /c,)),
due to its host rejection capabilities. However, the performance of the Generalized
Gaussian detector and the ST-DM one are not much far apart when c is near 1 and
the DWR in the projected domain (DWR,, = DWR—101og,, L) is low. Figure[d.3]
shows a plot of the ROC for fixed DWR and WNR, (Watermark to Noise Ratio,
WNR = 101log;o(c3, /%)), with a features shape parameter of ¢ = 0.8, that has
been chosen as an example of a relatively common value for the distribution of
AC DCT coefficients of most images. It is remarkable that even when the exact
¢ is not used, and it is below 1, the performance of the GG detector with ¢ = 0.5
is much better than that of the correlation-based one, and its ROC remains near
the ST-DM ROC.

Regarding the resilience against sensitivity attacks, it can be shown that the
correlation-based detector and the ST-DM one make the watermarking scheme
very easy to break when the attacker has access to the output of the detector, as
the detection boundaries for both methods are just hyperplanes; Figure [£.4] shows
the two-dimensional detection regions for each of the three methods. On the other
hand, the detection function in the GG detector when ¢ < 1 (Figure[d.4d) presents
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(a) (b) ()

Figure 4.4: Two-dimensional detection boundaries for ST-DM (a), correlation-
based detector (b) and GG detector (c).

the property that component-wise modifications produce bounded increments;
that is, when modifying one component of the host signal Y, the increment pro-
duced in the likelihood function (Eq. () is bounded by |agsk|¢ independently
of the component Y| if ¢ < 1:

Y] = [Yi — asi|] < |ose]”.

This means that it is not possible to get a signal in the boundary by modifying
a single component (or a number N of components such that >\ [oysk| is less
than the gap to 1), opposed to a correlation detector, in which just making one
component big (or small) enough can get the signal out of the detection region.
This property can make very difficult the task of finding a vector in the boundary
given only one marked signal.

In order to quantitatively compare the resilience of the three detectors against
sensitivity attacks, we will take as robustness criterion the number of calls to the
detector needed for reaching an attack distortion equal to that of the watermark
(NWR=0 dB). This choice is supported by the fact that for an initially non-
marked host @ in which a watermark w has been inserted, yielding y, it is always
possible to find a vector z in the boundary whose distortion with respect to y is
less than the power of the watermark (e.g., taking the intersection between the
detection boundary and the line that connects @ and y). Thus, a sensitivity attack
can always reach a point with NWR=0 dB. In general, it is not guaranteed that
an attack can reach a lower NWR. Furthermore, given that for a blind detection
the original non-marked host is not known, imposing a more restrictive fidelity
criterion for the attacker than for the embedder makes no sense. In light of the
previous discussion, we can consider that a watermark has been effectively erased
when a point z is found, whose distortion with respect to y is equal to the power
of the embedded watermark w; the number of iterations that a sensitivity attack
needs to reach this point can thus be used for determining the robustness of the
detector against the attack.

We have taken BNSA (Blind Newton Sensitivity Attack [64]; an RRP-

compliant description of BNSA can be found in [65]) as a powerful representative
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Figure 4.5: NWR for a sensitivity attack (BNSA) as a function of number of calls
to the detector for Correlation Detector (Cox), ST-DM and Generalized Gaussian
(GG) with ¢ = 0.5 and ¢ = 1.5 for DWR= 16 dB, P; = 10~* and L = 8192,

of sensitivity attacks, and simulated its execution against the three studied de-
tectors. Each iteration of this algorithm calls the detector a number of times
proportional to the number of dimensions of the involved signals. The results
show that both ST-DM and the correlation detector are completely broken in just
one iteration of the algorithm, independently of the dimensionality of the signals,
so the attack needs O(L) calls to the detector in order to succeed (achieving not
only a point with NWR<0 dB, but also convergence to the nearest point in the
boundary). This is due to their simple detection boundaries, that have a constant
gradient. Figure shows the NWR of the attack as a function of the number of
calls to the detector, for the three detectors, using DWR=16 dB and P; = 107*,
as a result of averaging 100 random executions. The GG detector is used with
two different shape factors, ¢ = 0.5 and ¢ = 1.5; the number of iterations needed
to break the detector in both cases is bigger than for the correlation detectors,
due to the more involved detection boundary, but this effect is more evident when
¢ < 1, case in which the detector has the aforementioned property of bounded
increments for component-wise modifications at the input.

The involved detection boundary of the Generalized Gaussian ML detector
makes the number of iterations needed for achieving convergence grow also with
the dimensionality of the host. This means that the number of calls to the detector
needed to get a certain target distortion is not only higher for the GG detector, but
it also grows faster than for the other detectors with the dimensionality of the host
(Figure .6) for fixed WNR and Py. We have found empirically that the number
of calls needed for reaching NWR=0 dB is approximately O(L'®). Furthermore,
if we took as robustness criterion the absolute convergence of the algorithm (not
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Figure 4.6: Number of calls to the detector for a sensitivity attack (BNSA) for
reaching NWR=0 dB as a function of the dimensionality of the watermark for
Correlation Detector (Cox), ST-DM and Generalized Gaussian (GG) with ¢ = 0.5
and ¢ = 1.5 for DWR= 16 dB and P; = 10~*.

only achieving NWR=0 dB), the advantage of the GG detector is even better
both in number of iterations and in number of calls to the detector; that is,
while for the GG detector convergence is slowly achieved several iterations after
reaching NWR= 0 dB, for correlation detectors BNSA achieves both NWR<0
dB and convergence in just one iteration.

4.2.4.5. Zero-Knowledge Watermark Detection for blind watermark-
ing

The formal definition of a zero-knowledge watermark detection scheme con-
creted for a blind detection mechanism [26, 22] can be stated as follows:

Definition 3 (Zero-Knowledge Watermark Detection) Given a secure
commitment scheme with the operations Com() and Open(), and a blind water-
marking scheme with the operations Embed() and Detect(), the watermarked
host data z, and the commitments on the watermark Cy and key Cg, (for a
keyed scheme), with their respective public parameters parcom = (pary, . parfe ),
a zero-knowledge blind watermark detection protocol for this watermarking
scheme is a zero-knowledge proof of knowledge between a Prover P and a Verifier
V where on common input x := (z,Cyw,Ck,,,PaTcom), P proves knowledge of a
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tuple aux = (W, Ky, 7% rEv ) such that:

[(Open(Cyw,w, e parw, ) = true)A

(Open(Cr,, Ku, 75w parfe) = true)A
(Detect(z, w, K,,) = true)]

The zero-knowledge watermark detection protocol developed by Adelsbach
and Sadeghi [20] has a blind and a non-blind version. The communication com-
plexity of the non-blind version is studied in [25]; it is much more inefficient than
the blind-version due to the higher number of committed operations that must
be undertaken. Piva et al. ZK detection protocol for ST-DM [186] is based on a
blind correlation detector.

4.2.4.6. Zero-Knowledge Subproofs

The proofs that are employed in the previous zero-knowledge detectors and
in the presented Generalized Gaussian one are shown in Table with their
respective communication complexity, which has been calculated when applied
to the Damgard-Fujisaki commitment scheme [78] as a function of the security
parameters F, B, 7 and k, defined in Section [[.LT.1.3

Table 4.2: Zero-knowledge subproofs and their communication complexity.

Proof Cpx,,, (bits)
PKop[m,r : Cy = ¢g"™h" mod n] 3|F|+|7|+ 2B+ 3k +2

PKeq[m, 1,72 : C5) = ghTY mod n A CY) = gI'hl2  mod n] 4|F| + |7| + 2B + 5k +3
PKgqlm,r1,72 : Cm = g7*h7Y mod n /\ggnzhg2 mod n] 4|F| + || +3B+5k+3
PKipt[m,r: Cy = g™h" mod n Am € [a,b]] 25|F| + 5|7| + 10B + 27k + 2|n| + 20
PK>o[m,r: Cm = g™h” mod n Am > 0] 11|F| 4+ 4|7| + 12B + 14k + 9
PKsqrt[m,r1,72 : Cm = g"™h™ mod nAC| o= gnV™h2  mod n]|48|F| + 9|7| + 18B + 53k + 6|n| + 39
PKaps[m,r1,72 : Cm = g"™h™ mod n AC)py, = g™ h™2  mod n] 19|F| + 6|7| + 16 B + 24k + 15.

The first five proofs are already existing zero-knowledge proofs for the opening
of a commitment [78] (PK,yp), the equality of two commitments [47] (PK,,), the
square of a commitment [47] (PKy,), a commitment is inside an interval [47]
(PKin) and non-negativity of a commitment [146] (PK>).

All these proofs are just simple operations, but the lack of some operations
like the computation of the absolute value or the square root, both necessary
for the first implementation of the GG ML detector, led us to the development
of the last two zero-knowledge proofs; P Kyq¢ represents a proof that a commit-
ted integer is the rounded square root of another committed integer, and it is
based on a mapping of quantized square roots into integers. P K., allows the
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application of the absolute value operator to a committed number, without dis-
closing the magnitude nor the sign of that number. Both proofs are described in

Appendix

4.2.5. Zero-Knowledge GG Watermark Detector

Our zero-knowledge version of the Generalized Gaussian detector conceals the
secret pseudorandom signal s, using the Damgard-Fujisaki scheme [78] C5,. The
supposedly watermarked image Y}, is publicly available, so the perceptual analysis
() and the extraction of the parameters ;. and ¢ can be done in the public
domain, as well as the estimation of the threshold 7 for a given point in the ROC.
In this first implementation, only shape factors ¢ = 1 or ¢ = 0.5 are allowed, so
the employed ¢, will be the nearest to the estimated shape factor. The target is
to perform the calculation of the likelihood function

A
PEEEDNS,
D= E Bk | 1 Yel™ — | Vi — agse | ],
~————
%

By,
and the comparison with the threshold 7, without disclosing s;.

The protocol executed by Prover and Verifier so as to prove that the given
image Y}, is watermarked with the sequence hidden in Cj, is the following:

1. Prover and Verifier calculate the commitment to Ay = Y, — ax.s, applying
the homomorphic property of the Damgard-Fujisaki scheme:

Yy
g
Ca,

Cor

2. Next, the Prover generates a commitment Cj4,| to the absolute value of
Ay, sends it to the Verifier, and proves in zero-knowledge that it hides the
absolute value of the commitment C}y, , through the developed proof P K
(Section 2.D.2).

3. If ¢ = 1 (Laplacian features) then the operation |A|¢ is not needed, so, just
for the sake of notation, Cp, = C|4,.

If ¢ = 0.5, the rounded square root of |Ax| must be calculated by the Prover;
then he generates the commitment Cp, = C N sends it to the Verifier

and proves in zero-knowledge the validity of the square root calculation,
through the proof PK, (Section D).

4. Both Prover and Verifier can independently calculate the values S,
and |Y;|®, and complete the committed calculation of the sum D =
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>k Bt ([Ye]|* — By), thanks to the homomorphic property of the used com-

mitment scheme: .
g'Yklck Ekk
Cp = .
b 1;[ ( OBk )

5. Finally, the Prover must demonstrate in zero-knowledge that D > n, or
equivalently, that D —n > 0, which can be done by running the proof of
knowledge by Lipmaa [146] on Cy, = Cpg™".

4.2.5.1. Improved GG Detector with Binary Antipodal Spreading Se-
quence (GGBA)

When the spreading sequence si is a binary antipodal sequence, so it takes
only values {+s}, we can apply a trivial transformation to the detection function

of the GG detector (Eq. (@.])):
D =Y "B (IVil° = Vi — axsi|)
k

=Y B (IYl” = (Ve — aus|” - L (si) + [V + aes|” - 1y (s8)))
k

= gﬁc <\Yk|c — (]Yk — 8| %(5 + sp) + |Yi + ags|© - %(5 — sk)>)
(4.2)

C C 1 C C
= E B <|Yk| ‘=3 (1Y — sag|™ + Vi + sag| ’“))
k

J/

G

ck
- 52% (1Ye — sou|™ — Vi + sou|*) s (4.3)
k, NS

J/

e

Hy,

In ([A2) we use the fact that s; can only be given a value s or —s in order to
substitute the indicator function 1g(sk) = 5 (s+ sx) and 1(_g(s;) = 5= (s — sp).

The factors termed as G and Hy in ([A3]) can be computed in the clear-text
domain, working with floating-point precision arithmetic, and then have their
commitments generated. This implies that all the non-linear operations are trans-
ferred to the clear-text domain, greatly reducing the communication overhead,
as will be shown in Section 2.7} only additions and multiplications must be
performed in the encrypted domain, and they can be undertaken through the
homomorphic properties of the commitment scheme. This transference also di-
minishes the computational load, as clear-text operations are much more efficient
than modular operations in a large ring.
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The zero-knowledge protocol can be reduced to the following two steps:

1. Prover and Verifier homomorphically compute th =D —n
G-n

g
Cyp = ——.
th Hk Cg]{k

2. The Prover demonstrates the presence of the watermark by running the
zero-knowledge proof that D —n > 0.

The number of needed proofs during the protocol is reduced to only one,
what propitiates the aforementioned reduction in computation and communica-
tion complexity, with the additional advantage that this scheme can be applied
to any value of the shape parameter ¢, so it will be preferred to the previous one
unless sy is not binary antipodal.

4.2.6. Security Analysis for the GG Detection Protocols

After presenting the protocols for the zero-knowledge implementation of the
Generalized Gaussian ML detector, we can state the following theorem:

Theorem 1 The developed detection protocols for the Generalized Gaussian de-
tector are computationally sound and statistically zero-knowledge.

A sketch of the proof for this theorem can be found in Appendix [£.Al

The reformulation of the generalized Gaussian protocol deserves two com-
ments concerning security. The first one involves the non-linear operations that
were performed under encryption in Section [4.2.5] which are now transferred to
the public clear-text domain. Although this could seem at first sight a knowledge
leakage, currently it is not; all those operations can be performed with the same
public parameters as in Section in a feasible time, so the parameters GG and
Hj. that are publicly calculated in this protocol could also be obtained in the
previous version, and their disclosure gives no extra knowledge.

The second comment deals with the correlation form of the reformulation, and
its resilience to blind sensitivity attacks. Even when the operation performed in
the encrypted domain is a correlation, the additive term (G) is what preserves the
bounded-increment property, by virtue of which component-wise modifications of
the input signal only produce bounded increments on the likelihood function

—af < |Y|® = |V — asg]® < af, c<l.
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The result of the addition is not disclosed during the protocol; thus, the
correlation cannot be known even when the term G is public, and both terms
cannot be decoupled, so no extra knowledge is learned from G, and the difficulty
for finding points in the detection boundary, that is a necessary step for sensitivity
attacks, remains, as well as the shape of the detection regions, unaltered.

4.2.7. Efficiency and Practical Implementation

We will measure the efficiency of the developed protocols in terms of their
communication complexity, as this parameter is what entails the bottleneck of
the system, and it is easily quantifiable given the complexity measures calculated
in the previous sections for each of the subprotocols.

Taking into account the plot of the raw protocol (Section 2.0, a total of 2L
commitments (with a length |n|) are interchanged, namely the L commitments
that correspond to the secret pseudorandom sequence s and the L commitments
to | Ag|, while in the GGBA detector (Section 2Z5.1]) only the L commitments to
s are sent; the rest of the commitments are either calculated using homomorphic
computation or are already included in the complexity of the subprotocols.

Thus, the total communication complexity for the detector applied to Lapla-
cian distributed features and ¢ = 0.5 in the first scheme, as well as the complexity
for the improved GGBA detector can be expressed as

CPXem, zKWDg (e — 1y = 2LIn[ + L - (Cchm,PKabs + CPXcm,PK0p> + CPXem, Prs g

CPXem, 2ZKW DG (e — 0.5 = 210l + L (Cchm,PKabs + CpXem, PK., T+ Cchm,Pqur,)
+ Cchm,PKzoa

CPXem,zkWDaesa = (L + DIn| + L - CpXep prc,, + CPXem Koy

In every calculation, L proofs of knowledge of the opening of the initial com-
mitments have been added, as even when they are not explicitly mentioned in
the sketch of the protocols, they are needed to protect the Verifier.

In order to reduce the total time spent during the interaction, it is possible
to convert the whole protocol in a non-interactive one, following the procedure
described in [41], keeping the condition that the parameters for the commitment
scheme must not be chosen by the Prover, or he would be able to fake all the
proofs. In addition to the reduction in interaction time, the use of this technique
also overcomes the necessity of a honest Verifier that some subprotocols impose.

The calculated complexity for Piva et al’s ST-DM detector and Adelsbach
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Figure 4.7: Communication complexity in kB for the studied protocols.

and Sadeghi’s blind correlation-based detector is the following:

CPX e, 2k WDgppy = (L + 1) + L - CPXem,pioy + CPXem, PEie
CPXem,zxwpes = (L +1)n| + L~ CPXem, piy, + QCPXCWPKZO + CPXem, Pk, -

As a numeric example, in Figure 7 the evolution of the communication
complexity for every protocol is compared using |F'| = 80, |n| = 1024, B = 1024,
7 = 2%5 and k = 40, for growing L. All the protocols have complexity O(L).
The two protocols for Generalized Gaussian host features with ¢ =1 and ¢ = 0.5
have a higher complexity, due to the operations that cannot be computed by
making use of the homomorphic property of the commitment scheme (absolute
value and square root). Nevertheless, their complexity is comparable to that
of the zero-knowledge non-blind detection protocol developed by Adelsbach et
al. [25].

On the other hand, the zero-knowledge GGBA detector achieves the low-
est communication complexity of all the studied protocols, even lower than the
previous correlation-based protocols, with the increased protection against blind
sensitivity attacks when ¢ < 1 is used, being this the first benefit of the reformu-
lated algorithm.

Furthermore, the communication complexity of the protocol is constant if we
discard the initial transmission of the commitments for the spreading sequence
and their corresponding proofs of opening; once this step is performed, the proto-
col can be applied to several watermarked works for proving the presence of the
same watermark with a (small) constant communication complexity.
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Regarding computation complexity, the original detection algorithm (with-
out the addition of the zero-knowledge protocol) for the generalized Gaussian is
more expensive than ST-DM or Cox’s (normalized) linear correlator, due to its
non-linear operations. The use of zero-knowledge produces an increase in com-
putation complexity, as, additionally to the calculation and verification of the
proofs, homomorphic computation involves modular products and exponentia-
tions in a large ring, so clear-text operations have almost negligible complexity
in comparison with encrypted operations.

The second benefit of the presented GGBA zero-knowledge protocol is that all
the non-linear operations are transferred from the encrypted domain (where they
must be performed using proofs of knowledge) to the clear-text public domain;
thus, all the operations that made the symmetric protocol more expensive than
the correlation-based detectors can be neglected in comparison with the encrypted
operations, so the computation complexity of the zero-knowledge GGBA protocol
will be roughly the same as the one for the correlation-based zero-knowledge
detectors.

4.3. Secure Cloud Computing with application
to Medical Clouds

The second application shown in this chapter consists in secure cloud comput-
ing and its particularization to medical clouds, in which very sensitive information
is managed.

In recent years, the paradigm of Cloud computing has gained an increasing
interest from the academic community as well as from the commercial point of
view. Cloud is a very appealing concept both for the providers-that can benefit
from hiring out their extra computation and storage resources—and for the users—
that can avoid the initial investment on resources by outsourcing their processes
and data to a Cloud—.

From a technological point of view, there are currently some challenges that
Cloud still needs to tackle in order to be fully operational; they are mainly related
to scalability, manageability, interoperability and multi-tenancy. But the most
important issues that can hold back the widespread adoption of Cloud are security
and privacy. Both concepts are very close to each other in Cloud, as there can be
no privacy without security. Nevertheless, privacy is a more specific requirement,
and it is related only to sensitive data and/or processes. In this section, we focus
on privacy for signal processing.

While many research efforts are devoted nowadays to guaranteeing secu-
rity [I33] in Clouds, dealing with aspects such as authentication through fed-
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erated identities or basic encryption of the managed data [195, @Q9], the issue
of preserving data privacy and addressing the different data protection legis-
lations remains open. The privacy problem in Cloud is a very severe con-
cern [128, O, 100, 189, 210], mainly because data can be distributed among
different servers and even different countries with their own data protection leg-
islation. Furthermore, the fuzzy nature of data processing and location in Clouds
can negatively affect the trust that users put on these systems, as they face the
risk of losing control over their data and processes when they are outsourced to
a Cloud; this fact can constitute a severe barrier for Cloud adoption [20].

Cloud Privacy in general is a very broad subject that would be out of the
scope of this chapter; hence, we narrow the problem and devote our efforts to the
framework of Cloud Privacy for Signal Processing and we firstly define, as a very
coarse classification, two main kinds of low-level privacy that can be required
in a signal processing Cloud application, namely signals privacy and processes
privacy, exemplified as follows:

= On the one hand, users might want to outsource the storage or processing
of some sensitive signals to a Cloud, or input these signals to some service
provided in a Cloud; this is the case when only one level of privacy protection
(signals privacy) is needed.

= On the other hand, an enterprise might have developed a private algorithm,
and they want to act as Cloud vendors, offering its functionality through a
Cloud; the sensitiveness of the algorithm itself stems from its commercial
value; thus, the process must remain concealed; this case implies a second
level of privacy protection (processes privacy).

Of course, both kinds of privacy can be required at the same time for a
given application. If we add the Cloud paradigm to the most relevant use-cases
in SPED, we are left with a significant number of use-cases that would greatly
benefit from a privacy-preserving Cloud solution. We have chosen two of these
cases for this section, that are representative enough to show the potential of such
a solution: secure biometric recognition, and secure medical analysis/diagnosis.

4.3.1. Secure Biometric Recognition

Figure 4.8 shows this scenario, where a face, iris, fingerprint or other biometric
information is contrasted against the templates stored in a biometric database
located at a server (or distributed among several collaborative servers) in order
to determine whether the individual whose biometric is presented is recognized
by the system (see also Chapter [f for a specific privacy-preserving solution in
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this scenario). We can exemplify it with a CCTV system where the faces of the
recorded citizens are matched against a database of potential criminals.

The sensitive information in this scenario comes from two sources: on the one
hand, the biometric signals that are presented to the system for recognition, and
on the other hand, the templates stored at the database. In this case, the server
that holds the database and the server that processes the biometrics and checks
for a match are the untrusted agents from which the privacy of the signals must
be protected.

The two levels of protection are also present in this scenario, not only the sig-
nals privacy, but also the processes privacy, related to the recognition algorithm
used for finding a match. That is, the presented biometric sample must be kept
encrypted while it is processed in the server, and the database templates may
be also kept encrypted within the servers. Examples of secure face recognition
systems with encrypted samples can be found in [89, [196] and in Chapter [6l

Figure 4.8: Secure Biometric Recognition scenario.

This scenario is very amenable to a Cloud implementation, due to the presence
of a large database of biometric samples, that can be distributed among several
servers, and due to the fact that the matching against these servers can be easily
parallelized. In this sense, the Cloud would manage the storage of the database,
and also the execution of the recognition algorithm when a biometric sample is
presented. The cloud would then represent the untrusted environment in which
privacy of the signals and algorithms must be preserved.

4.3.2. Secure medical analysis/diagnosis

In this scenario some biomedical signals (DNA, ElectroCardioGrams - ECGs,
Magnetic Resonance Images - MRIs,...) from a patient or group of patients are
presented to an expert system that must complete some given analysis and/or
report a diagnostic from these signals. An example of a secure DNA diagnostic
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Figure 4.9: Proposed architecture for Secure Medical Cloud using VPH models:
the storage and processing are performed in the Cloud, but patient data are pro-
tected, as they are always encrypted. The Expert System works with encrypted
data through the use of the secure processor.

system can be found in [221] (cf. Section [d4]), and an example of a secure ECG
classification system, in [39].

The sensitive information comprises the biomedical signals, while the analysis
system represents the untrusted party, from which the client/patient may want
to protect her information. The performed analysis or the diagnosis algorithm
can also be subject of protection, at the level of processes privacy.

The medical database that holds patients’ signals and records can be stored in
a Cloud, provided that the access to these records is adequately controlled; on the
other hand, the processing of medical signals has already been shown to benefit
from the use of Grids (HealthGrids [4]). Again, the Cloud/Grid represents the
untrusted environment that must implement some mechanism for preserving the
privacy of the signals and the analysis algorithms. Following this direction, we
have also proposed a secure system for the processing of medical data through
VPH (Virtual Physiological Human) models executed in a Cloud environment
using SPED primitives [226]; the proposed architecture is shown in Figure

4.3.3. Related work

The idea of using homomorphic encryption in cloud environments is quite
novel. There is some work on this topic, but a complete solution for the Cloud
is still missing. In [62] some common cloud security problems are characterized,
and the proposed solutions include empowering data with intelligence to protect
itself using trusted computing or privacy-enhanced business intelligence based
on homomorphic encryption. In [I79] a privacy manager for cloud computing,
an appliance for secure cloud access, was presented. To achieve this goal an
obfuscation mechanism based on homomorphic encryption is used. The paper
describes some application scenarios like SQL queries or photo tagging. The
solution only encrypts part of the information that is sent to the Cloud in order
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to keep efficiency at reasonable levels. As a conclusion, previous related work
focuses on particular applications or assumes that the service provider is honest,
tackling a different privacy problem as the one that concerns us in this chapter,
namely the processing of signals in the Cloud as an untrusted environments.

4.3.4. CryptoDSPs for Privacy in Cloudified Signal Pro-
cessing

In order to deal with privacy issues in Signal Processing performed in a Cloud
scenario, we propose that Cloud services and infrastructures dealing with these
applications adopt some of the efficient secure processing techniques from Sig-
nal Processing in the Encrypted Domain and Secure Function Evaluation. We
present the architecture of a privacy-preserving Cloud computing system for the
outsourcing of Signal Processing by using SPED techniques and materializing
them as a virtual DSP (Digital Signal Processor) that performs the needed oper-
ations in the encrypted domain; we denote this processor Virtual CryptoDSP.

Figure [4.10] presents the proposed conceptual architecture, which is transpar-
ent to the final user, and adds three main blocks to the classical Cloud archi-
tecture, namely the Virtualized Coded Storage, the virtualized CryptoDSP core,
and the Client Plug-In. In order to provide the greatest versatility, the new ele-
ments are implemented as middleware on top of a Cloud infrastructure (IaaS). A
specifically developed API, presented at the PaaS level and comprising Secured
Signal Processing operations that can be interpreted by the Virtual CryptoDSP,
guarantees that any privacy-aware signal processing application can be built up
on top of this secure middleware in order to be endowed with the required level
of privacy. We describe the functionality and the elements that compose each of
these blocks:

Virtualized CryptoDSP core

This element holds the server-side implementation (parallelized, to take ad-
vantage of the Cloud infrastructure) of the secure signal processing primitives,
using SPED technologies, and implementing also a communication module for
interacting with the client-side plug-in during the execution of the corresponding
interactive protocols. The logic implemented by the CryptoDSP core includes
only the on-line computation. The off-line computation is assumed by the Virtu-
alized Coded Storage Module.

The implemented primitives should be designed to work with encrypted sig-
nals, but it is also possible, and desirable, that, through the corresponding API,
the users can also provide a signal processing circuit that gets compiled to prim-
itives to be interpreted by the CryptoDSP.
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Client Plug-In

The client plug-in is the client-side module that must present a transparent
interface from the client view-point. It comprises a cryptographic module for
data encryption, key generation and management, and a communication module
for the on-line interaction with the cryptoDSP at the server-side.

Virtualized Coded Storage Module

This module performs three complementary functions: 1) server-side data
encryption, 2) data pre-processing and off-line processing for the secure protocols,
and 3) Management of the (possibly distributed) storage of the encrypted and
preprocessed data.

The main target of this module is the optimization of the computational
load of the secure protocols for reducing their on-line time and/or the needed
communication bandwidth.

Figure 4.10: Architecture of a Cloud Computing system supporting Private Signal
Processing outsourcing through a Virtual CryptoDSP.

4.3.5. Practical Considerations

It must be taken into account that the proposed one is a conceptual architec-
ture, and most of the current SPED primitives are still too restrictive to produce
a practical solution for the CryptoDSPs paradigm, taking into account their two
most important limiting factors:
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= Computational load: The implemented primitives have to be adapted to
the Cloud infrastructure, and present a highly asymmetric load balance:
the client must be as lightweight as possible, while the server, in the Cloud,
can handle a much heavier processing load.

» Bandwidth: It is a very limiting factor, and it can become the bottleneck
of the system for SPED primitives. The Cloud architecture allows to deal
with the bandwidth problem distributing it among the nodes of the Cloud,
instead of focusing it at the link between the client plug-in and the Cryp-
toDSP.

For these shortcomings to be overcome, it is necessary to develop noninterac-
tive efficient solutions; this is one of the current hot topics in SPED, materialized
in the research in practical fully homomorphic cryptosystems and noninterac-
tive privacy-preserving protocols (cf. Chapter [f]). Nevertheless, there are some
preliminary proposals of simple proof-of-concept privacy-preserving systems exe-
cuted in Cloud environments [192], still limited to linear operations and with an
important bandwidth bottleneck.

4.4. Privacy and DNA Sequences

As the last application presented in this chapter, we have chosen one deal-
ing with the most sensitive signal a privacy-aware system can handle: DNA
sequences.

The Human Genome Project [5] took nearly 13 years and required more than
US-$3 billion to sequence a ‘prototypical’ human genome. Nonetheless, biomed-
ical technology is advancing at a rapid pace and the costs for sequencing an
individual’s genome are dropping. The goal set by the U.S. National Institute of
Health is to reduce sequencing costs for a human genome to a hundred thousand
dollars in 2009 and to less than a thousand dollars by 2014 [I17]. This target is
also known as the $1000 genome.! At that cost, it is anticipated that by 2015
genomic information will be ubiquitously used by healthcare providers and that
patients will be able to acquire a digital record of their genome.

The human genome contains a wealth of information about a person’s body;
broad access to the genome is likely to revolutionize medical diagnosis and treat-
ment. Doctors can, for example, use genomic information to test whether a per-
son has a pre-disposition towards developing a specific disease, even years before
the first symptoms appear. In treatment, genomic data may be used to predict

'Earlier in 2012 this target was fulfilled by a commercial system by Life Technologies [21],
that can provide a solution to sequence the full DNA in less than one day and with a cost of
US$1,000.
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whether a patient will react positively against a specific therapy or whether the
treatment will likely fail, thereby reducing the overall costs and increasing the
effectiveness of the therapy. Finally, it may be possible to create an individualized
drug therapy for each patient by analyzing his genetic profile and predicting his
response to different medications.

Broad access to and storage of personal Desoxyribo-Nucleic Acid (DNA) se-
quences involves significant risks to personal privacy and may open the door
for discrimination based on genomics. For instance, a person carrying a gene
known to increase the likelihood of a particular cancer may be denied coverage
by the health insurance company; an employee may be rejected for a permanent
work contract due to his pre-disposition towards a disabilitating disease; or the
discovery of parental relationships via DNA profiling may have undesirable con-
sequences for the person’s private life. These are only some of the risks we can
foresee at this time; once the functionality of the human genome is fully uncovered
there may be even more significant risks to privacy. As we move forward, there is
a clear and emerging need for privacy-preserving mechanisms for the protection
of genomic data.

Privacy concerns about DNA information have traditionally been addressed
through laws and procedures: Healthcare professionals are required to keep sen-
sitive data confidential and make it available only with explicit consent of the
patient. So far this traditional approach has worked reasonably well, mostly due
to the limited availability and use of genomic profiles in established medical cen-
ters. Nonetheless, as genomic profiles become ubiquitous, this traditional form
of protection may be insufficient to prevent sensitive information leakage. We
believe that cryptographic privacy-preserving protocols will become invaluable
components that complement the procedural approach.

The problem setup considered here is as follows: A patient has a digital record
of her DNA sequence and wants to give another party (such as her healthcare
provider) selective access to run a query on this record, for instance, to find out
whether she has a pre-disposition to a particular disease. As she is concerned
about her privacy, she does not want to disclose her DNA profile to the health-
care provider in the clear. On the other hand, her health-care provider may like
to keep the details of the query confidential as it is commercially valuable. In the
next subsection, we identify the differentiating properties of queries run on DNA
data and their implications on the design of privacy-preserving protocols.

4.4.1. Queries on DNA data

We denote a DNA sequence as a finite string over the alphabet ¥ =
{A,C,T,G}, representing the four different nucleotides Adenine, Cytosine,
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Thymine and Guanine (also known as bases). How this sequence regulates hu-
man physiology is under investigation. However, one of the main regulation
mechanisms is through encoding of proteins. Triplets of nucleotides in particular
sections of a DNA sequence, known as coding regions, encode different amino-
acids. In turn, a sequence of amino-acids forms a protein, which regulates various
functions in the body.

In the following, we discuss some properties of typical queries to DNA data
that need to be considered when designing privacy-preserving protocols.

= Mutations: A mutation is a deviation on the DNA sequence that may
affect one single nucleotide or a sequence of subsequent nucleotides. It may
involve substitutions (one nucleotide is converted into another), deletions
and insertions (missing or extra nucleotides due to imperfections in the
replication process). Specific mutations in the coding regions are known
to be indicative of some diseases. The location of these mutations can be
fixed and known in advance; alternatively, mutations can occur at a relative
distance from a fixed marker. In order to query for the presence of a specific
mutation, one usually checks whether a certain string & € ¥* appears in
the DNA sequence.

A mutation may also appear in a non-coding region of a DNA sequence,
where it is clinically irrelevant. In that case the mutation becomes an error,
which the query mechanism should handle gracefully.

» Sequencing Errors: Today, even the best DNA sequencing methods can-
not guarantee 100% accuracy. Due to the imperfections of the chemical
sequencing process, three different types of errors occur: symbol substitu-
tions (an incorrect base is recorded), insertions (a base that is not present
in the genome is reported in the digital record) and deletions (the sequenc-
ing process fails to report a base, even though it is present in the analyzed
genome). Queries on DNA sequences should thus be able to cope with
infrequent errors of these types. In the literature, these errors are usu-
ally called Edit errors, since they frequently occur when transcribing a text
or when using an Optical Character Recognition (OCR) tool. There is a
known distance measure, called Levenshtein or Edit distance [144], allow-
ing to quantify the number of substitutions, insertions and deletions that a
sequence has suffered with respect to a reference.

= Many-to-one Mappings: While each triplet of DNA bases encodes one
amino-acid, this encoding is not unique: there exist different base triplets
that encode the same amino-acid. As only the latter is relevant in diagnosis,
DNA queries should be able to handle this ambiguity.

= Incomplete Specifications: In the existing medical genomic databases,
there are many DNA sequences that are not completely specified, as the
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exact effect of punctual mutations has not yet been completely determined,
even though there is evidence of the relationship between these mutations
and a known disease. In this case, the possible queries that can be applied in
order to detect those mutations must offer a flexibility to handle incomplete
specifications, apart from the already mentioned error resilience.

A natural representation for a query that is able to cope with the aforemen-
tioned properties are regular expressions, implemented as finite automata. Note
that regular expressions not only allow to handle incomplete specifications and
ambiguity, they can also be used to cope with Edit errors due to sequencing
problems or clinically irrelevant mutations (cf. Section £.4.2.1]).

4.4.2. Secure Approximate Searching and Matching

The problem of approximate string matching (briefly presented in Sec-
tion Z22.7]) can be related to several error metrics, but it is commonly associated
with the Edit or Levenshtein distance [144], that is the same metric that can
account for the same types of errors to which DNA is subjected, namely symbol
substitutions, deletions and insertions. Given two strings « and y, the Edit dis-
tance is defined as the minimum number of Edit errors that & must undergo in
order to be transformed into y. If this number is below a given threshold, both
sequences are said to approximately match; in case of a match, a sequence align-
ment can be computed, which associates the symbols of  and y, up to insertions
and deletions.

The commonly used algorithm to compute sequence alignments is a dynamic
programming algorithm developed by Needleman and Wunsch [170], even though
similar algorithms are also used for speech recognition [235] and spell checking.
Besides computing an alignment, the algorithm also determines the Edit distance
between two sequences. However, in many applications it is not necessary to
obtain an alignment; it suffices to know whether the Edit distance is below a
given threshold. This decision problem is a special case of the approximate string
searching problem, in which a pattern string @ is searched in a longer sequence vy,
tolerating Edit errors; both problems can be solved efficiently by running a finite
automaton, as we show in the following subsection; hence, the privacy-preserving
approximate DNA searching and matching can be solved using the protocol for
oblivious automata execution of Section 2.5l

4.4.2.1. Searching and Matching by FSMs

Given a string 4, we use the method in [200] for computing a finite automa-
ton LEV,(x4) that accepts all strings that have at most Levenshtein distance
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Figure 4.11: Number of states of the Levenshtein Automaton and its extension,
as a function of the sequence length (|x4|).

d from x4. The resulting minimal automaton is denoted degree d Levenshtein
automaton. By construction, LEVy(x4) is always acyclic. We will denote the
language accepted by this automaton as L4(x,4). For a fixed d, the algorithm
for generating LEV,(x4) given x4 is linear in time and space in the length of
the string & 4. The dependency on d can be at worst exponential; however, d is
usually a small parameter compared to the length of @ 4 for practical applications
(like DNA searching). In this way, the problem of calculating the Levenshtein
distance between two sequences x 4 and g and comparing it to a given threshold
d gets reduced to the execution of the computed automaton LEV (x4) on input
xp. This gives a solution to the approximate matching problem.

Once the Levenshtein automaton for a given sequence is generated, we extend
it to accept the language 3*L;(x4)>*. Thus, the resulting automaton accepts any
string that contains as substring any of the sequences accepted by the Levenshtein
automaton, thus solving the problem of approximate string searching, when the
automaton is run on xp.

The advantage of using an automaton instead of a dynamic programming al-
gorithm resides in the fact that an automaton has predefined transitions, and
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it does not need any comparisons while traversing the input sequence. Com-
parisons are one of the most expensive operations under encryption (as they
reduce to instances of the Millionaire’s problem). By using a finite automaton,
all the comparisons can be avoided, because they are all hard-wired in the au-
tomaton itself. Furthermore, using an automaton allows the implementation of
any matching problem represented in the form of a regular expression, endowing
our privacy-preserving solution with a strong generality.

Even though the construction of the Levenshtein automaton assures that the
number of states of LEVy(x4) is linear in the length of the sequence x4, com-
puting the extended automaton X*L;(x4)%X* will increase its number of states.
Extending the Levenshtein automaton comprises two concatenations with >*, the
right one being trivial, as it only involves adding self-loops in all the final states.
This right concatenation cannot increase the number of states of the automaton.
Let us suppose that the Levenshtein automaton has n states, ¢ of them being
acceptance states; by construction, the automaton is acyclic. Applying the right
concatenation, all of the t acceptance states collapse to only one sink acceptance
state, and the rest of the states remain unaltered. Thus, the resulting automaton
after the right concatenation has n — ¢ + 1 states, one of them being the unique
sink acceptance state, and the only cycles that the automaton has are the self
loops in this state.

Applying a known bound on the state complexity of the concatenation of
regular languages [246], the left concatenation could increase the number of states
of the automaton by at most 2"t Nevertheless, this bound is a worst case bound.
We have found experimentally that the number of states usually grows linearly
even after performing the left concatenation, resulting the number of states of the
extended Levenshtein automaton being linear in the length of the input sequence
x 5. As an example, Figure [L.ITlshows the evolution of the number of states of the
Levenshtein automaton LEV(x 4) and its extension to the language ¥*Lg(x 4) X7,
as a function of the length of the sequence « 4, for threshold Levenshtein distances
of 1 and 2 errors. The plot was obtained using 100 random DNA sequences a for
each length and averaging the number of states of the obtained automata; it also
shows the 95% confidence intervals. From this figure, it is clear that the state
complexity usually is linear in the length of the input sequence.

As a toy example, for the sequence x4 = [actg], the Levenshtein automaton
for distance d = 1 is shown in Figure L. 12al, while the extension to cope with
arbitrary length sequences is shown in Figure[£120l It is clear from this example
that the extension to arbitrary length sequences does not necessarily imply an
increase in the number of states of the automaton; in this case, it even supposes
a reduction, due to the short length of the used pattern. Figure [£.12H also shows
thicker arcs for the transitions that the automaton makes when inputting the
sequence [ttcggegetggal, where the pattern is present with one deletion, resulting
in acceptance.
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Figure 4.12: State diagram for the Levenshtein automaton accepting all the se-
quences at distance < 1 of [actg] (a) and its extension to arbitrary length se-
quences (b).

4.4.3. Secure Approximate Searching and Matching for
DNA Sequences

Let us recall the scenario of DNA searching: Two parties A and B want to
check if the DNA pattern &4 (owned by .A) is approximately present in B’s DNA
sequence xp, where |xp| > |xa|. Approximate presence means that the Edit
distance between x4 and some substring of xp is less than a given threshold d.
The case of matching is similar, except that |xp| =~ |zl

To perform either matching or searching in a privacy-preserving manner, both
parties execute the following steps:

1. A builds the Levenshtein automaton L£EV4(x4) corresponding to his se-
quence x4, given a maximum allowable distance d, following the procedure
in [206], and minimizes it. If needed, the number of states can be partially
concealed by adding a random number of dummy states.

2. In the case of a search, A extends the Levenshtein automaton by concate-
nating the Kleene closure of the alphabet ¥* at the left and at the right
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(see Section [ 4.2.T]). The resulting automaton is then minimized. Again, a
random number of dummy states can be added in order to partially conceal
the number of states of the minimal automaton.

3. Both parties run the protocol presented in Section 2.5.Ilwith A’s automaton
and B’s sequence xp as inputs, in order to get a binary answer to the
approximate matching or searching problem.

Regarding the complexity of the resulting protocol, we can combine the results
obtained in Sections and L4211 By virtue of the latter, the extended
Levenshtein automaton usually has a state complexity linear O(n) in the length n
of the sequence @ 4; the former shows that the private evaluation of an automaton
with |@| states and an input alphabet ¥ on an input sequence of length N, has
a communication complexity of O (N - (|Q|+ |X|)). Finally, the application of
the developed protocol for the approximate search of a sequence of length n in
another sequence of length N incurs in a communication complexity of O (N - n).
Concerning computational complexity, taking into account that the automaton
transformation can be precomputed, and applying the same reasoning as for
communication overhead, the total amortized computational complexity for the
owner of the query n-length sequence x4 is O(N - n), and for the owner of the
long N-length sequence x g, it is O(N). This means that for the party that makes
the query, the privacy-preserving protocol has a computational complexity in the
same order as the one of the non-privacy preserving protocol, while the complexity
for the other party is linear in her sequence’s length, and does not depend on the
length of the query string.

We can also make one final remark about round complexity. In Section
we have stated that the round complexity of the privacy-preserving protocol for
the automaton evaluation is linear in the length of the input sequence (xg). In
this particular case, it is known that A’s Levenshtein automaton will accept only
sequences of length smaller than |x 4|4+ d. Thus, if round complexity is a concern
and the value |x4| + d does not have to be kept secret, we can partition the
input sequence xp into several consecutive blocks with an overlap of |x 4| +d—1
symbols, and run in parallel one instance of the oblivious automaton protocol
per block. Then, a logical OR can be straightforwardly applied to the obtained
(concealed) outputs. Taking the maximal number of blocks, the number of rounds
of the resulting protocol does not depend on the length of the input sequence;
as a counterpart, the overlaps produce an increase in communication complexity,
which is quadratic in the number of states of the automaton. Between the two
extreme cases, a tradeoff can be found, with a sublinear round complexity in the
length of the input sequence &g and a subquadratic communication complexity
in the number of states of the automaton.
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4.5. Conclusions and Further Work

This chapter has presented several application scenarios for privacy-preserving
solutions based on SPED primitives, and described in detail specific approaches
for three cases, namely zero-knowledge watermark detection, private cloudified
signal processing and private queries on DNA sequences.

The presented zero-knowledge watermark detection protocol based on Gener-
alized Gaussian ML detector solves the problem of private detection with a sym-
metric key watermark scheme, while outperforming the previous correlation-based
zero-knowledge detectors implemented to date in terms of robustness against
blind sensitivity attacks, and improving on the ROC of the correlation-based
spread-spectrum detector with a performance that is near that of ST-DM.

We have also provided a conceptual high-level architecture for implementing
SPED primitives in Cloud environments, with application to medical Clouds;
most SPED primitives are not yet mature to be implemented with such architec-
ture, but further research may open the door to fully non-interactive and efficient
encrypted domain processing in a Cloud environment.

As for the privacy-preserving DNA searching solution based on the oblivi-
ous automata protocol of Section 5] it constitutes the first efficient privacy-
preserving solution for error-resilient DNA searching. Furthermore, due to the
versatility of finite state machines, the presented protocol can also be used for
privately solving any problem that involves matching a string against a regular
expression, such as searching a DNA database with incomplete definitions, obliv-
ious spam checkers and virus analyzers. This work on privacy-preserving DNA
queries opened a research line that has been followed by numerous subsequent
works, like [134], [136], [45], [103], [IT9], or [36].

4.A. Sketch of the proof for Theorem [1]

Proof Completeness: Let us assume that both parties behave according to the
protocol. The values C4, calculated by the correct Prover and the correct Verifier
coincide. For correctly produced C)y,|, the completeness of the absolute value
subproof guarantees the acceptance of the Verifier; equally, the completeness
of the rounded square root subproof guarantees the acceptance for a correctly
calculated Cp,. Next, the values of C'p computed by both parties coincide, and,
finally, due to the completeness of the non-negativity proof, the Verifier will
accept the whole proof in case the signal {Y;} is inside the detection region. For
the case of a binary antipodal spreading sequence (Section [£.2.5.7]), if the values
G, Hy and CYy, are correctly calculated, the completeness of the non-negativity
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proof guarantees the acceptance when {Y}} is inside the detection region. This
concludes the completeness proof.

Soundness: The binding property of the commitments assures that the Prover
will not be able to open the commitments that he calculates (Ca,, Cja,|; CBg,,
Cp, Cu,) to wrong values. Furthermore, the statistical soundness of the used
subproofs (absolute value, rounded square root and non-negativity) guarantees
that an incorrect input in any of them will only succeed with negligible probability.
This fact, together with the homomorphic properties of the commitments, that
makes impossible for the Prover to fake the arithmetic operations performed in
parallel by the Verifier, propitiates that the probability that a signal {Y;*} that
is not inside the detection region succeeds the proof be negligible.

Zero-Knowledge: We can construct a simulator SV~ such that the real inter-
actions have a probability distribution indistinguishable from that of the outputs
of the simulator. The statistical zero-knowledge property of the absolute value,
rounded square root and non-negativity subproofs guarantee the existence of sim-
ulators for their outputs; thus, SV~ can generate Ca,, Cp and Cy, as in a real
execution of the protocol, thanks to the homomorphic properties of the commit-
ment scheme. On the other hand, it must generate C)4,| and Cp, as commitments
to random numbers; the statistical hiding property of the commitments guaran-
tees that the distribution of these random commitments be indistinguishable from
the true commitments. Furthermore, these generated values will not affect the
indistinguishability of the simulators for the subproofs, as these simulators do not
need knowledge of the committed values in order to succeed. Thus, the output
of SV is indistinguishable from true interactions of an accepting protocol, and
the whole protocol is statistically zero-knowledge.



Chapter 5

Other approaches:
Videosurveillance and
Multimedia Privacy

Privacy and security have always been key concerns for individ-
uals. They have also been closely related concepts: in order to in-
crease their perception of security, people sacrifice a part of their
privacy by accepting to be surveilled by others. The tradeoff between
both is usually reasonable and commonly accepted; however, the case
of videosurveillance systems has been particularly controversial since
their inception, as their benefits are not perceived to compensate for
the privacy loss in many cases. The situation has become even worse
during the last years with the massive deployment of these systems,
which often do not provide satisfactory guarantees for the citizens.
This chapter proposes a DRM-based framework for videosurveillance
to achieve a better balance between both concepts: it protects pri-
vacy of the surveilled individuals, whilst giving support to efficient
automated surveillance. This chapter takes advantage of the delicate
tradeoff between privacy and security in these videosurveillance sce-
narios to provide a different solution to those shown in the previous
chapters, based on a peculiar use of DRM tools instead of encrypted
processing and SPED primitives.

The work shown in this chapter has been partially presented at
ACM DRM 2009 [219].
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5.1. Introduction

Since the beginning of time, any species that makes its way through evolu-
tion must have developed mechanisms to ensure its own security and protection.
Human kind is no exception to this rule, and thus, security has always been
a concern to our species. Our characteristic advantage for achieving this goal
resides in technology. When it reached the required maturity level, videosurveil-
lance was a natural step in this direction. The problem comes when security
collides with privacy. Probably the best definition of privacy so far was given
by Westin in 1970 [239]: “Privacy is the claim of individuals, groups, or insti-
tutions to determine for themselves when, how, and to what extent information
about them is communicated to others.” Individuals accept to give away a part
of their privacy in exchange for greater security, but up to what extent? In terms
of privacy, the situation has become worse in the last years due to the rise of IP
videosurveillance.

Figure 5.1 shows the main components of a modern IP videosurveillance net-
work: basically it is composed of a number of IP cameras which may be in very
disparate locations but all of them are connected to a control center via an IP
network (either local or through the Internet). In the control center, the in-
coming streams are managed by one or more processing servers, and they can
be stored in hard disks for a posteriori access. Typically, there is one or more
human operators that supervise in a video console the recordings in search for
incidents and other relevant events. Moreover, modern videosurveillance systems
are beginning to feature functionalities for automated image analysis which make
easier the task of the human operators whilst increasing security. However, this
increased efficiency in detecting events and collecting information is raising even
more privacy concerns. This motivates the need for a joint framework addressing
the tradeoff between privacy and security. In this chapter, such a framework is
proposed, and it is proven that, with slight modifications, the paradigm of DRM
can yield a solution that covers both aspects of videosurveillance, namely privacy
rights of surveilled people and automation targeted towards security: the two
sides of the mirror.

The rest of the chapter is organized as follows. Section [£.2]introduces the gen-
eral framework of privacy in videosurveillance from the point of view of the current
European legislation. Section reviews the past works on privacy manage-
ment and protection, paying special attention to the videosurveillance scenario,
and also states the current situation of automated videosurveillance. Section [5.4]
presents our DRM-based proposal, and Section offers a high level perspective
on its implementation. The application to a real scenario is illustrated with a
use case, described in Section 5.6l Finally, some concluding remarks are given in

Section B.7.
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Figure 5.1: Simplified architecture of an IP videosurveillance network

5.2. The legal framework of videosurveillance

In the last years, the exposition of people to videosurveillance systems has
increased considerably. Although these systems are usually perceived as a good
means to improve individuals security, as they help to prevent, investigate, de-
tect and prosecute criminal offences, an increasing concern exists about the sub-
sequent reduction of individuals’ fundamental rights and freedoms, specially in
those aspects related to privacy. This concern was materialized in the Interna-
tional Conference of Data Protection Authorities, held in London during 2006,
where “the need to adapt videosurveillance to the demands of the fundamental
right to data protection” was addressed. In this regard, many different states all
over the world with a prior legal framework in privacy are implementing a series of
measures aimed at legislating the framework where the activity of the aforemen-
tioned videosurveillance systems can be performed, and specifying the necessary
conditions such that their activity can be carried out whilst protecting citizens’
privacy rights. This section will be focused on the description of European and
Spanish legislations concerning videosurveillance systems, as the European Union
(EU) is one of the few domains in the world that currently has a comprehensive
set of privacy legislations, with specific legislation for the handling of personal
data [40]. As for the Spanish legislation, it represents one of the implementations
of the recommendations set forth in the EU. Nevertheless, it must be noted that
similar laws rule in most countries.

From a European point of view, Directive 95/46 /EC [10] deals with the “pro-
tection of individuals with regard to the processing of personal data and on the
free movement of such data”. This right to privacy is recognized in Article 8 of
the European Convention for the Protection of Human Rights and Fundamen-
tal Freedoms, promoted by the Council of Europe Convention the 28th January
1981, for the Protection of Individuals with regard to Automatic Processing of
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Personal Data, and in the general principles of Community Law. It is worth
pointing out that, according to this directive, processing of personal data cov-
ers “any operation or set of operations which is performed upon personal data,
whether or not by automatic means, such as collection, recording, organisation,
storage, adaptation or alteration, retrieval, consultation, use, disclosure by trans-
mission, dissemination or otherwise making available, alignment or combination,
blocking, erasure or destruction”. Therefore, given this definition of “processing
of personal data”, it is straightforward to see that videosurveillance systems are
one of the many scenarios covered by the broad scope of this directive. Hence,
all videosurveillance systems in the EU should be compliant with it.

According to the principles of protection derived from this Directive, the per-
son/body responsible for processing personal data (the controller) must provide
to the citizens information about its own identity, the pursued purposes with the
processing of their data, and who is the recipient of such data. Furthermore,
the citizens are entitled to: 1) know whether or not data relating to them are
being processed; 2) know the logic involved in any automatic processing of data
concerning them; 3) rectify, erase or block data whose processing is not compliant
with the legislation in force. These principles of protection must be applied to any
information concerning an identified or identifiable person. In addition, it must
be also considered that “Member States may, in the interest of the data subject
or so as to protect the rights and freedoms of others, restrict rights of access and
information”. Furthermore, the Directive states that “any processing of personal
data must be lawful and fair to the individuals concerned whereas, in particular,
the data must be adequate, relevant and not excessive in relation to the purposes
for which they are processed,” limiting in this way the personal data that can be
manipulated by a videosurveillance system.

Nevertheless, all the previous provisions are subject to exemptions or dero-
gation. For instance, the directive is not applicable when processing data is
intended for journalistic purposes, or when concerning exclusively personal or
domestic data, as well as in those activities regarding “public safety, defence,
State security or the activities of the State in the criminal laws.”

Last, but not least, the aforementioned Directive also indicates that Member
States should establish supervisory authorities, which must help to ensure trans-
parency of processing in their corresponding countries. In the Spanish case, this
role is played by the Spanish Data Protection Agency (AEPD, Agencia Espanola
de Proteccién de Datos), that in November 2006 proclaimed the Instruction
1/2006 [27], “on processing personal data for surveillance purposes through cam-
era or video-camera systems,” which is aimed at ensuring that videosurveillance
systems are compliant with the principles of the Organic Act 15/1999 on Personal
Data Protection [I1] (LOPD, according to its Spanish acronym), the national law
that materializes the Directive 95/46/EC [10]. Most aspects considered in the
LOPD are a direct translation of the principles established in the European Di-
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rective to the Spanish videosurveillance framework. Nevertheless, the Instruction
specifies in some cases a further detailed implementation. Some of the additional
constraints are:

s The controller’s information duty binds to “place at least one informative
sign in the areas under videosurveillance, in a sufficiently visible location,
in open as well as enclosed spaces.”

s “The data will be cancelled within the mazimum term of 1 month from being
gathered.”

= “The controller must take the measures of technical and organizational na-
ture required to guarantee the security of the data and avoid their alteration,
loss and unauthorised processing or access.”

Even when we have centered our attention on the European and Spanish
regulations, they are indeed a representative example, and it must be noted that
in most countries the legislation in force sets the basis for privacy protection in
the videosurveillance scenario.

5.3. Prior art

Since the late 90’s, privacy in the digital world has become a major concern.
This section reviews the main initiatives regarding privacy management at a
global level and in the particular case of the videosurveillance scenario.

5.3.1. Privacy management

So far, most of the work in this area has been put in the context of web
services. Whereas a bunch of bundled commercial solutions for managing user
privacy at the client side are available, solutions addressing privacy issues at a
global level are not widely deployed yet.

Kenny and Korba described in [I38] a global approach to privacy management
that consists in adapting traditional DRM for building an architecture capable of
satisfying the European Directive 95/46 /EC for privacy protection. The proposed
Privacy Rights Management (PRM) architecture is motivated by the inexistence
of proper technological means for fulfilling the Directive requirements in web
transactions, where users provide private data which is processed by another
entity. The authors of [138] propose a client-server architecture with three key
elements: 1) the data subject, which is the originator and owner of the private
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data; 2) the data controller, which is in charge of managing the collection, storage
and processing of the private data, and is the ultimate responsible for the misuse
of such data; 3) the data processors, which either may depend directly on the
data controller or may be third entities.

The data controller manages a system comprising a web server for interfacing
with the users, and a PRM server for managing the transactions with data pro-
cessors and a set of databases. These databases contain the (cryptographically
protected) private data of the users, logs on data use, information about the data
processors and data subjects, and the rights database which defines the opera-
tions that can be carried out on the private data (in other words, the privacy
rules). These rights can be conveniently expressed, as for any DRM system, in
standard machine readable language using XrML [2], REL [237], etc. Thus, the
private data in a PRM system plays the role of “asset” in classical DRM, which is
protected according to the legislation in force (the rights). In addition, the data
subject could issue a license by which he/she grants certain rights to the data
processor in case certain conditions apply.

The authors show in [I38] that the proposed PRM architecture fits well the
privacy requirements of the Directive 94/45/EC. However, the proposal is not
absent of drawbacks. One of the problems is the trustworthiness of the data
controller, which processes the private data in the clear. Yet another serious
issue, due to its client-server architecture, is scalability, important if a large scale
deployment is to be made.

A more recent and popular initiative for privacy management is the Trans-
parent Accountable Datamining Initiative (TAMI) [23§], promoted by the MIT,
which advances on the basis set by the P3P project [8]. TAMI advocates for
transparency and accountability of the private data use, instead of restricting
the access to private data. The rationale is that the World Wide Web is making
more and more difficult to restrict access to decentralized data, and it is mak-
ing it easier to aggregate data from multiple information sources, specially for
data mining purposes. Hence, it is reasonable to devote efforts to the enforce-
ment of fair data use. However, the problem in videosurveillance is different, as
the scenario is bounded and well defined, thus making it easier to implement a
DRM-like approach. Moreover, transparency and accountability can be ensured
by means of secure event reporting. The TAMI project is particularly focused
on large scale data mining. It proposes a “policy aware” architecture comprising
rule languages that are able to express policy constraints, and reasoning engines
able to produce inferences and proofs for private data use being compliant with
the relevant rules.
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5.3.2. Privacy in videosurveillance

Even if societal and ethical privacy concerns due to the rise of videosurveillance
systems have been widely discussed during the last years [213],[156],[155], [14],[18],
the problem has not been frequently addressed from the technological point of
view. As recently noticed in [56], progressive advances in computing power and
computer vision can help to achieve the right balance between privacy and secu-
rity for videosurveillance. To the best of our knowledge, the first relevant attempt
in this direction is due to the IBM Research Division, as described in a technical
report in 2003 [200]. Prior to its publication, only a few works had proposed
technological solutions for privacy protection in the videosurveillance scenario
(see [200], Sect. 3.3).

In [200], the authors propose the use of computer vision in order to understand
the captured video and hide the sensitive data at different levels, according to
the privileges defined for different users of the system. These privileges are to be
defined considering the different classes of users of the system, which is dependent
on each particular scenario. In an illustrative use case, three different classes of
users are envisaged: anonymous (have access only to statistics collected by video
analysis engines), privileged users (can watch video but with certain sensitive
information hidden), and superusers, such as law enforcement officers (can watch
the whole video without restrictions).

The privacy-preserving viewing of the video is ensured by means of a secure
video console that re-renders the raw video, producing a new video stream where
private data is hidden or obfuscated, whilst keeping the necessary information
such that a human operator can evaluate the scene. Proper access control mech-
anisms guarantee that each user class has access only to the apropriate video
stream. Thus, a security guard for instance could watch the video but with the
faces of the recorded people erased or downsampled in order to make idenfication
of the individuals impossible or at least very difficult. “Smart” video engines
can detect different classes of objects (e.g. car plates), situations (e.g. acci-
dents, fights, etc.) and individuals. In case the video engine is equipped with
facial recognition capabilities, it is even possible to define different actions for
the different individuals, provided the latter have been previously enrolled in the
system.

The work described above gave rise to a significantly large number of pa-
pers, but mostly (or exclusively) dealing with implementations of video engines
for detecting private data in the video stream and/or re-rendering raw video in
a privacy-preserving manner. Some of these works will be briefly reviewed in

Section B.5.11
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5.3.3. Automated event control

Albeit automatic scene understading has been proposed as a tool to enable
privacy-enhanced videosurveillance [200], up to now it has been raising more con-
cern than relief, as it simplifies the collection and analysis of sensitive information
on individuals.

Currently, a large number of tools for automating event control in videosurveil-
lance, based on computer vision and image understanding, are being developed or
already commercialized. Despite the large availability of tools of this kind, their
massive deployment is still being hindered, not by the aforementioned privacy
concerns, but rather by interoperability issues. In this context, a consortium
originally formed by Axis Communications, Bosch Security Systems and Sony
Corporation has began to promote the Open Network Video Interface Forum
(ONVIF) standard [19]. More than 60 partners, including major actors in the
videosurveillance industry, have already joined the initiative. ONVIF is aimed
at developing an open standard for the communication between network video
clients and video transmitter devices, giving a solution to the interoperability
problem. The current ONVIF specification covers aspects such as device man-
agement, audio and video streaming, event management and video analytics, with
all the interfaces described as web services by means of well known standards like
XML, SOAP, and the Web Service Description Language (WSDL).

ONVIF defines two main architectural elements: the Network Video Transmit-
ter (NVT), and the Network Video Client (NVC). The NVT is a device that sends
video over an IP network to an NVC, so it plays the role of “service provider.” On
the other hand, the NVC is a controller device that communicates with an NVT,
thus playing the role of “service requester.” ONVIF gives support to JPEG,
MPEG-4, H.264, G.711, G.726 and AAC codecs for video and audio stream-
ing. The architecture of a video analytics application is composed of two main
modules:

1. A video analytics engine which receives a video stream and produces a Scene
Description, i.e. an abstract representation of the observed scene in terms
of the objects present and their behavior.

2. A rule engine which contains the set of rules that govern the allowed actions
in the observed scene (for instance, a certain virtual perimeter must not be
crossed by pedestrians), the allowed intra-object relations (e.g. a person
who lifts his/her bagage in the airport), and the allowed object behaviors
(such as a maximum speed limit). The comparison between the Scene
Description and the rules produces an event.

Clearly, ONVIF can have a great impact in the development of incoming privacy-
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Surveillant world

Surveilled World

Figure 5.2: Architecture of a videosurveillance system using DRM

preserving videosurveillance systems, as it opens the door to standard and inter-
operable management of sensitive events and privacy rules.

5.4. Rights management: a global solution for
videosurveillance

DRM has traditionally been used for protecting the rights of content creators.
As pointed out in [I38], due to the duality between rights management and pri-
vacy protection, DRM can also be applied, with some considerations, to privacy
protection. The proposed solution goes even further. We have already anticipated
that in a videosurveillance system, automated surveillance and privacy are closely
related; thus, both aspects should not be considered independently, but jointly
in a complete approach like the presented one. With a slight redefinition of some
concepts, DRM can cope with all the aspects of videosurveillance, ranging from
automatic event reporting to security of transmissions and storage, hierarchical
access control for authorized users, and different levels of privacy protection for
the surveilled users. At the same time, our proposal circumvents the problems
presented by other individual privacy or automated surveillance systems (cf. Sec-
tion[5.3)) in terms of scalability, trust support or flexibility, always complying with
the current regulations.

In the following we describe the proposed architecture, depicted in Figure [5.2]
of a videosurveillance system using DRM for providing both privacy and auto-
mated surveillance.

5.4.1. Object-users and Subject-Users

A videosurveillance system conceptually divides its users in two categories:
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= Subject-users: We will call subject-users to those agents that have access
to data generated by the system, and can perform actions on these data. In
order to access the system, they must authenticate themselves. In a DRM
system, these users are represented as content consumers and adapters,
that have certain access rights to the contents in the system, specified by
the licenses of those contents. The information that these users produce is
limited to event reports generated by the actions they perform, and contents
adapted from existing contents in the system (when they have the right to
produce them), but these users cannot generate new contents by themselves.

» Object-users: We will call object-users to those watched items (objects,
people or regions), whose actions are surveilled and generate data. The data
generation is initiated automatically when one of these users is recognized by
the system in the contents generated by a camera; there is no authentication
for these users besides the automatic recognition performed by the system:;
thus, there must be at least one object-user or group of object-users to
which the detected but unrecognized users are mapped; it is also possible
to automatically enroll every unrecognized user with a generic unidentified
profile, in order to allow for relative ID recognition.

Every object-user has an associated wirtual content, that represents the
object-user as an element of the DRM system with which other object-
users may interact. It contains no resources, but only license and reporting
information, (the interaction rights defined in Section [(.4.2). In the DRM
system, these users are identified with content creators, and their associated
virtual content is considered just as one ordinary content.

Informally, subject-users are those who can operate some part of the system,
including employees of the enterprise, security guards, law authorities, etc. On
the other hand, object-users are those in front of the cameras, that are being
surveilled. Both categories of users must be uniquely identifiable by the system,
and even when there is no a priori direct relation between them, the system
may keep unique bonds between a determined subject-user and an object-user,
that link both users under a unique system identity. For example, a security
guard can be a subject-user, for he can have access to data in the system, but
when appearing in front of the camera, the guard becomes also an object-user,
although both users are bond to the same identity. These links allow for the
assignment of access rights of a subject-user to the data generated by the linked
object-user; thus, it solves the problem of automatically providing a recognized
object-user access to his/her own data without the need of an external process
that determines the relationship between the data and the authorized subject-
user; this would effectively implement the data access right required by Directive
95/46/EC. Nevertheless, these links constitute only identity links, and access
rights can be defined elsewhere, as will be shown later on. This is another example
of the need of taking into account the dependency between privacy and automatic
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surveillance.

5.4.2. Roles and privileges

As we are dealing with a global solution that covers all the aspects of video-
surveillance through a DRM system, we must take into account two complemen-
tary questions:

= Privacy: When taking into account the privacy concerns related to video-
surveillance, it is customary to protect the information of the object-users
that are being recorded, and allow access to this information only to autho-
rized subject-users. This implementation through DRM would improve on
the typical access control lists commonly proposed for privacy protection,
providing a more flexible access system and different access levels. Re-
garding privacy, it is also desirable to implement different privacy profiles,
such that each user has relative freedom to choose how, when and against
whom his/her data must be protected, and whether or not the object-user
wants to be informed whenever some subject-user accesses his/her data.
On the other hand, subject-users generate only reports on their activity on
data previously created by object-users; thus, the privacy of subject-users
is taken into account by granting them privileges in order not to report
certain actions; for example, a representative of the law authorities may
have visioning access to some recorded scenes, and this event should not
originate reports to the involved object-users.

= Event control: An automated surveillance system must be able to detect
certain events and inform to the appropriate agent(s) of the system about
their occurrence. In this way, the system must define which actions of
object-users must be subject to event control, and which subject-users must
be informed about those actions; this should be either a generic policy,
affecting all object-users, or a specific policy, affecting a limited group of
users (or only one user). E.g., an enterprise may want that several members
of the “security” group be informed about determined events happening
between object-users; this would define a policy affecting all the involved
object-users.

This two-fold approach can be materialized through the application of DRM
with the following mapping:

= Object-users: For every object-user, the following elements will be de-
fined:
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e Privacy policy: The object-user, as a content generator of the DRM
system, must have a data creation policy (a template for content gen-
eration and for the associated licenses), that defines:

o The access rights that each group of subject-users has over each
piece of information generated by the object-user in question.

o A selection of tools used to secure the generated contents. This
selection will represent the way the data will be protected, and
therefore, the privacy level assigned to the user; they can com-
prise, but are not limited to: distortion, masquerading, substitu-
tion, encryption or even total elimination; this last choice would
represent the level of total privacy, for which unauthorized users
would not have access to the data and also to knowing whether

some data is present or not. More about total privacy is discussed
in Section (.0l

e Reportable events: A list of actions (record, play, copy, encapsu-
late,...) on the data generated by the object-user that must generate
event reports, and to which subject-users these reports are sent.

e Interaction Rights: The surveillance system may be able to de-
tect interactions between object-users (i.e., a person entering a re-
stricted access zone, a person leaving a case on the floor, a fight,...).
Each object-user or group of object-users may have a list of al-
lowed /forbidden interactions, that will define which interactions must
be recorded as an event report, which the level of those reports is, and
to which subject-user(s) those reports will be sent. This rights are
defined in the virtual content associated to each object-user.

e Group: Every object-user should belong to one of the defined groups,
as Interaction Rights are more efficiently described when specifying
a group and an object than when specifying pairs of objects. Ad-
ditionally, groups of object-users may have default privacy policies.
Grouping is a critical aspect to allow for scalability of the system.

= Subject-users: Subject-users have their privacy taken into account
through restrictions on the reported events that their actions generate,
granting them privileges in order not to report certain actions.

As well as object-users, subject-users can also be grouped, as there may be
some generic classes of users (like representatives of the law, security profes-
sionals, regular employees,...), with default profiles and different privileges.
Additionally, subject-users may also have meta-rights over virtual contents,
being able to issue or revoke the access rights of some object-user or group
of object-users to certain virtual contents.
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Figure 5.3: Architecture of event reports using DRM

5.4.3. Event Management

As highlighted in the previous sections, there are two types of events: those
produced by the interaction between object-users, and those produced by the
actions performed by subject-users on system data. The former will be called
surveilled events, while the latter will be called privacy events. The reports that
these events generate will always have one or several subject-users as recipients.
Nevertheless, all of them can be handled in a unified way by a DRM system
supporting event reporting or metering functions.

Events are actions that the system can identify. Privacy events are defined by
typical access rights of subject-users to ordinary contents of the system. This is
directly interpreted as traditionally done in a DRM system. On the other hand,
surveilled events are defined by access rights of object-users to virtual contents.
Thus, the surveillance system must identify objects in the surveilled scene, map
them to their corresponding object-users and virtual contents in the DRM system,
and map the interaction among objects to actions performed by object-users on
virtual contents; then, the virtual contents will indicate which of these actions
must be reported as events.

5.4.4. Surveillance Ontology

As shown in the previous sections, the proposed framework can cope with
both sides of a videosurveillance system: the world behind the cameras, and the
world in front of them. Thus, the ontologies typically associated to DRM systems
are not enough to describe all the agents and relationships that are present in
our framework, such as the interaction rights. Therefore, an extended ontology is
needed to cope with the concepts and the bonds that are present in our framework.
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5.5. Implementation guidelines: a high level
perspective

5.5.1. Prior works

Most works on videosurveillance privacy are very recent, and most of them
are focused on particular modules of the global privacy management architecture,
especially on: 1) engines for automated detection of objects of interest; and 2)
methods for protection (including blurring and encryption) of the private data.

As for the first module, the objects of interest are usually chosen to be per-
sons and moving objects such as vehicles. The main reason is simplicity, since
the considered scenarios usually have static videosurveillance cameras: hence,
moving object detection can be accomplished by means of simple background
segmentation techniques [57], [87], [247], [212]. More sophisticated approaches
for object detection are based on trained classifiers, such as [152], [157], [60].
These approaches allow for better control and decision making, but at the cost of
increased computational complexity. Nevertheless, a bunch of efficient detectors
are described in the literature and are successfully used in real scenarios, like the
method by Gavrila and Philomin [102], the well-known Viola-Jones method [236],
or the HOG method [75].

Regarding the protection of private data, we can find works such as [I71],
[60], [212], [247], where a variety of non-invertible transforms are applied to
the sensitive data: obscuring, pixelization, blurring, silohuetting, face masking,
etc. In other works, the application of standard encryption methods (e.g. AES,
permutation-based encryption) is proposed in order to ensure recoverability of
the private data if the viewer has access to the appropriate key. Some works sim-
ply apply encryption to the raw bits comprising the detected objects of interest
[57], but others resort to layered encryption techniques combined with percep-
tual coding, in order to provide different privacy levels in a natural manner. Two
examples can be found in [87], [I51] for Motion JPEG-2000 video. Other works
on layered encryption can be found for H.264 [I78], DCT-based [93], Hierarchi-
cal MPEG [122], and scalable codecs in general [94]. However, the four latter
works are not directly applicable to the videosurveillance scenario, as no objects
of interest are considered (the whole image is encrypted).

In general, the usability of the proposed encryption algorithms is strongly
dependent on the video codec used in the videosurveillance system (especially in
layered encryption techniques). In [55], permutation-based image encryption is
proposed in order to achieve codec independence. Furthermore, this encryption
method allows for a certain transcoding of the video without completely destroy-
ing the encrypted information if afterwards recovered using the proper secret key.
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The system performance has been evaluated with several video codecs, including
MPEG-2 and H.264.

In view of the existing work, it appears that no global framework for a practical
implementation of privacy management solutions exists for the videosurveillance
scenario. Our proposal in this direction is introduced below.

5.5.2. A generic, standards-compliant implementation
proposal

At a high-level, our implementation proposal can be viewed as a generic video
analysis system coupled with a DRM system. It is basically a combination of
MPEG-4, MPEG-21 and ONVIF standards, in such a way that all aspects of the
proposed architecture and functionalities are satisfactorily covered:

= MPEG-4 covers aspects related to object management and cryptographic
protection of the sensitive data (IPMP);

s MPEG-21 provides standard means for defining licenses on data use and a
language for expressing rights (REL), as well as the format for event reports
and their requests.

= ONVIF provides event management and transmission capabilities.

The different components of our proposal are described below. It must not be
understood in any way as a restrictive implementation, but just as an illustrative
implementation which is generic enough and covers all aspects of the proposed
architecture using standard technology.

5.5.2.1. Video segmentation, encryption and encoding using MPEG-4

Unlike MPEG-2 and MPEG-1, MPEG-4 strongly relies on the concept of
object. This is one of the characteristics that makes it specially amenable to
the implementation of our proposal. Whereas an MPEG-2 program is typically
formed by two audiovisual elements (one full-screen video stream, and one audio
stream), MPEG-4 content may be built of an arbitrary number of audiovisual
elements, called objects, that belong to a wide range of defined object types, such
as rectangular video, video with shape, synthetic face or body, speech, synthetic
audio, text, or graphics. The basics of the object encoding mechanisms available
in MPEG-4 are briefly explained in the following.

As illustrated in Figure 5.4l the access to MPEG-4 contents starts with an
Initial Object Descriptor (IOD). This IOD points to at least two basic streams:
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Figure 5.4: Schematic description of MPEG-4 contents based on objects.

a scene description (BInary Format For Scenes, BIFS), and an Object Descriptor
(OD) stream. The OD is a kind of container aggregating all the useful information
about the corresponding object. An OD can contain a URL pointing to a media
stream, or a series of subdescriptors. These subdescriptors contain pointers to
individual Elementary Streams (ESs), semantic information about an object, and
pointers to contents access management information (Intellectual Property Man-
agement and Protection, IPMP). IPMP descriptors and IPMP streams specify a
means for decrypting ciphered ESs, or for checking authorization or entitlement
information. It is worth pointing out that a single visual or audio object can be
coded into one or more ESs.

OD streams are usually associated with a scene description (BIFS) stream;
the scene description conveys the spatio-temporal layout of the media objects in
the scene, i.e., it indicates how to assemble the various media streams described
within the OD stream. ODs and BIFS are associated through another OD. Based
on BIFS, a visual scene in MPEG-4 is described as a composition of Video Objects
(VOs) characterized by their shape (not just rectangular, but arbitrary shapes
can be considered), motion, and texture. Each VO can consist of one or more
layers (VOL) which can be used to enhance the temporal or spatial resolution
of a VO. An instance of a VOL at a given time instant is called a Video Object
Plane (VOP).

Due to its hierarchical structure, its modular nature and the diversity of its
encoding tools, MPEG-4 indeed provides many degrees of freedom for producing
a video sequence. This high number of possibilities can be effectively exploited
in our framework for videosurveillance.
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As explained before, the main interest is in hiding certain parts of the video
stream, depending on the rights of the viewer and the licenses associated to the
objects in the image.! MPEG-4 allows to define a bottom-to-top video structure,
where it is possible to separately encode and protect the objects of interest, such
that they can be a posteriori selectively extracted and reproduced, according to
the relevant rights and licenses. An illustrative example of these capabilities is
the following.

1. In the videosurveillance scenario, the first object of interest to be defined is
the background image, usually static, being captured by the camera. For
still cameras, this background image can be easily defined. For motorized
remotely controlled cameras, a reference background image can be also
defined for each possible positioning vector (including azimuth and elevation
parameters) and configuration parameters (focus, shutter time, resolution,
etc.)

2. The background image plays the role of canvas over which the moving ob-
jects (e.g. persons, vehicles) are superimposed in order to compose the
complete scene consisting of a set of layers (VOL).

3. The viewer (subject-user) can check in the IPMP descriptors whether he/she
has the rights to visualize the objects in the scene (in the clear). If that is
the case, the corresponding VOs and VOLs will be conveniently decoded,
decrypted and placed in the scene thanks to the BIFS capabilities. On
the contrary, for the subject-user lacking the necessary rights, the system
would render a processed version of the protected objects over the back-
ground image. This processing may encompass partial decryption, blurring,
transparency (even total erasure), substitution by a synthetic face/body,
etc., according to the degree of privacy required and/or the rights of the
subject-user. An example of the output presented to a subject-user is shown
in Figure .5l

This conditional access problem can be solved by means of traditional DRM
tools applied on the media streams needed for the composition of the final video.
The application of DRM can be performed at different points of the MPEG-4
structure.

= A simple approach would consist of encrypting the ESs corresponding to
the media objects representing the object-users of interest, and sending

!Note that the MPEG-4 objects of interest in our scenario are content media generated by
object-users (i.e., multimedia information containing the image/voice of the object-user), so
the fact that a given subject-user has the appropriate rights to access the data will not just
depend on the subject-user group and the corresponding rights, but it will also depend on the
object-user privacy policy.
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(a) Video frame in the clear (b) Privacy-protected video frame

Figure 5.5: Example of privacy-preserving videosurveillance by means of person
detection and pixelization.

them by default in a stream available to all the subject-users. One obvious
drawback is the significant communications overhead (the encrypted data
is useless for unauthorized viewers), and the possible privacy leaks because
of the mere awareness that certain information is being hidden.

= A more sophisticated approach would be the use of encrypted URLSs in the
ODs pointing to the DRM-protected streams, that could be even stored in
a different video server. This way, a twofold objective would be achieved:
1) unauthorized users would not download data they would not be able
to process, and 2) privacy would be improved to a larger extent, as unau-
thorized users will know that some encrypted URLs are present, but they
will not be able to know exactly how many there are. Furthermore, strate-
gies could be designed where a media object were partitioned into multiple
ESs, each of them DRM-protected and stored in a different server; doing
so, not even hacking a server would be enough for accessing the protected
data, as the set of all the servers containing data of a multimedia object
should be cracked. Therefore, the privacy and security levels provided by
this approach would be significantly higher than for the privacy-enhancing
videosurveillance systems proposed so far.

5.5.2.2. Licensing, rights and event management
implementation via MPEG-21 and ONVIF

MPEG-21 provides a rich and extensible language for defining user rights and
allowed uses of digital contents, specified as a Rights Expression Language (REL).
These rights are introduced in licenses that, when associated to a Digital Item
(DI), specify the actions that determined users can perform on the resource linked
to the DI. The rights defined in MPEG-21 REL can be directly mapped to the
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actions (play, record, copy,...) performed by subject-users on the contents gener-
ated by the videosurveillance system; nevertheless, the REL must be extended in
order to include the actions that object-users perform on virtual contents, e.g.,

enter, leave, take,... (cf. Section 54]). MPEG-21 REL allows to easily define
these extensions.

On the other hand, the ONVIF standard provides a set of security operations
for configuring NVTs including, among others, setting access security policies,
and handling user credentials and settings. The security model in ONVIF ([16])
defines a standard set of SOAP extensions, and includes a Token Profile based
on REL ([15]), considering four different user levels: Administrator, Operator,
Media user, and Anonymous. The access security policy of each of these groups
can be defined through REL. Thus, both standards can complement each other
within an implementation of our framework: while MPEG-21 REL provides the
standard language for defining user rights and access privileges, ONVIF would
provide standardized protocols for the protection of these rights and privileges.

Event handling in ONVIF is based on the OASIS WS-BaseNotification and
WS-Topics specifications [7], that define event handling principles, basic formats
and communication patterns; however, the standard does not require particular
notification topics, and it defines a set of basic notification topics that an NVT is
recommended to support [19]. Likewise, MPEG-21 Event Report (ER) defines the
format of the Event Report Request (ERR) and Event Report (ER) messages. It
must be noted that both standards do not collide also in the specification of event
handling, as MPEG-21 ER deals with report formats, while ONVIF defines the
layer for communicating generic reports (Real-Time and non Real-Time). Thus,
turning again to our framework, a natural implementation of event reporting
would consist in using MPEG-21 formats for ER and ERR, embedding the latter
into the corresponding DIs, and encapsulating the former inside ONVIF messages,
in order to be simultaneously compliant with both standards.

5.6. Use case description

This section describes by example the application of the videosurveillance
model presented in Sect.[5.4]to a real scenario. It is focused on a videosurveillance
system for airports because such scenario encompasses a wide range of users and
situations that illustrate well the capabilities of the proposed approach.

5.6.1. Users

According to Sect. B.41l we distinguish between object-users and subject-
users. Object-users are those individuals/entities in front of the cameras, and
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some examples are

1. public security forces (police and similar),

2. private security agents,

3. airport assistants,

4. airlines desk staff, airlines on-board crew,

5. duty free, bars and restaurants or cleaning staff,
6. airport users (e.g. passengers),

7. baggage items and trolleys,

8. security control trays,

9. restricted areas.

On the other hand, subject-users are those who operate the videosurveillance
system. In this case, it would correspond to user types [ and 2l Only user types
may define how the information generated by them is processed, while user
types will be assigned a generic or specific policy.

The classification of a given object-user in one of the aforementioned categories
requires a previous enrollment and/or system training. In the case of items or
areas (user types [[HJ)), the videosurveillance system needs a training phase to
understand what kind of object it has to look for, and sometimes intervention
of a subject-user (to define the perimeter of a restricted area, for instance). For
many human object-users (types [[H]), enrollment is already usually required in
current airport security systems. It is not necessarily the case for passengers and
other airport users, who can anonymously move around many areas inside the
airport. Thus, they would belong in general to the class of unidentified object-
users. Nevertheless, the fact that a passenger does not follow a typical enrollment
process does not imply that he/she can not be tracked all over the airport. The
videosurveillance system could have a database containing information about the
observed passengers in the last, say, 24 hours. This way, a high level of security
can be achieved whilst complying with the proportionality principle.

Notice that human object-users of types are usually required to bear an
identity card, which can be equipped with an RFID device, and hence used for
verifying unobtrusively their identity against a biometric recognition system in-
tegrated in the videosurveillance network.
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5.6.2. Privacy policies

According to Sect.[5.4.2] object-users can define through their privacy policies
how their information is managed by the system and accessed by others. Some
examples are given here:

1. A shop assistant in a duty free store can request to make his/her image
unidentifiable to private security agents operating the videosurveillance sys-
tem while he/she is at work inside the area of the store facilities.

2. A police officer can request his/her image to be completely removed for any
subject-user, unless it is another police officer. In addition, he wants his
private data to be protected with RSA encryption.

3. Default rules can be applied to unidentified object-users, such as passengers
and other airport users not enrolled in the security system.

These privacy policies will be eventually reflected on the access rights that
are granted to subject-users, depending on their specific function at the airport.
For example, subject-users of types [[H2] have access to most of the information
that is processed/recorded by the videosurveillance system. On the other hand,
subject-users corresponding to object-user types (or even user types not
in charge of operating the videosurveillance system) should not have access to
these data.

5.6.3. Interaction rights and automated event control

According to Sect. [5.4.2] object-users have predefined rights that control the
allowed interactions between them. The automated videosurveillance system can
detect whether these interaction rights are being violated in order to appropriately
generate event reports. Some examples are:

» A piece of baggage (type [ user) remains unattended for a long time. The
system tags this item as “unattended baggage” and sends the correspoding
report to a security officer.

= A typel@ user picks up a piece of baggage that had been tagged as “unat-
tended baggage”. This could indicate a theft, so the appropriate report is
generated and sent again to the security officer.

» A type [0 user enters a restricted area (type [ user). The system checks
whether the former has the right to access this area; if not, the action is
notified via an event report.
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5.7. Conclusions and Further Work

Individuals demand for technical ways of improving their personal security
that do not hinder their right to privacy, which is granted by the European
legislation in force. As far as videosurveillance is concerned, the DRM-based
architecture that has been proposed in this chapter comes to provide a good
balance between security and individuals’ privacy. In fact, as presented, DRM can
solve the critical issues of a current videosurveillance system, considering their
twofold nature: covering and standardizing the automation of the surveillance
activity, while putting in the hands of the users the appropriate technical means
to control the access to their private information. Thus, the way DRM is used
in our framework can lead to an increased acceptance of videosurveillance, as its
target is the protection of the final user.

Note that this chapter has dealt only with conceptual elements of a video-
surveillance network, without taking into account how they can be mapped to
physical devices. The most straightforward solution is to include in the network
dedicated processing nodes, which can provide the necessary analysis and auto-
mated decision functionalities. On the other hand, the computation power of IP
“smart” cameras is rapidly increasing, so it is foreseeable that videosurveillance
cameras will soon become autonomous devices capable of performing complex
video processing operations. This will ensure that many of the functionalities
envisaged by the presented architecture will be directly realizable in the cameras.
Additionally, the more powerful the analysis engines run by the system, the more
granular and reliable it will be.

Finally, it has been shown that the presented architecture can be implemented
through the use and adaptation of current standards, like ONVIF, MPEG-21
and MPEG-4. This constitutes a clear advantage, in the sense that a standards-
compliant solution provides more generality, transparency and availability.



Chapter 6

Fully Private Noninteractive
Biometric Authentication

Face recognition is one of the foremost applications of image pro-
cessing, that often deals with sensitive signals; privacy concerns have
been lately raised and tackled in several recent papers dealing with
privacy-preserving face recognition systems. Nevertheless, the pre-
sented systems either use the knowledge of some information derived
from the database templates in order to perform the recognition or
require several interaction rounds between client and server.

In this chapter, we present a private system that can cope with a
simple verification algorithm executed in the server without interac-
tion, in which both the templates and the queried face are encrypted.
In order to achieve this, we make two significant contributions which
must be combined to reach a fully non-interactive solution: on the
one hand, we use a feature model based on circularly symmetric and
Generalized-Gaussian marginally distributed real and imaginary parts
of Gabor coefficients driving an efficient Lloyd-Max quantization of
Gabor coefficients magnitude, combined with an SVM classifier; the
goodness of fit of the probabilistic model for Gabor magnitudes is as-
sessed through Kullback-Leibler divergence. This allows for a great
reduction of both storage and plaintext cardinality.

On the other hand, we also provide an extension of a quasi-fully
homomorphic encryption, that combined with the small cardinality
plaintext of quantized indices of Gabor coefficients, is able to compute
the SVM’s soft scores operating on all the input parameters, features
and templates in encrypted form, and without interaction with any
of the clients. We show its performance in terms of time complexity
and size of transferred encryptions, as well as in verification accuracy
with respect to the non-private system. The combination of these two
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contributions opens the door to completely private and noninteractive
outsourcing of face recognition.

The work in this chapter has been partially presented at IEEE
ICASSP 2010 [215] and submitted to IEEE ICIP 2012 [217] and IEEE
TIFS 2012 [216]; some of the technical developments have been filed
as patent applications (Patent pending, Application No. 61/596151)

6.1. Introduction

Face recognition is an important and active area of research [250], whose in-
terest has increased in recent years because of theoretical and application-driven
motivations. Nevertheless, it is also a prototypical image processing application
where privacy constraints come into play, due to the sensitivity of the involved
biometric signals. In a common privacy-aware face recognition scenario, a user
presents his/her face for matching against a database of enrolled clients, to verify
a given identity; the database must not be disclosed to the new user, as this would
harm the security of the system and the privacy of the enrolled users, while the
face presented by the query user must not be disclosed to the recognition sys-
tem, for preserving the user’s privacy. There have been several recent proposals
of efficient privacy-preserving solutions for this scenario, combining additive ho-
momorphic encryption and garbled circuits, like Erkin et al. [89] or Sadeghi et
al. [196], both focused on private face identification using a simple but effective
recognition system, called Eigenfaces [231]; the latter is based on applying a PCA
projection matrix to the presented face.

However, this traditional scenario does not protect the privacy of the enrolled
users, as the recognition system must have clear-text access to the templates
stored in the database and to the projection matrix. More involved scenarios,
like outsourced ones, where Clouds or other untrusted environments are used not
only for storing the databases but for performing certain operations, are becom-
ing increasingly ubiquitous. If the matching database is stored in an untrusted
third party together with the detection logic, enrolled users’ privacy must also be
protected, and that party must have access neither to the database contents nor
to the fresh faces presented against the system for recognition. Additionally, it is
desirable that the system can run autonomously without interaction rounds with
the client, requiring the lowest computational effort from the client-side, that is
usually executed on an embedded or mobile device.

This chapter tackles this privacy-aware scenario, where we aim at face verifica-
tion in an outsourced system that works with a fully encrypted template database
and query faces (total privacy) and provides a verification result without inter-
action with the client. That purpose can only be achieved by combining the two
essential elements that we provide: a quasi-fully homomorphic extension of Gen-
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try’s fully homomorphic cryptosystem [105], and an efficient quantization system
for Gabor features that allows for a great plaintext cardinality reduction; these
two elements joined together enable the implementation of the noninteractive pri-
vate system, whose performance is evaluated in the envisaged biometric scenario.
This opens up a wide new set of applications, and provides a first stone for a fully
private noninteractive outsourced processing in untrusted environments.

The rest of the chapter is organized as follows: Section 6.2l reviews the GG dis-
tribution used to model real and imaginary parts of Gabor coefficients; Section[6.3]
introduces and evaluates the used statistical model for Gabor coefficients magni-
tude, as well as describing coefficients’ quantization using this model. Section
reviews Gentry’s Fully Homomorphic cryptosystem; and presents the proposed
extension with a lower bound on the number of achievable sequential homo-
morphic multiplications. Section presents the application to a fully-private
noninteractive face verification scenario joining together the efficient quantiza-
tion system and the extended encryption, and evaluates its performance figures
in widely known test databases (XM2VTS [160] and LEW [125]), comparing also
the clear and the fully-private system. Finally, Section discusses the security
aspects of the extended cryptosystem, and Section draws some conclusions.

6.2. Face Features and Existing Models

Gabor filters have received great attention due to biological reasons (Ga-
bor filtering effectively emulates that performed by the Human Visual System,
HVS) and because of their optimal resolution in both frequency and spatial do-
mains [81]. As a matter of fact, there is a large number of publications that have
adopted such features for face processing, including [2411 194 [183, 184 172, 242]
(see [204, 201] for recent reviews on the use of Gabor filters for face recognition).

One of the main drawbacks [204], [114] of Gabor-based approaches is the huge
amount of memory that is needed to store a representation of the image. One
possible solution to this shortcoming is to quantize the input data by taking
advantage of accurate statistical models. In this direction, Generalized Gaus-
sian (GG) distributions have been proposed to model both real and imaginary
parts of Gabor coefficients extracted from face images [114]. Empirical validation
has confirmed that these densities provide an accurate characterization for the
distribution of the input data.

In this chapter, we go one step further, trying to reduce even more the length
of the representation needed for an efficient recognition using Gabor features,
due to the cardinality requirements that the encryption system presented in Sec-
tion poses. In order to minimize the volume of data, we use a novel sta-
tistical characterization to model magnitudes of Gabor coefficients [215] (most
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Gabor-based face recognition algorithms discard phase information [241]), under
the assumption that both real and imaginary parts are GG distributed and the
complex coefficient has circular symmetry, and we propose two different quantiza-
tions, using levels and indices (cf. Section [6.3.2]), to minimize the representation
length.

The fitting accuracy of the proposed model to the data is evaluated using
the Kullback-Leibler divergence on two different datasets: XM2VTS [160] and
Labeled Faces in the Wild (LFW) [125] databases. After assessing the quality of
the fit, we apply the proposed statistical model for performing data compression
via Lloyd-Max quantization, that achieves minimum mean squared error (MSE)
for a given number N of representative levels; the use of this model greatly
reduces the size of a Gabor-based face representation with a negligible impact on
recognition performance, as it will be shown.

6.2.1. Generalized Gaussian Distribution

In this chapter, we are interested in zero-mean Generalized-Gaussian variables,
whose pdf is given by the following expression
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This characterization has two parameters:

= [ represents a scale parameter inversely proportional to the standard devi-
ation o of the variable,

= ¢ is the shape parameter, that controls the weight of the tails and the
peakedness of the bell. Particular cases are the Laplacian distribution when
¢ = 1, Gaussian distribution when ¢ = 2, and Uniform distribution when
¢ — oo; nevertheless, for the cases of interest, ¢ will be within the interval
ce(0,2].

Usually, Generalized Gaussian distributions are employed to model peaky
and heavy-tailed random variables, for which it yields good fits; examples of GG
modeled variables can be found in coefficients of many transforms, like DCT or
Wavelets [120, 85, 203], and, especially, the marginals of Gabor coefficients [114].

A previous approach to modeling Gabor coefficients magnitude was proposed
in [I15], through a generalization of the Rayleigh distribution: in the same way
as the Generalized Gaussian adds a degree of freedom in the exponential decay
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of the tails (the shape factor c¢), the S-Rayleigh distribution presented in [115]
generalizes the Rayleigh distribution with a shape factor g
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tained from GG marginals, so this model misses a connection with current GG
models, that assume GG distributed real and imaginary parts.
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6.3. Theoretical Model for the magnitude of
Gabor Coefficients

Let g; € C be one of the Gabor coefficients extracted from a face, and
gri, gi; € R its real and imaginary parts, respectively. As already shown in [114],
both real and imaginary parts follow Generalized Gaussian marginals with the
same parameters (shape factor ¢ < 2 and standard deviation o). Nevertheless,
we have observed that the phase of g; is approximately uniform, meaning that
the distribution of each g¢; presents circular symmetry. Actually, independent
bidimensional generalized Gaussian variables are not circularly symmetric (un-
less they are Gaussian, ¢ = 2), and consequently gr; and gi; are not independent.
In order to assimilate this dependency, we propose a model with the following
characteristics:

= The variance of each coefficient is not constant among different locations
and subjects, but for the same location and subject it is the same for both
real and imaginary parts.

= When conditioned to a given variance, real and imaginary parts of Gabor
coefficients become locally Gaussian and independent, and thus, circularly
symmetric.

» The resulting marginal distribution of the real and imaginary parts (for any
location and subject) follows a GG law.

That is, for each coefficient G;, we have G; = (C; + j - D;) - S;, where C; and
D; are two independent Gaussian N (0, 1), and S;, independent of C; and D;,
is a non-negative random variable that models the non-constant deviation, such
that C;S; and D;S;, that model respectively the real and imaginary marginals of
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a Gabor coefficient, are Generalized Gaussians; as S; does not affect the phase,
C;S; and D;S; preserve the circular symmetry.

This model covers all the observed properties of Gabor coefficients (circular
symmetry between real and imaginary parts, and GG marginals), and allows us
to calculate an accurate distribution for their magnitudes, that we present now.

Firstly, we calculate the distribution of the multiplicative factor 5;, that is
determined by the Gaussian transform [29] of a Generalized Gaussian variable

(GTGG):
- S () .

where F~! represents the inverse Fourier Transform.

Then, the modulus of GG; will be given by

|G| =/C? + D? -5,

being R; = y/C? + D? Rayleigh distributed. Finally, the density of the magnitude
of a Gabor coefficient represented as the product of a Rayleigh and an independent
GTGG variable can be calculated as:
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Reversing the order of the integrals and after some algebra, we get
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This integral, can be numerically evaluated for a given pair (¢;, 3;), obtaining
the results exemplified in Figure for a few shape factors. The resulting pdf is
more peaky and heavy-tailed than the Rayleigh, that is also shown in Figure
for comparison.

6.3.1. Parameter Estimation and Goodness of Fit

In order to test the validity of the model and the degree of representativeness
of the actual data distribution, we calculated the parameters of our model for
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Figure 6.1: Pdfs for the presented model with varying shape factor ¢ compared
to a Rayleigh distribution

the magnitude of Gabor coefficients (extracted as stated in [I14]) on two known
biometric databases: XM2VTS [160] and LEW [125]. For this task, we employed
ML estimation, using the numerical calculation of the pdf (G.Il). Figure
shows the calculated parameters for each coefficient, that are in perfect agreement
with the results obtained for the GG marginals of the real and imaginary part
in [IT4]. This fact validates the hypothesized dependence between both real and
imaginary part, and corroborates that our model perfectly agrees with the widely
adopted assumption of Generalized Gaussian real and imaginary parts for Gabor
coefficients.

T T T T T T
Magnitude-estimated Magnitude-estimated
1.5 —— Component-estimated —<— Component-estimated

. . . . . . . . . . . . . .
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Figure 6.2: ML estimated shape factor ¢ @ and deviation o @ for the proposed
magnitude model and for the GG real and imaginary components in the XM2V'TS
database.
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For evaluating the goodness of fit, we use the Kullback-Leibler divergence [67].
This figure provides a measure of the statistical distance between two discrete
distributions with probability functions P and @), and is given by

K-1

KLD(P.Q) = 3 P(i)log (gg;)

where K stands for the number of possible values of the discrete distribution. In
order to apply the KLD to our case, in which we have a continuous variable but
a finite sample, we discretize the theoretical pdf in K equally spaced intervals
and compare it to the empirical discrete pdf given by the histogram of the actual
data.

Figure[6.3]shows the KLD calculated for the XM2VTS and the LFW databases
for our model compared to two distributions: Rayleigh, equivalent to considering
Gaussian i.i.d. real and imaginary part of the Gabor coefficients, and S-Rayleigh,
introduced in [I15] as a closed-form generalization of the Rayleigh. For both
databases, our model gives a much better fit than the Rayleigh, especially for the
high frequency coefficients, which present a lower shape factor, and thus, cannot
be modeled as Gaussian. It is also present in Figure the pseudoperiodic
effect of the shape factor when varying the orientation, that was pointed out
in [IT4]. This effect produces the ripple in the calculated KLD with respect to
the Rayleigh function, with minima in the coefficients which have shape factors
closest to ¢ = 2. Nevertheless, as shape factors are always in the range (0.5, 1.5),
the proposed model will always yield a better fit than the Rayleigh model.

On the other hand, while for the XM2VTS database our model slightly im-
proves on the fit given by the S-Rayleigh, the improvement is much noticeable
for the LFW database. These results stem from the fact that XM2VTS’s samples
are taken within controlled conditions, and thus present limited variation of pose
and illumination, while LFW yields a richer variety of poses and illumination,
producing a heavier-tailed distribution for the magnitude of the coefficients that
is harder to approximate with a S-Rayleigh, but that our model fits well because
the original assumptions on which our model is grounded are fulfilled by both
databases. In fact, the main difference between the magnitude distribution that
originates from our model and the g-Rayleigh is found in the tails: our model
results in heavier tails for an equivalent shape factor.

6.3.2. Optimal Quantization of Biometric Data

The presented model has interest by itself, and there are many applications
that can benefit from its use. In this chapter, the target of the model is the
minimization of the plaintext cardinality of the involved magnitudes so the en-
crypted private system can effectively handle their processing without the need
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Figure 6.3: KLD results for each of the forty Gabor coefficients magnitudes mod-
eled as Eq. (61]), Rayleigh and g-Rayleigh [115] for the XM2VTS and the
LFW @ databases.

of interaction. Hence, we reduce storage and plaintext cardinality via optimal
coefficient quantization using a Lloyd-Max quantizer [I50, 154], that achieves
minimum mean squared error (MSE) for a given number N of representative
levels, given an accurate distribution of the to-be-quantized variables.

A Lloyd-Max strategy was also used in [I14] for quantizing independently the
real and imaginary parts of Gabor coefficients. However, since most Gabor-based
face recognition systems discard phase information for matching, it is more ap-
propriate to quantize the magnitudes instead of the original complex coefficients;
another desired effect stemming from this choice is that it gets a more significant
storage reduction. Consequently, we expect to achieve similar performance with
less representative levels.

Additionally, the quantization in [I14] and [215] uses a number N, of centroids
for each coefficient, and preserves the real values of the corresponding levels as
the output quantizations. This strategy allows for a storage reduction in a clear-
text system, as only the (integer) indices of the corresponding quantization levels
are stored, together with a mapping from the indices to the real levels; however,
this mapping has to be applied to recover the corresponding quantizations before
operating on them. Hence, an encrypted system that has to work with integer-
valued numbers cannot translate this quantization into an actual reduction in
plaintext size.

Instead, we propose the use of integer quantization indices, as a more suitable
strategy for the encrypted system: i.e., all the involved variables are mapped to
integer numbers with a very low cardinality (the number of quantization levels);
additionally, the use of indices involves a nonlinear scaling of all the coefficients in
such a way that, after scaling, the resulting centroids are arranged in equidistant
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Figure 6.4: Qualitative diagram showing the inherent nonlinear scaling produced
by the use of integer quantization indices (lower graph) instead of the actual real
values of the quantization centroids for Lloyd-Max quantization (upper graph).

bins, as shown in Figure [6.4l This also produces an inherent normalization,
reducing coefficients with high variance and amplifying those with low variance,
and fixing the range for all the coefficient indices.

Section shows experimental results on both XM2VTS [160] and
LFW [125] databases that demonstrate that our strategy provides great stor-
age reduction without degrading system performance, what makes such strategy
an optimum choice for reducing the plaintext size in an encrypted implementa-
tion of the recognition system. Also, the nonlinear scaling will positively affect
the performance of the system in some of the studied cases.

Now that we have presented our coefficient model and the optimal quantiza-
tion strategy that allows for a great plaintext cardinality reduction, we introduce
in the next section our extension to the homomorphic cryptosystem that, when
combined with the described quantization strategy, yields the fully noninteractive
face verification system presented in Section [6.5l

6.4. Extending Gentry’s Fully Homomorphic
Cryptosystem

We take one of the latest versions of Gentry’s bootstrappable fully homomor-
phic cryptosystem, presented in [105]. The cryptosystem is GGH-type based on
ideal lattices. Given a given lattice L with shortest nonzero vector length A, (L),
the rationale behind GGH cryptosystems lies in choosing two bases with different
correction radii':

!The correction radius is a property of a lattice basis; it can be defined as the norm of the
shortest error vector that, added to a lattice point, cannot be corrected using that basis (as
it falls outside the parallelepiped—Voronoi region—defined by the reduction modulo the basis).
The correction radius of a basis is upper bounded by the inner radius of the lattice, defined
as half the norm of the shortest non-zero vector of the lattice (shortest distance between two
lattice points, \1). Good bases yield almost spherical Voronoi regions, with a correction radius
approaching the inner radius of the lattice.
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= B, constitutes the secret key; it is a good basis, in the sense that it allows
to efficiently solve certain instances of the closest vector problem in the
lattice, and it has a large enough correction radius; this basis contains
short almost-orthogonal vectors.

» B, (B from now on) constitutes the public key; it is a bad basis, in the sense
that solving the closest vector problem in L using B is algorithmically hard.
B is usually chosen as the Hermite Normal Form (HNF) of the lattice, as it
can be efficiently computed from any other basis, it has a very small correc-
tion radius (asymptotically zero as the dimension increases), and the LLL
algorithm (the most widely known lattice reduction algorithm, by Lenstra,
Lenstra and Lovasz [143]) run on the HNF is particularly slow [161].

The encryption ¢ of a message m consists on the addition of an error vector e
such that ||e|]s < A\1(L), that encodes m, to a point in the lattice. For decrypting,
the error vector e is recovered using the basis B, as € = ¢ mod Bgy.

The somewhat homomorphic scheme presented by Gentry in [105], following
the same approach as Smart and Vercauteren [208], uses a principal-ideal lattice
J, generated by a chosen polynomial v(x) with ¢-bit signed random integer coeffi-
cients (v in its vector notation), in the ring of polynomials modulo f,(z) = 2" +1;
unlike in [208], where J = (v) is required to have prime determinant, [105] just
requires a specific structure for the HNF":

d 00 0
—r 10 0

BT =HNF(J)=| —[*la 01 0],
—[Tn_l]d 00 1

where d can be defined as d = det(J) or, equivalently, as the resultant of the
polynomials v(z) and f,(z), and r is a root of f,(x) mod d, that forms the
vector 7 = [—r, —[r?4, ..., —[r""a|T. B is the public-key encryption matrix,
completely determined by the pair of integers (d,r), while the private key is
given by v(x) and its scaled (modulo f,(x))-inverse w(z) (i.e., v(z) X w(z) = d
mod f,(z)), of which only one of the coefficients of w, denoted wj, is required for
the decryption procedure.

As defined, this cryptosystem is quasi-homomorphic under addition and multi-
plication, that are directly mapped from the crypto-text ring (errors w.r.t. lattice
points) to the clear-text ring. There is, however, a restriction to this homomor-
phism, as both operations are only correctly mapped when the error lies within
the same Voronoi region of the lattice L after applying the operation.

For reaching a full homomorphism, Gentry proposes to squash the decryption
circuit so that it can be executed also homomorphically; this squashing consists
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in adding to the public key a big set of random elements for which a sparse subset
sums up to w; mod d, and reducing the secret key to the (sparse) characteristic
vector of this subset. This produces also an effective reduction in the degree of
the decryption polynomial (as a function of the secret key bits), at the cost of
supporting the security of the cryptosystem on the additional assumption that
it is hard to determine which is the sparse subset. Therefore, the cryptosystem
becomes bootstrappable, in the sense that it is able to homomorphically execute the
decryption circuit under encryption, providing a fresh encryption from a degraded
one, and this is crucial for achieving a full homomorphism. We propose to trade
this full homomorphic capacity for the ability to execute polynomials of the same
order as the squashed decryption circuit before the cipher gets corrupted enough
to lose data, using the cryptosystem as a quasi-fully homomorphic scheme, and
incrementing the allowed cardinality of the plaintext as shown in the next section.

6.4.1. Proposed Extension to Gentry’s Cryptosystem

One of the limitations of Gentry’s cryptosystem is that it can only deal with
binary numbers in (Zs,+,-), being the homomorphic ring operations and and
xor gates; this means that a simple arithmetic circuit with b-bit numbers needs
a high amount of binary homomorphic operations that increase the noise within
the Voronoi region of the lattice, whose volume determines the maximum number
of operations that do not lead to a decoding error. The maximum depth of an ex-
ecutable polynomial has been calculated empirically by Gentry and Halevi [105],
and used for bootstrapping the decryption circuit and achieving a full homomor-
phism.

In this section we extend the plaintext-size, allowing for homomorphic addi-
tions and multiplications in (Zyx, +, -) (powers of two are chosen for convenience);
we also give a theoretical lower bound on the maximum number of executable
multiplications, that also supports Gentry’s empirical study for Z,. The exten-
sion seeks to enhance the efficiency of arithmetic non-interactive operations and
decrease the cipher expansion rate and to trade the full homomorphic property by
the possibility of dealing with a limited but high number of sequential arithmetic
processing without interaction. Furthermore, the key-generation process does not
need to be changed, so the same keys can be used for the binary cryptosystem
and for the proposed extension.

6.4.1.1. Encryption

In Gentry’s original cryptosystem, the encryption operation of a bit b € Z,
uses a random noise vector u € {0,%1}", with each entry chosen as 0 with
probability ¢ and +1 with probability (1 — ¢)/2 each; we extend the encryption
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for coping with m € Zox
a=2u+m-e; c=a mod B =la(r)s- e,

where e; is the first vector of the canonical basis. The vector ¢, as in the original
construction, has only one non-zero component, representative of the encryption:

c=[a(r)]qs = [m + 2 i u;r'] 4.

The complexity of encrypting a k-bit number is the same as for encrypting a
bit in the original system. Furthermore, the security in terms of Birthday-type
attacks is not altered either, as the noise vector has the same bits of entropy;
hence, given a security level A\, ¢ may still be chosen such that

2(1—q)n . n > 22)\
qn ‘

A discussion about the security of the extended cryptosystem can be found
in Section [G.6L

6.4.1.2. Decryption

For the decryption, the original scheme uses an optimized procedure that only
needs one of the odd coefficients of w mod d, denoted w;. Hence, the decryption
for a k-bit message m becomes

m = [c-wqw;! mod 2*.

The only difference w.r.t. the original decryption is the product by w;*
mod 2¥; being w; odd, it always exists: the choice of powers of two for the
extended plaintext allows for keeping the same key generation process, while the
added decryption complexity is negligible compared to modulo d operations.

6.4.2. Homomorphically Achievable Polynomial Degree

Incorrect decryption may only happen when the error vector added to a lattice
point lies outside the Voronoi region of the used lattice. This condition boils down
to

la"W || < d/2, (6.2)
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where W is the rotation basis that generates (w(x)), having in each row the
coefficients of w(z) - ' mod f,(x). Due to the structure of W (a circulant
matrix with negated lower triangular part), we can bound

n—1 n—1 n—1
1" Wllso < [laflo||W || = max(la,]) D lwil < il > Jail,
=0 =0 =0

n—1 n—1
S lwd 3l < d/2 = [la" W]l < d/2.
=0 i=0

The number of non-zero elements (Nz;) of a chosen w; follows a Binomial
distribution Nz; ~ Bi(n,1 — ¢g). In a fresh encryption, each of these elements
has modulus 2, while the message has a modulus |m| < 2¥. Hence, 37 (|a,|) <
2F(1+ Nzj).

On the other hand, after a multiplication between two ciphertexts ¢; and ¢
(in the polynomial quotient ring Zg[x]/(fn(x))), the resulting point must also
be within the Voronoi region. The product of two polynomials modulo f,(z) is
equivalent to a cyclic convolution of their coefficient vectors (with a sign change
for the overlapped subvector). Furthermore, as fresh encryptions have the same
absolute value (2%) for all the non-zero coefficients of w, the L'-norm of the
resulting coefficient vector of the product of a given ciphertext ¢; and a fresh
encyrption ¢, is upper-bounded by ||e;|]; - 2%(1 + Nzs). In general, we have that,
after n,, successive products of a cipher by fresh encryptions,

n—1 Nm
laz, Wl < (Z Iwz|> [12°+ Nz).
=0 =0

Hence, we can bound the probability of decryption error

Pl[dec error] = P[|la”W||s > d/2] <

Nm d
P Zlog(l + Nz;) > log (2k<nm+1)+1 Z?:_ol |wl|> 7

=0
N J/

'

Nn

m

where N, is a random variable with bounded support (N,,,, € [0, (n,+1) log(n+
1)]); thus, it may happen that for a low number of dimensions and few multipli-
cations the probability of decryption error be zero. Nevertheless, due to g being
chosen such that (1 — ¢) << 1, for high enough n (like the commonly used n
even for short-term security) the error probability will not get to be identically
zero in any case, and the pdf of N, will present a narrower bell as n or n,, in-
crease, so by virtue of the Central Limit Theorem (CLT), N, can be accurately
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approximated by a Gaussian variable with parameters
. - NN i n—i
o =l 4 1) = (1) 3oy (14) () (=)
i=0

02 =l 4 1) = (1) Dot 0) = 2 () (1= '

=0

that will provide a very accurate approximation near the bell and an overestima-
tion of the decoding error probability in the tails, due to the bounded support of
Nnrn N

We may bound the maximum number of bits to which we can extend the
ciphertext for allowing a given number n,, of successive multiplications with a
given probability of error p, using the @ function?:

p | loge(d/llwlh) =1 QM (pe)o
mae Ny, + 1 N + 1|

(6.3)

As expected, the maximum number of bits decreases with increasing n,,, and
it is heavily influenced by the quotient d/||wl]|;, that intuitively indicates the
effective radius of the Voronoi region, supporting noise addition. On the other
hand, the choice of ¢ (bit-size of the coefficients of the generating polynomial
for the ideal lattice J) determines the maximum value of this quotient: as the
polynomial product of v(z) X w(x) =d mod f,(z), in vector notation this means
that, using the Holder inequality:

d
d=v"[wo, —w,_1,...,—wi]" <||v]|e]|wl||i < 2wl = —F < 2.

[lwlh

Hence, for a good lattice, the maximum correctable noise norm (decryption
radius) will be close to ¢ bits (cf. Figure[6.5h), and we can provide an estimation
of the maximum plaintext bit-size for correct decryption after a given number of
multiplications for a generic good lattice, just substituting log,(d/||wl|1) by t in
Eq. (63]). Reciprocally, the inverse of this expression yields the maximum number
of affordable multiplications with a bounded decryption error. It must be noted
that ns consecutive homomorphic additions can increase at most in log,(ns) bits
the size of the co-norm of the noise vector (Eq. (6.3]) can take this into account by
subtracting log,(ns) from ¢). Hence, when determining the maximum degree of a
polynomial run on fresh ciphered variables, the maximum number of multiplica-
tions is the determining factor. Gentry and Halevi provide an approximation of

2The @ function can be defined as

Q(z) = \/%/ e—uz/Zdu
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Table 6.1: Lower bound on the maximum number of products and Gentry’s
empirically obtained maximum degree polynomial as a function of ¢, with n = 128

| t ] 64]128] 256 | 384 |
Lower bound || 10 | 22 | 46 | 69
Empirical [105] || 13 | 33 | 76 | 128

the maximum degree deg of an elementary symmetric polynomial evaluated on
m encrypted binary variables, bounding the decryption radius by the approxi-

mated Euclidean norm of the polynomial output: 2t > cde9 < dng); the results

deviate from this expression for large m due to the overestimation of the effect of
additions, as the combinatorial number of summed monomials grows above the
dimensionality of the lattice, and they cannot be considered independent any-
more. Table shows the validity of our bound compared to the experimental
results obtained by Gentry.

Fig. represents the number of sequentially performed products with new
fresh ciphers before a decryption error occurs (for n = 512, ¢ = 380 and ¢ =
1 — 20/512, picking the minimum of 1000 trials), compared to the given lower
bound for p, = 107, The bound is fairly conservative for small plaintexts that
allow for a high amount of products, as it is a worst-case bound, but it becomes
tight for medium-to-high %k, even when the Gaussian approximation in those
cases provides an overestimation of the decryption error. We have also obtained
very similar results with bigger lattices (as Gentry and Halevi did for the binary
case), due to the quotient log,(d/||w||;) being virtually constant for all the found
lattices (Figure [6.5D] shows this quotient for different random lattices of several
dimensions with fixed ¢ = 380), and the binomial distribution barely changing
with high n when fixing the rate (1 — q) - n.

6.5. Fully Private NonInteractive Face Verifica-
tion

The combination of the model of Section for optimal quantization of Gabor
coefficients magnitude together with the extension of Gentry’s cryptosystem pre-
sented in Section provides an efficient and accurate solution to the problem of
fully private face verification, adjusting and limiting the cardinality of the plain-
text through efficient coefficient quantization with little impact on recognition
performance (cf. Section [6.5.1]) and hence making possible the use of the ho-
momorphic cryptosystem for the recognition operation without any intermediate
decryption, i.e., in a fully noninteractive way.



Chapter 6. Fully Private Noninteractive Biometric Authentication 189

e -

Allowed multiplications

4096 8192

L L L L L L L L L 1024 2048
0 20 40 60 80 100 120 140 160 180 200 Lattice dimension
bit-size of the plaintext

(a) (b)

Figure 6.5: [(a)] Minimum number of multiplications (Eq. (6.3)) without decoding
error after 1000 trials as a function of k and [(b)] quotient log,(d/||w]|;) for random
lattices of several dimensions

This application also showcases the benefits and versatility of the extended
cryptosystem in a typical scenario of outsourced face verification with privacy
constraints. In this scenario, a query user presents his face features and a tenta-
tive ID against a database; the system must determine if those features actually
correspond to the previously enrolled ID. The target of the outsourced privacy-
preserving system is to conceal both the presented face features and the database
templates to the party that runs the verification process, while the database
templates are also not disclosed to the query user.

Other privacy-preserving systems presented in the literature, like [89] or [196],
are based on Eigenfaces [231]. In the clear, Gabor filters provide a slightly more
complex solution with a better performance (about 8% increase, cf. Section [6.5.1))
in known databases like LEW [125], thanks to the biological models that support
the use of Gabor filters. Unlike previous works [215], for the private system
we work with the integer indices of quantized coefficients instead of the actual
quantized values; this allows for a hugely reduced plaintext size without much
degradation in system performance (cf. Section [E5.0]), and benefits from an
inherent normalization of the Jets, as the Lloyd-Max quantization already per-
forms a nonlinear normalization (cf. Section [£3.2)). The verification algorithm
is based on either average correlation (cosine distance) or average Euclidean dis-
tance; both can be efficiently calculated in the encrypted domain, and there are
no statistically significant differences in recognition performance between both
distances.

In the enrollment phase, the presented feature vectors are encrypted and
stored in a central database for later use as templates. The verification threshold
n is a system parameter also kept encrypted. We employ a linear-kernel SVM [73],
previously trained on local distances, that produces a weight vector a, resulting
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from the linear combination of the support vectors {s; j]\ifl
M-1 M-1
scoregy p(x) = Z Bisl @ —n=a" Z Bi8; —n; (6.4)
=0 =0
————

(07

the score is classified as true if it is non-negative, and as false otherwise. For
each pair of compared feature vectors a and b, if the input to the SVM is chosen
as r; = (a; — b;)?, the effect of the weight vector « is to produce a weighted
Euclidean distance dist(a, b) = 2?:01 a; - (a; — b;)? as the recognition metric. In
the verification phase, a user presents an ID to be matched together with the
encrypted quantization indices g of the Gabor coefficient vector from his face.
The database holder homomorphically calculates the encryption of the soft score

Ntemplatesfl
soft_score(g, id;) = Z dist(template;, @) — Niempiatesns
=0
that is provided as the output of the verification process. Using the linear SVM
in this way adds little computation complexity to the non-weighted original ap-
proach (the number of performed products is doubled), while producing a con-
siderable enhancement of the recognition accuracy (cf. Section [G.5.1]).

As a last remark, a hard score may be required for some applications. We
will not consider that case explicitly in this chapter, as we aim at testing the raw
performance of the extended cryptosystem in the envisioned biometric scenario
in a fully noninteractive system. Nevertheless, the private implementation of the
last comparison step needed for providing a hard score ([soft_score(g,id;) > 0])
could be easily produced with one of the many interactive comparison protocols
available for an additive homomorphic cryptosystem, like the one used in [89,
Section 5|; the realization of this protocols starting from the extended-Gentry
encryption of the soft scores must take into account that for performing a statis-
tically blinding decryption, necessary for the intermediate steps of the protocol,
the cipher must support the encryption of numbers with a length s bits higher
than the normal coefficients and results; this means that for normal values of the
security parameter k (k ~ 70 bits) and normal working magnitudes (around 20
bits for this application and thanks to the used efficient quantization), the ex-
tended cryptosystem will need to cope with ~ 90 bits clear-text sizes, and hence,
it will be able to support at least two correct consecutive homomorphic products
(Eq. (63)), being this enough for calculating the needed weighted Euclidean
distance.

6.5.1. Recognition Performance Results

In order to evaluate the impact of data quantization on system performance,
we conducted experiments on the XM2VTS [160], and the LEW databases [125],
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whose results are shown in the following subsections. Taking into account that
this chapter seeks the secure evaluation of the scores in a privacy-preserving
encrypted system, we have used a baseline recognition method (similar to the ones
in [114],215], that employ a simple fusion of linear classifiers); we are not aiming at
improving the recognition rate of state-of-the-art classifiers, but showing instead
that the presented accurate feature model combined with optimal quantization
does not hinder the recognition performance of the system. Thus we choose
a baseline system to better show the actual effects of quantization. For that
purpose, we firstly use just the Euclidean distance between the pre-normalized
magnitudes of the jets of compared faces, without any additional weighting on the
quantized coefficients; we also provide the results of using a simple but effective
linear SVM trained on the evaluation sets, that effectively provides a weight vector
a for calculating a weighted Euclidean distance (Eq. (6.4])) and obtain improved
results with a very little complexity overhead, also in a suitable configuration for
the privacy-preserving implementation shown afterwards.

6.5.1.1. XM2VTS database

Experiments were performed on XM2VTS following configuration I of the
Lausanne protocol. The XM2VTS is divided into three sets: training, evalu-
ation, and test. The training set was used to build client templates, estimate
model parameters (¢ and o), and calculate the representative values (centroids)
for the following set of quantization levels N, = {2,4,8}. The evaluation set
was used to estimate thresholds that discriminate between client and impostor
attempts, and train the linear SVM classifier for providing the appropriate weight
vector. These thresholds are chosen so that the False Acceptance Rate (FAR)
equals the False Rejection Rate (FRR) on the evaluation set. Finally, using the
obtained thresholds, FAR and FRR are measured on the separate test set. Ta-
ble [6.2 presents, for the set of quantization levels Ny = {2, 4,8}, the comparison
between a) Quantizing the complex coefficients (real and imaginary parts sep-
arately), as proposed in [114], b) Quantizing the magnitudes of coefficients, as
proposed in [215], and ¢) the usage of integer quantization indices instead of ac-
tual quantized values for our model (for [114], only quantized values are used);
the three approaches are compared with and without the use of the linear SVM;
when using quantization levels, as well as for the original unquantized system, a
prenormalization is undertaken so that each 40-coefficient jet for each localization

has unit norm?.

Table [6.2] shows the Total Error Rates (TER=FAR+FRR) on the test set for
the compared approaches, as well as for the unquantized system. We can draw
the following conclusions:

31t should be noted that, for fair comparison, the same feature extraction parameters of [114]
were used here.
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Table 6.2: TER (%) on the test set of the XM2VTS for quantized data.

Ny, 2 4 8 Unquant.
4] 98.8 | 27.54 | 26.65

No SVM [215] (levels) 16.37 | 12.13 | 12.21 12.33
Proposed (indices) | 27.04 | 21.92 | 20.52
[14] 15.11 | 11.22 | 10.53

SVM 215 (levels) | 7.41 | 6.07 | 7.50 | 7.68
Proposed (indices) | 6.73 | 7.62 | 7.62

1. Our model significantly outperforms [114] for N, = {2, 4, 8} in all the config-
urations; [I14] models and quantizes independently the real and imaginary
parts of the Gabor coefficients, resulting in not so accurate results. Our
model correctly captures the dependency between marginals and produces
a much better fit, preserving much more useful information for recognition
in less bits.

2. Using quantization levels and without the help of SVM classifiers (as in
[215]), the system achieves original performance with only Nj, = 4 levels, i.e.
only 2 bits are needed per coefficient, partly thanks to the prenormalization
of the Gabor jets.

3. Using the proposed system with quantization indices, the performance with
no weighting is decreased with respect to the original system, but it is far
better than using pre-normalized quantization levels as done in [I14], with
a largely reduced storage.

4. With the linear SVM, the prenormalization has no effect, but all the results
are greatly improved. The use of either levels [215] or quantization indices
does not significantly affect the performance, achieving a very good accuracy
with indices and just 2 quantization bins (one bit per coefficient), even
better than the unquantized system, due to the elimination of some non-
informative noise during the quantization process, and benefiting from the
non-linear scaling.

Therefore, we can conclude that even N; = 2 indices per coefficient are
enough for achieving the original performance with a linear-kernel SVM. Com-
pared to [I14], where more than N, = 8 levels are needed (and two quantizations—

real and imaginary parts—must be performed per coefficient), we obtain a storage
log, (2)

reduction of log,(8)+log, (8)

é, for an even better performance level.

Additionally, a simple linear-kernel SVM lets us obtain a considerable per-
formance boost with only linear operations that, as we show in the following
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sections, can also be executed noninteractively in the presented encrypted sys-
tem. Furthermore, quantization allows for an unaltered recognition performance
just using two indices. This means that a Lloyd-Max binary quantization of the
coefficients does not hinder the recognition ability and preserves the identification
information present in those coefficients.

Finally, it is worth noting that the weighting coefficients must also be quan-
tized so that they can be used in the encrypted private system. We have checked
that these coefficients {;};' obtained from the training phase of the SVM
approximately follow a Gaussian distribution with zero mean (these coefficients
come from the sum of the signed—almost independent—coefficients of the support
vectors, hence converging to a Gaussian due to the CLT); applying a Lloyd-Max
quantizer based on this Gaussian, we found that using two levels (i.e., preserving
just the sign of each «;) has a negligible impact on the recognition performance.

6.5.1.2. Labeled Faces in the Wild (LFW) database

In order to show that the proposed quantization scheme works also with more
challenging imagery, we conducted experiments on the LFW database [125]. This
recently collected dataset contains 13,233 face images which have several com-
pound problems (imperfect localizations, in-plane rotations, non-frontal poses,
low resolution, non-frontal illumination, varying expressions...). The images were
obtained by running an automatic face detector on images collected from the
Internet, followed by face centering, scaling and cropping. In our experiments we
extracted closely cropped faces using a fixed bounding box placed in the same
location for each LFW image, resulting in faces of 120 x 100 pixels, from where
Gabor features were extracted.

Images from wview 1 of the LFW database were used to estimate model param-
eters and the representative values (centroids) for the same set of quantization
levels N, = {2,4,8} as in the previous subsection. The experiments on this
dataset were carried out following the image restricted paradigm, and perfor-
mance was reported on view 2 using the 10 fold, leave-one-out cross-validation
scheme described in [125]. Figure presents the ROC curves for the set of
quantization levels N, = {2,4,8} and quantization indices for those levels, along
with performance using non-quantized coefficients. The classification accuracy pu
averaged over the 10 folds (%) is presented in Table The recognition accu-
racy is not reduced in a great amount when quantizing to levels and applying the
prenormalization (cf. Section[6.5.1.1]); furthermore, original performance is recov-
ered for N;, = 4 without SVMs and with N; = 8 with SVMs. For this database,
the use of quantization indices instead of levels has an impact on performance,
and unquantized accuracy is not totally recovered; this can point to the fact that
the non-linear normalization inherently performed when extracting the quantiza-
tion indices produces a loss of information, leaving all the consecutive quantized
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Table 6.3: Average classification accuracy p (%) on view 2 of the LFW database
using both original and compressed data. Eigenfaces is shown for comparison.

Ny, 2 4 8 Unquant. | Eigenfaces

Lovels | 61.93 | 65.93 | 66.00
No SVM 1 qices T60.67 [62.60 [ 62.87 0297

Levels | 65.9 | 70.67 | 71.90
SVM Indices | 67.5 | 68.73 | 68.23 72.63

60.02

values equidistant, and affecting the calculation of the actual distance between
two feature vectors. Nevertheless, the performance of the system without SVMs
can be assimilated to baseline V1-like models [184], while for the system with
SVM weighting, the results are at the level of other Gabor-based schemes (~68%
for V1-like+ models). As shown in Figure for comparison, the performance
for Eigenfaces [231] drops down to 60% accuracy.

As happens with the XM2VTS, the weighting coefficients that the SVM pro-
duces after training are approximately Gaussian, and quantizing them to two or
four levels produces a negligible impact on recognition accuracy. This system, in
which all the involved values are integers with a very low cardinality is the one
that we use in this chapter as the basis for our non-interactive privacy-preserving
face recognition protocol.

(a) (b)

Figure 6.6: ROC curves averaged over 10 folds of LEFW’s view 2 without SVMs
@ and with a linear-kernel SVMs @
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6.5.2. Complexity Analysis

In order to test the efficiency of the system in a real scenario, we have imple-
mented the extended encryption and applied it as the basis for privately executing
the weighted Euclidean distance between quantized Gabor jets, in the LE'W pair-
matching setting.

We take the 8-indices quantization for its good compromise between clear-
text cardinality and recognition performance for both XM2VTS and LFW. We
have fixed the size of the used lattice to n = 512 dimensions, with ¢ = 380 and
q = 1—20/n, for a security parameter of A & 70. We work with 5200-dimensional
Gabor vectors for each face (13 x 10 localizations, 8 orientations and 5 scales)
with 3-bit coefficients, so calculating the weighted Euclidean distance between
two vectors needs two multiplications per pair of values, 5199 additions and one
subtraction. Hence, starting from 8-level coefficients and 4 level weights, the
resulting score is correctly represented using [log,(5200-2-8%.4)| = 22 bits (20 bits
without weights), so we use k = 22 bits for the extended cryptosystem. Taking
into account the log,(5200) = 12.3 bits of decrease for the effective decryption
radius, Eq (6.3) yields 13 supported consecutive multiplications, so the extended
cryptosystem can perfectly cope with the whole distance calculations, without
incurring in decryption errors (but with negligible probability).

For implementation we have used the GMP [3] and NTL [6] libraries in C++,
and tested the time efficiency without any kind of parallelization in one core
of an Intel i5 at 3.30GHz with 8GB of RAM. Tables and show the
efficiency figures for the proposed algorithm compared to the expected run-
ning times of a traditional implementation based on an additive homomorphism
(Paillier-based [177], using a 2048-bit modulus), with either clear-text templates
and weights (PaillierCT, partial privacy) and with encrypted templates and
weights (PaillierE, total privacy using interactive multiplication protocols); in
both Paillier-based systems the client provides the encryptions of both his/her
face coefficients and their squared value, in the most favorable case for Paillier’s
homomorphism; we have also included, for reference, the estimated execution
time of Gentry’s original binary cryptosystem using binary circuits for addition
and multiplication; this system cannot provide valid outputs without using ho-
momorphic deciphering circuits, as the degree of the distance circuit exceeds the
noise capacity of the used lattice; each of these circuits (for bootstrapping the ci-
pher of a bit), that needs to be applied after each binary multiplication gate, runs
in about 8 seconds in our test machine; this would highly increase the server’s
computational load in the binary version of Gentry, rendering it completely im-
practical (the whole circuit involves around 3.2 - 10° products); hence, we do not
include them in the time evaluation, but they are an inherent limitation of the
original binary cryptosystem that one must be aware of.

Thanks to our extension, the system becomes feasible both in terms of band-
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Table 6.4: Efficiency figures for the privacy-preserving face-verification algorithm
with no weighting: client times, server homomorphic processing (HP) time and
needed communication

Execution times Client Server || Communication
Cipher \ Decrypt | (HP)
Proposed 0.4s 0.0026s | 12.3s 127MB
Gentry (binary) 1.3s 0.052s | 968.1s 380MB
PaillierCT || 15.4s | 0.0043s | 57.99s 5.3MB
PaillierEl 22s 43.2s 479.0s 13.3MB

Table 6.5: Efficiency figures for the privacy-preserving face-verification algorithm
with weighting: client times, server homomorphic processing (HP) time and
needed communication

Execution times Client Server || Communication
Cipher \ Decrypt | (HP)
Proposed 0.4s 0.0026s | 25.7s 127TMB
Gentry (binary) 1.3s 0.052s | 1053s 380MB
PaillierCT || 15.4s | 0.0043s | 87.01s 5.3MB
PaillierE || 29.5s 86.58 907.23s 21.3MB

width and server processing time overcoming the pointed out limitation; the use
of homomorphic operations in Zq. instead of Zs reduces the server computation
time in almost two orders of magnitude (furthermore, as noticed, binary encryp-
tions do not provide a correct output without the needed deciphering circuits),
while the bandwidth is divided by a factor of three.

In terms of computational efficiency, the extended cryptosystem yields a clear
advantage w.r.t. any of the others, even for Paillier with clear-text templates.
The load for the client is decreased in two orders of magnitude w.r.t. Paillier,
while the server’s load decreases in a factor of almost 50. This is due to the lighter
homomorphic operations compared to Gentry’s, even when working with larger
ciphertexts. Conversely, the transferred encryptions for the proposed system are
less than one order of magnitude higher than for encrypted Paillier templates, due
to the larger expansion factor that lattice cryptosystems like Gentry’s present;
this is the main fact that holds back the performance of the homomorphism;
the presented extension advances in this path, reducing the expansion factor and
greatly increasing the efficiency of the operations performed noninteractively at
the server. Furthermore, when the scenario of interest is an outsourced system
that processes private data, the initial bandwidth is not critical: the more opera-
tions can be performed unattendedly, the more versatile and powerful the system
becomes.
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6.6. Security Considerations

In this section we briefly discuss some security considerations about the pro-
posed extension to Gentry’s cryptosystem and the privacy-preserving face recog-
nition system.

On the one hand, the extended cryptosystem has the same Birthday attack
security as the original one, as the random vectors w used for encryption are
chosen with the same security criterion (sparse vectors with a sufficiently small
q), and they can be guessed at random with a low probability given by the security

parameter \ such that 20-97 . (q?’z) > 222,

Regarding the dimensionality n of the lattice L and the hardness of finding the
closest lattice vector without a good basis, it directly involves the v~-BDDP [101]
(Bounded Distance Decoding Problem), in which given a vector e, a lattice point
must be found, knowing that there is at least one lattice point p € L at a dis-
tance dist(p,c) < det(L)"/"/v, with v > 1. The best known algorithms for
solving the v~-BDDP have exponential time-complexity in n/log~y.% As our ex-
tension increases the radius of the noise in fresh encryptions with respect to the
original scheme by Gentry [I05] (this radius is approximately 2¥,/(1 — ¢) - n for
our extension, against 24/(1 — ¢) - n for the encryptions in [105]), this means that
for the same lattice dimension, breaking our extended cryptosystem would imply
solving the /(2*~1)-BDDP, instead of the v-BDDP for the original cryptosystem.
Hence, the complexity of the cryptanalysis algorithms based on BDDP needed for
breaking an extended encryption would be on the order of 2(k=1)"/1g7 " and our
extended cryptosystem can achieve a reasonable security level with much smaller
dimension than the original one: with n = 512 and k£ = 33, the BDDP security
is equivalent to the original system working with a 16384-dimensional lattice, at
the expense of a lower degree homomorphically computable polynomial.

Additionally, the performance of the presented system is really promising,
and even with a bigger lattice (n = 2048), execution times are comparable to
those obtained with a Paillier-based system. The main drawback for even higher-
dimension lattices is the increase in the size of the keys, that imposes a very high
bandwidth for transferring the encryptions. In this sense, there are two research
directions targeted at alleviating this problem, and they are related to reducing
either the size of the keys [60], or the cipher expansion; the present work falls
under the second category.

Finally, regarding the security of the private face recognition protocol, as
the underlying cryptosystem is semantically secure, the whole protocol can be
proven secure for semi-honest adversaries in the random oracle model. The only

4We refer the interested reader to the discussion in [I01] by Gama and Nguyen, about the
feasibility of the v-BDDP in n dimensional lattices with n € [100,400].
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thing that a semi-honest attacker may learn from the execution of the protocol
is the soft score resulting from the face comparison. This is indeed a piece of
information that can be used (by a malicious attacker) in an oracle attack for
extracting the information of a template for a given user, or the information for
the used weight vector. If we want to restrict this kind of attacks limiting the
given information to just one bit (a binary verification result), we could resort to
many interactive comparison protocols present in the literature (cf. Section [6.5]),
like those used by Erkin et al. [89] or Sadeghi et al. [196]. Nevertheless, this would
involve a final interactive step that is not desired in an autonomous outsourced
system. The development of noninteractive comparison protocols using fully-
homomorphic encryptions is one of the open research lines that will follow the
work presented in this chapter.

6.7. Conclusions

In this chapter we propose a fully private noninteractive face recognition sys-
tem, involving two novel contributions, that only when joined together allow for
the sought goal: an extension of Gentry’s fully homomorphic cryptosystem that
allows for noninteractively computing low to medium degree polynomials with
inputs of small plaintext cardinality, and an optimal quantization strategy for
Gabor-based face features; when combined, these two contributions allow for the
reduction of the needed representation length for a given recognition performance,
and make possible the execution of the whole recognition algorithm with a re-
duced plaintext cardinality using only homomorphic operations and without any
interaction.

The novel statistical model for the magnitude of Gabor coefficients extracted
from face images is based on the assumption that both real and imaginary
parts are marginally Generalized Gaussian distributed, and circularly symmet-
ric. Thus, unlike earlier attempts to fit the magnitude of Gabor coefficients, the
proposed magnitude’s distribution is compatible with current GG models for the
real and imaginary parts. The fitting accuracy to the data was evaluated using
the Kullback-Leibler divergence on two different datasets: XM2VTS [160] and
LFW [125] databases, obtaining much better results than those achieved with
other previously used distributions. This model opens a wide range of indepen-
dent interest applications, besides the presented data compression following a
minimum MSE criterion for producing considerable savings in storage and allow-
ing for low-cardinality plaintexts for encrypted processing of face templates.

Regarding the extension of Gentry’s fully-homomorphic cryptosystem, it
trades the homomorphic decryption capability for high gains in efficiency when
executing low-to-medium degree arithmetic operations. We provide a bound for
the number of allowed sequential multiplications, and show the performance of
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the cryptosystem in a practical scenario combined with Lloyd-Max quantized
magnitudes of Gabor coefficients for face verification for reducing the plaintext
cardinality. Contrary to traditional systems based on additive homomorphisms,
the presented one allows for a completely private verification, with both encrypted
templates and queried faces, opening up the possibility of outsourced noninterac-
tive face recognition within an untrusted environment like a Cloud, being the only
needed interaction in that case the initial transmission of the encrypted inputs.

Several future research lines can be highlighted: the specification of the ho-
momorphic decryption circuit for the non-binary case; achieving other ways of
decreasing the cipher expansion of the cryptosystem while keeping the good ho-
momorphic properties, by either increasing the plaintext size or decreasing the
public key size for bigger lattices; finally, providing a noninteractive solution for
comparison operations and other nonlinear operations that cannot be directly
mapped by the nonbinary homomorphism is also challenging.
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Chapter 7

Conclusions and further work

This section briefly summarizes the conclusions that may be extracted from
the research work undertaken in the present thesis.

Regarding low-level general-purpose protocols, this work presents new
privacy-preserving primitives valid for semi-honest adversaries, for securely solv-
ing the N-dimensional point inclusion problem in polytopes and in hyperellyptic
regions (useful in biometrics, classification, database queries, positioning and wa-
termarking), solving systems of linear equations with direct and iterative meth-
ods, and execution of finite automata (aiming at approximate search and match
and regular expression matching).

Privacy problems in adaptive filtering applications have been addressed, pre-
senting several representative scenarios and their trust model and privacy require-
ments. A whole framework has been proposed for tackling the trade-off among
time complexity, used bandwidth and fixed-precision error propagation in privacy-
preserving implementations, while comparing novel solutions that employ differ-
ent techniques, like garbled circuits, additive homomorphisms and interactive
protocols; this comparison aims at the optimal trade-off in terms of complexity
and output error; this work also provides several private quantization algorithms
of broad applicability to tackle the cipher blowup problem, implementing all the
novel protocols in a working prototype, whose analysis reveals that garbled cir-
cuits are still far from providing an efficient solution to adaptive filtering, while
interactive approximate protocols with statistical security can yield much more
practical solutions.

Other relevant application scenarios that are addressed in this thesis include
zero-knowledge watermark detection for private detection with symmetric key
schemes with improved resilience to sensitivity attacks, private cloud computing
for outsourcing the processing of sensitive data to untrusted environments, and
medical scenarios, prototypical of environments dealing with privacy-sensitive
signals, like DNA approximate searching.
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This work also takes a look towards other solutions different from encrypted
processing for privacy preservation, and exemplifies them in videosurveillance,
presenting a system based on the combination of an unusual configuration for
DRM and a smart use of video coding and representation standards, providing
an automated standardized treatment of surveillance activities and putting in the
hands of the users the appropriate technical means to control the access to their
private information.

Finally, foreseeing the not so distant goal of fully private noninteractive out-
sourced processing in untrusted environments, an extension to a recent fully-
homomorphic cryptosystem is proposed, and its applicability and efficiency is
showcased in a biometric face recognition application that does not use any clear-
text value, but only encrypted faces, templates and parameters; it is further com-
bined with the use of a novel model for face Gabor coefficients that allows for
a high signal compression without hindering recognition performance. The re-
sults are indeed promising, proving that encrypted processing is reaching a level
of development that can envisage fully privacy-protecting systems working in a
completely unattended manner.

7.1. Future Research Lines

Signal Processing in the Encrypted Domain is still a young discipline, and
there are many open hot topics that will be progressively tackled in the near
future. The ones most directly related to the research covered in this thesis are
briefly highlighted in the following points:

1. Most of the studied systems are proven secure only under a semi-honest ad-
versary model. This model is, in some cases, too distant from real scenarios,
and solutions that address the possibility of treating with malicious adver-
saries are needed. These solutions commonly involve an excessive overhead
in terms of computation and communication load that must be optimized
and lowered in future research advances.

2. The most efficient privacy-preserving protocols presented within the SPED
research field mostly rely on additive homomorphic encryption, that can
directly cope with linear processing, but is quite inefficient or useless when
tackling non-linear operations. These nonlinear processing is commonly
handled by garbled circuits or approximate interactive protocols, greatly
increasing the communication burden and the complexity of the obtained
solutions. The search for an optimal trade-off among the available ap-
proaches is one of the points that has been covered in this thesis, but fur-
ther advances in the versatility of homomorphic processing, the efficiency of
garbled circuits or the accuracy and bandwidth use of interactive protocols
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may provide new insights in the trade-off optimization and tip the scales
by changing the evaluated cost function.

3. As for the privacy-preserving DNA searching protocol, it constitutes the
first efficient privacy-preserving solution for error-resilient DNA searching
and, due to the versatility of finite state machines, the presented protocol
can also be used for privately solving any problem that involves matching a
string against a regular expression, such as searching a DNA database with
incomplete definitions, oblivious spam checkers and virus analyzers. This
work on privacy-preserving DNA queries opened a research line that has
been followed by numerous subsequent works, like [134], [136], [45], [103],
[119], or [36], dealing with performance optimizations and new proposals
for addressing more expressive formal languages.

4. Finally, the last chapter points to the main research line in cryptography
that may open the door to fully private noninteractive outsourced process-
ing through the use of fully homomorphic cryptosystems, mainly based on
lattice cryptography. This is a hot topic in the field of cryptography, and
two main open research lines can be highlighted, both targeted at achiev-
ing efficient lattice cryptosystems for practical homomorphic processing by
decreasing the cipher expansion of the cryptosystem while keeping good
homomorphic properties: either increasing the plaintext size or decreasing
the public key size for big and secure lattices. This would be one of the
most important breakthroughs for SPED applications; on the other hand,
the achievement of a noninteractive solution for nonlinear operations that,
currently, cannot be directly mapped by nonbinary ring homomorphisms
(without resorting to approximate solutions) would also open the door to
efficiently addressing most of the open privacy-related problems in signal
processing.
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