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Abstract

Mixes, relaying routers that hide the relation between incoming
and outgoing messages, are the main building block of high-latency
anonymous communication systems. A number of so-called Disclo-
sure Attacks have been proposed that effectively de-anonymize traffic
sent through these systems. Yet, the dependence of their success on
the system parameters is not well-understood. We propose the Least
Squares Disclosure Attack (LSDA), an approach to disclosure rooted in
Maximum Likelihood parameter estimation, in which user profiles are
estimated solving a Least Squares problem. We show that the LSDA
is not only suitable for the analysis of threshold mixes, but can be eas-
ily extended to attack pool mixes. Furthermore, contrary to previous
heuristic-based attacks, our approach allows to analytically derive ex-
pressions that characterize the profiling error of the LSDA with respect
to the system parameters. We empirically demonstrate that the LSDA
recovers profiles users with greater accuracy than its predecessors, and
verify that our analysis closely predicts actual performance.

1 Introduction

Computer security traditionally focuses on ensuring the confidentiality, in-
tegrity and availability of information; properties that are mostly achieved
through cryptographic means. This protection, however, usually targets
communication content and leaves network information accessible to poten-
tial adversaries. These traffic data, such as the identities of the participants
in the communication (e.g. IP addresses), their location, or the amount and
timing of data transferred, can be exploited by a passive observer to infer
sensitive private information about the communication.

A well-studied countermeasure against traffic analysis for high-latency
anonymous communications, i.e., communications that tolerate delay (e.g, e-
mail), is the use of mix networks [1, 2, 3, 4]. Mixes are routers that prevent
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an observer from tracking communications by hiding the correspondence
between inputs and outputs [5]. However, it is known that persistent and
repeated communication patterns can be uncovered by means of a Disclosure
Attack [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In a nutshell, this attack finds a
user’s likely set of friends, also known as user profile, by intersecting the
recipient anonymity sets of the target user’s messages.

The different variants of the disclosure attack differ on the technique used
to infer user profiles from the observed communications. Even though all of
them have been proven effective at the time of de-anonymization/profiling,
their heuristic nature and/or their complexity hinders a possible analysis
of how system parameters influence their success. Furthermore, the great
majority of attacks have only been evaluated against simple threshold mixes
(mixing occurs only between messages in a given round), and only the Sta-
tistical Disclosure Attack has been extended to attack pool mixes in which
messages can be delayed for more than one round [9].

In this paper we propose a profiling approach based on solving a Least
Squares problem, the Least Squares Disclosure Attack (LSDA). This ap-
proach ensures that the error between the actual number of output messages
and a prediction based on the input messages is minimized. We show that
the LSDA is suitable to attack anonymous communications through both
threshold and pool mixes. In particular, in this paper we consider threshold
binomial pool mixes, in which messages are individually selected to stay in
the mix or to be sent to their receiver according to a binomial distribution.
We note, however, that the choice of this mix is arbitrary and our approach
can be adapted to many other probabilistic mixing strategies.

A remarkable feature of the Least Squares approach is that it allows for
the derivation of analytical expressions that describe the evolution of the
profiling error with the parameters of the system. This is a key property, as
it permits designers to choose system parameters that provide a certain level
of protection without the need to run simulations. We empirically validate
our results, proving that our formulas reliably predict the evolution of the
LSDA’s error as the parameters of the system change, and that this error
asymptotically tends to zero as the number of observed mix rounds grows.

The proposed profile estimator relies only on first and second order statis-
tics. Hence the complexity of the LSDA is smaller than that of the most
accurate profiling algorithms up to date, the Perfect Matching Disclosure
Attack [15] and Vida [10], which are based on finding perfect matchings
on a bipartite graph. We provide two variants of the LSDA: a very effi-
cient unconstrained profile estimator that outputs user profiles that may
contain negative probabilities (usually corresponding to receivers that are
not friends with the target user), and a slower constrained version that
further minimizes the error by ensuring that the output profiles are well-
defined. We demonstrate through simulations that both versions indeed
minimize the mean squared error with respect to heuristic disclosure attack
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variants [7, 9, 15], although they perform slightly worse than the Bayesian
approach [10] in the scenarios considered in this paper.

The rest of the paper is organized as follows: in the next section we
revisit previous work on Disclosure Attacks and we describe our system and
adversarial models in Sect. 3. We introduce the Least Squares approach
to disclosure applied to threshold mixes in Sect. 4, and extend it to ac-
count for the pool mix in Sect. 5. In both sections we derive equations that
characterize the LSDA’s error with respect to the system parameters which
we validate in Sect. 6. We discuss future lines of work in Sect. 7, and we
conclude in Sect. 8.

2 An overview of Disclosure Attacks

The first Disclosure Attack [6, 16] relies on Graph Theory to uncover the
recipient set of a target user Alice. It identifies the set of Alice’s friends by
seeking for mutually disjoint sets of receivers among the recipient anonymity
sets of the messages sent by Alice. The main drawback of this approach is
that it is equivalent to solving a Constraint Satisfaction Problem which is
well-known to be NP-complete.

The subfamily of Hitting Set Attacks [11, 14] speeds up the search for Al-
ice’s messages recipients by restricting the search to unique minimal hitting
sets. Pham et al. studied the relationship between the number of observed
rounds to uniquely identify the set of receivers and the parameters of the
system [14]. This evaluation is similar to our work in spirit, but it focuses
on attacks that unambiguously identify recipient sets while we deal with
statistical attacks that only provide an estimation of such sets as the ones
discussed below.

The Statistical Disclosure Attack (SDA) and its sequels [8, 9, 12, 13]
estimate Alice’s sending profile by averaging the probability distributions
describing the recipient anonymity set [17] of her messages. These dis-
tributions are computed considering that the recipient anonymity set of a
message is uniform over the receivers present in a round (and zero for the
rest of users).

Troncoso et al. proposed in [15] two attacks: the Perfect Matching Dis-
closure Attack (PMDA) and the Normalized Statistical Disclosure Attack
(NSDA). These attacks exploit the fact that the relationship between sent
and received messages in a round must be one-to-one to improve the ac-
curacy of the estimated profiles. The PMDA accounts for this interdepen-
dency by searching for perfect matchings in the underlying bipartite graph
representing a mix round, while the NSDA normalizes the adjacency ma-
trix representing this graph. The recipient anonymity set of a message is
built based on the result of this assignment, instead of assigning uniform
probabilities among all recipients as the SDA does.

3



Last, Danezis and Troncoso propose to use of Bayesian sampling tech-
niques to co-infer user communication profiles and de-anonymize messages [10].
The Bayesian approach can be adapted to analyze arbitrarily complex sys-
tems and outputs reliable error estimates, but it requires the adversary to
repeatedly seek for perfect matchings increasing the computational require-
ments of the attack.

From all of the aforementioned attacks, only the SDA has been extended
to take into account pool mixes. The probabilistic behavior of these mixes
makes it difficult to unambiguously identify sets of receivers, and to define
a bipartite graph describing the relationship between inputs and outputs
in a round. Hence, it is not trivial to extend the Disclosure and Hitting
Set attacks [6, 11], or the PMDA, NSDA [15], and Vida [10] to analyze
pool mixes. We will show that our Least Squares approach can be easily
adapted to the pool mix probabilistic behavior, and that it obtains much
better results than the SDA.

We note that previous authors evaluated the attacks either from mostly a
de-anonymization of individual messages perspective (e.g., [10, 15]), or from
the point of view of the number of rounds necessary to identify a percentage
of Alice’s recipients (e.g., [13, 12, 14]). In this work we are interested in
the accuracy with which the adversary can infer the sender (respectively,
receiver) profile of Alice, i.e., we not only seek to identify Alice’s messages
receivers, but also to estimate the probability that Alice sends (or receives)
a message to (from) them.

3 System model

In this section we describe our model of an anonymous communication sys-
tem and introduce the notation we use throughout the paper, which we
summarize in Table 3.0.2. Throughout the text, we will use capital letters
to denote random variables and lowercase letters to denote realizations. Vec-
tors will be represented using boldface characters; thus, x = [x1, · · · , xN ]T

denotes a realization of random vector X = [X1, · · · , XN ]T . Matrices will
be represented by boldface capital characters; whether they contain random
or specific values will be clear from the context. We will use 1N to denote
the column vector whose N elements are 1; similarly, 1N×M denotes the
all-ones matrix of size N ×M .

3.0.1 System model.

We study a system in which a population of Nusers users, designated by an
index i ∈ {1, . . . , Nusers}, communicate through an high-latency anonymous
communication channel. We consider two types of mixes:

• Threshold Mix: This mix gathers t messages each round, transforms
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them cryptographically, and outputs them in a random order; hence
hiding the correspondence between incoming and outgoing messages.

• Binomial Threshold Pool Mix: Similarly to the threshold mix, the
pool mix collects t messages per round and alters their appearance to
avoid bitwise linkability. However, instead of outputting them imme-
diately, messages are placed on a pool and only leave the mix with
probability α. Otherwise, they stay and get mixed with messages ar-
riving in subsequent rounds. This behavior increases the adversary’s
confusion on the correspondence between inputs and outputs.

We model the number of messages that the ith user sends in round r as
the random variable Xr

i ; and denote as xri the actual number of messages i
sends in that round. Similarly, Y r

j is the random variable that models the
number of messages that the jth user receives in round r; and yrj the actual
number of messages j receives in that round. Let xr and yr denote column
vector that contain as elements the number of messages sent or received by
all users in round r: xr = [xr1, · · · , xrNusers

]T , and yr = [yr1, · · · , yrNusers
]T ,

respectively. When it is clear from the context, the superindex r is dropped.
Users in our population choose the recipients of their messages according

to their sending profile qi
.
= [p1,i, p2,i, · · · , pNusers,i]

T ; where pj,i models the
probability that user i sends a message to user j. We consider that a user
i has f friends to whom she sends with probability pj,i, and assign pj,i = 0
for each user j that is not a friend of i. Conversely, pj is the column vector
containing the probabilities of those incoming messages to the jth user, i.e.,
pj

.
= [pj,1, pj,2, · · · , pj,Nusers ]

T . (This vector can be related to the receiving
profile of user j through a simple normalization, i.e., by dividing its compo-
nents by

∑Nusers
i=1 pj,i.) Let P be the matrix of transition probabilities whose

j, ith element is pj,i; with the previous definitions, this matrix can be writ-
ten as P = [q1,q2, · · · ,qNusers

] or, equivalently, PT = [p1,p2, · · · ,pNusers
].

We denote as fj the number of senders that send messages to receiver j
(i.e., the cardinality of the set Fj = {i|pj,i > 0, pj,i ∈ pj}); and define

τf
.
=
∑Nusers

i=1 f2i /(f
2Nusers), which shall come handy in the performance

evaluation performed in Sect. 6.

3.0.2 Adversary model.

We consider a global passive adversary that observes the system during
ρ rounds. She can observe the identity of the senders and receivers that
communicate through the mix. Furthermore, she knows all the parameters
of the mix (e.g. t and α). As our objective is to illustrate the impact of
disclosure attacks on the anonymity provided by the mix we assume that
the cryptographic transformation performed during the mixing is perfect and
thus the adversary cannot gain any information from studying the content
of the messages.
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Table 1: Summary of notation

Symbol Meaning

Nusers Number of users in the population, denoted by i = {1, · · · , Nusers}
f Number of friends of each sender i
t Threshold of the threshold/pool mix
α Firing probability of the binomial pool mix
fj Number of senders sending messages to receiver j

τf
∑Nusers

j=1 f2j /(f
2Nusers)

pj,i Probability that user i sends a message to user j
qi Sender profile of user i, qi = [p1,i, p2,i, · · · , pNusers,i]

T

pj Unnormalized receiver profile of user j, pj = [pj,1, pj,2, · · · , pj,Nusers ]
T

P Transition probabilities matrix.

ρ Number of rounds observed by the adversary
xri (yrj ) Number of messages that the ith (jth) user sends (receives) in round r

xr (yr) Column vector containing elements xri (yrj ), i = 1, · · · , Nusers

p̂j,i Adversary’s estimation of pj,i
q̂i Adversary’s estimation of user i’s sender profile qi
p̂j Adversary’s estimation of user j’s unnormalized receiver profile pj
P̂ Adversary’s estimation of transition probabilities matrix.

The adversary’s goal is to uncover communication patterns from the
observed flow of messages. Formally, given the observation xr = {xri } and
yr = {yrj}, for i, j = 1, . . . , Nusers, and r = 1, . . . , ρ, the adversary’s goal is
to obtain estimates p̂j,i as close as possible to the probabilities pj,i, which in
turn allow her to recover the users’ sender and receiver profiles.

4 A Least Squares approach to Disclosure Attacks
on Threshold Mixes

We aim here at deriving a profiling algorithm based on the Maximum Likeli-
hood (ML) approach to recover the communication patterns of users anony-
mously communicating through a threshold mix. The general idea is to be
able to estimate the probabilities pj,i that user i sends a message to user j.

We make no assumptions on the user’s profiles (i.e., we impose no re-
strictions on the number of friends a user may have, nor on how messages
are distributed among them). Nevertheless, we follow the standard assump-
tions regarding users’ behavior and consider that they are memoryless (i.e.,
for a user the probability of sending a message to a specific receiver does
not depend on previously sent messages), independent (i.e., the behavior
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of a certain user is independent from the others), with uniform priors (i.e.,
any incoming message to the mix is a priori sent by any user with the same
probability), and stationary (i.e., the parameters modeling their statistical
behavior do not change with time).

4.1 A Least Squares estimator

Our aim is to estimate the users’ profiles given the observed vectors xr and
yr, r = 1, · · · , Nusers. Instead of focusing on a single user at a time, as the
SDA does, we want to simultaneously find the profiles for all users. To this
end, we form the following vectors/matrices:

YT .
= [Y 1

1 , Y
2
1 , · · · , Y

ρ
1 , Y

1
2 , Y

2
2 , · · · , Y

ρ
2 , · · · , Y

1
Nusers

, Y 2
Nusers

, · · · , Y ρ
Nusers

]

UT .
= [x1,x2, · · · ,xρ]

H
.
= INusers ⊗U

Vector Y basically stacks all the outputs from the mix, while matrix U con-
tains all the observed inputs. In [18] we discuss how the Maximum Likeli-
hood (ML) principle can be applied to our problem: we want to find the vec-
tor pT

.
= [pT1 ,p

T
2 , · · · ,pTNusers

] containing all the profiles, such that the prob-
ability of observing the output given the input, i.e., Pr(Y = y|x1, · · · ,xρ), is
maximum. The probability distribution of Y given the input, which is given
by a vector of multinomial distributions, depends on p, so the maximization
can be carried out with respect to the transition probabilities. However,
as discussed in [18], this dependence is highly nonlinear, thus complicat-
ing the search for a solution even for simple cases. A further step is then
taken in [18], where it is shown that Pr(Y|x1, · · · ,xρ) approximately follows
a Gaussian distribution with mean Hp and a covariance matrix Σy which
also depends on p.

After this approximation, the optimization problem can be explicitly
written as follows:

p̂ = arg max
p∈P

1√
det(Σy)

· exp

(
−1

2
(y −Hp)TΣ−1y (y −Hp)

)
, (1)

where P denotes the set of valid probability vectors.1

The dependence of Σy with p still makes the solution to (1) very compli-
cated, so one simplification consists in assuming Σy ≈ diag([Var{Y 1

1 }, · · · ,Var{Y ρ
Nusers

}]),
that is reasonable because the covariance between Y r

j and Y s
k is zero for

r 6= s, and small (compared to diagonal terms) when r = s and k 6= j
(see [18] for more details). With this simplification, the maximization in

1Without further constraints, that may be furnished when there is partial knowledge
about the transition probabilities, P is simply given by the constraints 0 ≤ pj,i ≤ 1 for all
j, i, and

∑Nusers
j=1 pj,i = 1, for all i.
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(1) is equivalent to minimizing the exponent; this leads to a weighted Least
Squares problem. When the variances of all the elements in Y are similar,
it is simpler to minimize just (y−Hp)T (y−Hp), which can be summarized
in the following constrained Least Squares problem

p̂ = arg min
p∈P
||y −Hp||2 , (2)

Notice that the constraints come from the fact that p must contain valid
probability profiles. Interestingly, removing the constraints leads to a solu-
tion that is not only amenable to an in-depth performance analysis, as we
will confirm in Sect. 4.2, but is also asymptotically efficient, in the sense
that p̂ converges to the true profiles p as ρ→∞, .

It is well known that for the unconstrained case the solution is provided
by the Moore-Penrose pseudoinverse [19]:

p̂ = (HTH)−1HTy . (3)

At first sight, it might look that the matrix inversion needed in (3) is
formidable: the matrix HTH has size N2

users × N2
users. However, its block-

diagonal structure allows for a more affordable solution; indeed,

HTH = (INusers ⊗U)T · INusers ⊗U = INusers ⊗ (UTU)

and, hence,
(HTH)−1 = INusers ⊗ (UTU)−1

where UTU of size Nusers ×Nusers is assumed to have full rank.
The decoupling above allows us to write a more efficient solution as

follows. Let yj
.
= [y1j , y

2
j , · · · y

ρ
j ]T . Then, the LS estimate p̂j for the jth

probability vector can be written as

p̂j = (UTU)−1UTyj , j = 1, · · · , Nusers . (4)

The decoupling is possible only in the unconstrained case; this considera-
tion, together with the simplicity of the performance analysis, make us focus
mostly on the unconstrained LS approach. Notice, however, that, as a con-
sequence, the obtained solution is not guaranteed to meet the constraints on
the transition probabilities. This can be overcome by projecting the solution
onto the set P, as it will be discussed later. In any case, the fact that, as
we will later prove, the error between the actual and estimated values p− p̂
tends to zero as ρ →∞, ensures that p̂ can be made arbitrarily close to P
by increasing the number of observed rounds. Finally, note that when p̂j is
computed for all users, it is also possible to recover the sender profiles qi by
taking the rows of the matrix P̂.

We point out that the LS estimate can be interpreted as a linear pre-
dictor: given the inputs x1,x2, · · · ,xρ, we construct a linear predictor for
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the observations y that minimizes the mean squared prediction error. We
will call the attack described throughout this section Least Squares Disclose
Attack (LSDA).

The Statistical Disclosure Attack as an LS estimator. We now show that the
original Statistical Disclosure Attack [7] in fact corresponds to a particular
case of the proposed LSDA estimator. Here, the first user (Alice) is supposed
to send only one message to an unknown recipient chosen uniformly from a
set of f friends. The other users are assumed to send messages to recipients
chosen uniformly from the set of all users. The target is to determine the
set of friends of Alice.

From these considerations, for a given round r where Alice does send a
message, we have that xr1 = 1 and

∑Nusers
i=2 xri = (t−1), and all the transition

probabilities pj,i, for i ≥ 2, j = 1, · · · , Nusers, are known to be equal to
1/Nusers. If we suppose that in all rounds Alice transmits a message, we will
have a vector y which contains the ρ·Nusers observations, q1 is unknown, and
all qi, i = 2, · · · , Nusers are known. The unconstrained unweighted LSDA
estimator can be broken down into subproblems in which we seek pj , for all
j = 1, · · · , Nusers, such that

||yj −Upj ||2 (5)

is minimized. Noticing that for each pj only pj,1 is unknown, we can write
the equivalent problem of finding pj,1 such that

||yj −U′p′j − pj,1U1||2 (6)

is minimized, where U′ is obtained from U by deleting its first column,
itself denoted by U1, and where p′j is obtained from pj after deleting its
first element.

Then, the LS solution is

p̂j,1 = (UT
1 U1)

−1UT
1 (yj −U′p′j) (7)

From the fact that U1 = 1ρ (as Alice sends one and only one message
per round), it follows that UT

1 U1 = ρ. On the other hand, all elements in
p′j take the value 1/Nusers and the matrix U′ is such that the sum of the
elements in each column is (t− 1); therefore,

p̂j,1 =
1

ρ

ρ∑
r=1

yrj −
(t− 1)

Nusers
, j = 1, · · · , Nusers (8)

which coincides with the SDA estimate.
The LSDA estimator differs from the SDA one in that it does not make

any underlying assumption on the transition probabilities and that it simul-
taneously solves for the entire matrix of transition probabilities.
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4.2 Performance analysis with respect to the system param-
eters

Next, we assess the performance of our solution. This will serve to under-
stand the influence of the system parameters on the knowledge that can be
gained by an adversary applying our algorithm. To this end, we first remark
that the Least Squares estimate in (3) is unbiased: it is straightforward to
show that E[p̂] = p. On the other hand, the covariance matrix of p̂, for a
fixed matrix H, is given by [19]

E[(p− p̂)(p− p̂)T ] = (HTH)−1HTΣyH(HTH)−1 . (9)

From this covariance matrix it is immediate to calculate the total Mean
Square Error (MSE) in the estimation of the profiles, since

MSE
.
= E

Nusers∑
i=1

Nusers∑
j=1

|pj,i − p̂j,i|2 = E[tr
(
(p− p̂)(p− p̂)T

)
] (10)

where tr(M) denotes the trace of matrix M.
Due to the decoupling for the estimation of each pj discussed above, we

can write a similar equation to (9) for each unnmormalized receiver profile,
that is,

E[(pj−p̂j)(pj−p̂j)
T ] = (UTU)−1UTΣyjU(UTU)−1, for all j = 1, · · · , Nusers

(11)
keeping in mind that

MSE =

Nusers∑
j=1

tr
(
E[(pj − p̂j)(pj − p̂j)

T ]
)

(12)

Notice from (11) that the performance will depend on the actual input
matrix U; however, since the input process is wide-sense stationary and
ergodic, when ρ→∞ the block UTU will converge to the input autocorre-
lation matrix Rx. Then, when the number of observations is large, approx-
imating UTU ≈ Rx will allow us to extract some quantitative conclusions
that are independent of U. We further point out that since Cov(Y r

i , Y
s
i ) = 0

for all i and r 6= s, then Σyj = σ2yjIρ, where σ2yj
.
= Var{Yj}.

In this case, (11) becomes

E[(pj − p̂)(p− p̂j)
T ] = σ2yj (U

TU)−1 . (13)

We still need to quantify how large (UTU)−1 is. Since UTU is symmetric,
we can write the following eigendecomposition

UTU = QΛQ−1 , (14)
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where Q is orthonormal and Λ is diagonal. In this case, (UTU)−1 =
Q−1Λ−1Q. Then, if we define the transformed probability space where
p′j

.
= Qpj and p̂′j

.
= Qp̂j we have

E[(pj − p̂j)(pj − p̂j)
T ] = E[(p′j − p̂′j)(p

′
j − p̂′j)

T ] = σ2yjΛ
−1 (15)

Then, computing the trace of (15) and substituting into (12) we can express
the total MSE as

MSE =

Nusers∑
j=1

σ2yj ·
Nusers∑
i=1

λ−1u,i (16)

where λu,j , j = 1, · · · , Nusers denote the eigenvalues of UTU.
Equation (16) can be interpreted as having two terms that depend on the

output covariance and input autocorrelation, respectively. In fact, for some
cases of interest, it is possible to derive explicit expressions, as we discuss
next.

Consider the case where each user has exactly the same probability
1/Nusers of sending a message to one of her friends and that each message
is sent independently. Then, if t messages are sent per round, the observed
input vector at the jth round xj will follow a multinomial distribution for
which

E{X2
i } = t2p2x + tpx(1− px), and E{XiXk} = t2p2x − tp2x, i 6= k

where px = 1/Nusers. Then, the autocorrelation matrix Rx can be shown to
have (Nusers − 1) identical eigenvalues which are equal to ρ · t · px and the
remaining eigenvalue equal to ρ · t · px + ρ · t · p2x(t− 1)Nusers. Therefore,

Nusers∑
j=1

λ−1u,j =
Nusers

ρt

(
Nusers − 1 +

1

t

)
(17)

Next we focus on the output variance. We consider the case where each
user has f friends in her sending profile to whom she sends messages with
probability 1/f each. Let Fj be the set of users that send messages to the
jth user with non-zero probability, and let fj be its cardinality. Then, for
the input conditions discussed in the previous paragraph (i.e., i.i.d. uniform
users), the probability that one given message is sent by one user in Fj is
fj/Nusers. In turn, the probability that one message originating from a user
in Fj is sent to the jth user is 1/f . Therefore, we can see Y k

j as the output
of a binomial process with probability

pyj =
fj

fNusers
,

and with t messages at its input. Hence, the variance of Yj is

σ2yj = t · pyj (1− pyj ) =
t · fj

f ·Nusers
·
(

1− fj
f ·Nusers

)
,
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so the sum of variances becomes

Nusers∑
j=1

σ2yj = t

(
1−

∑Nusers
j=1 f2j
f2N2

users

)
= t

(
1−

τf
Nusers

)
, (18)

where we have used the fact that
∑Nusers

j=1 fj = f · Nusers, and τf is defined
in Table 3.0.2.

Combining (17) and (18) we can write the MSE as

MSE =
1

ρ

(
Nusers − 1 +

1

t

)
· (Nusers − τf ) . (19)

It is useful to interpret (19) in terms of the number of friends of each
receiver. We will consider two particular cases of interest: 1) If each receiver
has exactly f friends, then τf = τf,1 = 1; 2) If only f receivers have Nusers

friends, and the remaining Nusers − f receivers have no friends, then τf =
τf,2 = Nusers/f . The second case models a situation where f receivers act
as hubs (i.e., f users concentrate the traffic of all the population), while
in the first there is absolutely no skew in the distribution. In fact, using
the Lagrange multipliers technique, it can be shown that for all other cases,
including random connections (but always keeping the constraint that each
sender has exactly f friends), the parameter τf satisfies that τf,1 ≤ τf ≤ τf,2.
Since (19) monotonically decreases with τf , we can conclude that for the
symmetric case (i.e., τf = 1) the MSE is larger, revealing that it will be
harder to learn the transition matrix.

When Nusers is large, we can approximate (19) as follows

MSE ≈ N2
users

ρ
. (20)

If we recall that there are N2
users probabilities to estimate from the tran-

sition matrix, we can conclude that the variance per transition element pj,i
is approximately 1/ρ. The total MSE decreases as 1/ρ with the number
of rounds ρ; this implies that the unconstrained, unweighted LS estimator
is asymptotically efficient as ρ → ∞. Even though this is somewhat to be
expected, notice that other simpler estimators might not share this desirable
property, as we will experimentally confirm in Sect. 6.

4.3 Constrained Least Squares Estimation

One interesting property of the unconstrained LS estimator proposed above
is that the estimated sender profiles satisfy that

∑Nusers
j=1 p̂j,i = 1, for all i, or

in short, 1TNusers
q̂i = 1, for all i. An even more compact form is

1TNusers
P̂ = 1TNusers

. (21)
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To prove this property, recall that P̂
T .

= [p̂1, p̂2, · · · , p̂Nusers
], so (4) can be

rewritten as
P̂
T

= (UTU)−1UTVT , (22)

where VT .
= [y1,y2, · · · ,yNusers

]. For convenience, let zT
.
= 1TNusers

P̂; then,

we want to show that zT = 1TNusers
. To this end, we write zT = 1TNusers

+ z′T

and derive the following chain of identities starting from (21) after substi-
tuting (22):

(1TNusers
+ z′T )UTU = 1TNusers

VTU (23)

⇒ 1TNusers
UTU + z′TUTU = t1Tρ U (24)

⇒ t1Tρ U + z′TUTU = t1Tρ U (25)

⇒ z′TUTU = 0 (26)

⇒ z′T = 0 (27)

which yields the desired proof. In the previous chain, we have used the fact
that UTU is non-singular and that 1TNusers

UT = 1TNusers
VT = t1Tρ . There-

fore, this property holds if the number of messages per round is constant,
but not necessarily in more general cases.

While the unconstrained LS estimator yields sender profiles satisfying∑Nusers
j=1 p̂j,i = 1, for all i, the output of the estimator is not guaranteed to be

a proper probability distribution representing a user’s profile. The fact that
we have considered user profiling as an unconstrained problem will often
result in some of the estimated probabilities p̂j,i being negative, usually
corresponding to receivers j that are not friends of user i. Thus, when
pj,i = 0 the algorithm returns p̂j,i that lie near zero, but as the solution is
unconstrained, it is not guaranteed that p̂j,i ≥ 0 as one would desire.

One could reduce the error by just setting those probabilities to zero,
disregarding that

∑
j pj,i = 1 for all i. This constraint could be ensured by

normalizing the profile, but this normalization has to be performed without
information and hence the estimation is not guaranteed to be optimal.

Alternatively, it is possible to recover the constrained problem in (2).
We recall that the constraints are 1 ≥ pi,j ≥ 0, for all i, j = 1, · · · , Nusers,

and
∑Nusers

j=1 pj,i = 1, for all i = 1, · · · , Nusers. One might think of imposing
such constraints to the decoupled optimization problems (5) for each j.
Unfortunately, while the optimization is performed with respect to pj , each
of the previous sum constraints is given in terms of qi. Hence, if those
constraints are to be enforced, then the optimization problems can no longer
be decoupled. In such case, to reduce the complexity of the search, it is
possible to use an alternating projection strategy which succesively fixes
all but the ith sender profiles, and then solves the resulting constrained
least squares problem for the estimator q̂i, where now there are only Nusers

unknowns, one equality constraint (i.e., 1TNusers
q̂i = 1), and Nusers inequality
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constraints (i.e., p̂j,i ≥ 0, for all j = 1, · · · , Nusers). Once the optimization

for the ith sender is completed, the estimator P̂ is modified by updating its
ith row with the newly obtained q̂i, and then the process continues with the
(i+ 1)th user until all the Nusers users have been swept.

As a final remark, we note that the constraints make a performance
analysis similar to that in Section 4.2 much more cumbersome. The analysis
of such solution is left as subject for future research.

5 A Least Squares approach to Disclosure Attacks
on Pool Mixes

In this section we show how to extend the derivations given for the threshold
mix case to the case of a pool mix. The main difference with respect to the
threshold mix arises from the fact that the output of the mix is now a
probabilistic function of the input observations, so it is no longer possible
for the adversary to know how many messages from the ith user are sent in
the rth round. To distinguish between the number of messages from the ith
sender that enter and leave (note that some messages may stay in the pool)
the mix in round r, we will respectively use vectors xr and Xr

s. Thus, the
vector xr is observable, while Xr

s is not. We let UT
s
.
= [X1

s,X
2
s, · · · ,Xρ

s ].
We focus our analysis on a threshold binomial pool mix, where each

message in the pool has a probability α of leaving and (1− α) of remaining
in the pool. We assume that at the time the adversary starts her observation
the pool contains m messages whose sender is unknown. Then, the messages
in Xr

s may come from two sources: the initial m messages in the pool, and
the messages observed at the input of the mix in the current or earlier
rounds. We will use vectors Nr and Xr

e to model these two contributions,
and write Xr

s = Xr
e + Nr. Notice that Nr can be seen as noise, as only Xr

e

contains information regarding the observed input messages.
Our approach to solving the pool mix problem is to substitute U in

(4) by a predictor of matrix Us. To this end, the minimum mean squared
predictor of Xr

s,i, given the matrix of observations U, is

x̂rs,i = E{Xr
s,i|U} = E{Xr

e,i|U}+ E{N r
i }

= α

r−1∑
k=0

(1− α)kxr−ki + α(1− α)r−1m/Nusers (28)

where we have assumed that each of the m messages in the initial pool may
correspond to any of the Nusers users with uniform probability. For imple-
mentation purposes, a more convenient way of writing (28) is the following
recursive equation

x̂r+1
s,i = (1− α)x̂rs,i + αxr+1

i , r = 1, · · · , Nusers (29)
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where x̂1s,i is initialized to x1i +m/Nusers.
The solution to the unconstrained optimization problem is obtained by

replacing U in (4) by Ûs, where Û
T
s
.
= [x̂1

s, x̂
2
s, · · · , x̂ρs ]. For compactness,

we will find it useful to define the following convolution matrix

B
.
=


α 0 0 · · · 0

α(1− α) α 0 · · · 0
α(1− α)2 α(1− α) α · · · 0

...
...

... · · ·
...

α(1− α)ρ−1 α(1− α)ρ−2 α(1− α)ρ−3 · · · α

 (30)

Then, we can write
Ûs = B(U + N0) (31)

where the matrix N0, which accounts for the average initial state of the mix,
is such that all entries in the first row take the value m/Nusers, while all the
remaining elements are zero. Then, the solution is

p̂j = (Û
T
s Ûs)

−1Û
T
s yj , j = 1, · · · , Nusers . (32)

Notice that for the standard threshold mix, which corresponds to α = 1,
m = 0, we have that B = Iρ, N0 = 0, so Ûs = U, and both solutions
coincide.

The performance analysis of this estimator in the case of a pool mix and
τf = 1 is carried out in Appendix 9, where it is shown that

MSE ≈ Nusers(Nusers − 1 + αq/t)

ραq
− (Nusers − 1)/(2− α) + 1/t

ρ
(33)

where αq
.
= α/(2−α). This approximation is asymptotically tight as ρ→∞.

Moreover, when α = 1 we recover (19). When Nusers is large, (34) can be
approximated as

MSE ≈ N2
users

ραq
(34)

Comparing the approximation above with (20) we can conclude that the
pool mix requires (2 − α)/α times more rounds to achieve the same MSE.
For instance, for α = 0.5, three times more rounds are needed to achieve
the same MSE as in the threshold mix. Since αq monotonically increases
with α, the difficulty of learning the profiles is always larger in the pool
mix compared to the threshold mix. Of course, this comes at the price of
an increased delay; in fact, it can be shown that the average delay for a
message introduced by the pool, measured in rounds, is (1− α)/α.

Finally, we remark that it is also possible to derive a constrained version
of the estimator which forces the estimated profiles to lie in the feasible set
P. As we will confirm in the evaluation section, the constrained version
outperforms the unconstrained one.
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Table 2: System parameters used in the experiments.

Parameter Value
Nusers {20, 50,100, 150, 200, 250, 300, 350, 400, 450, 500}

Population
f {5, 10, 15, 20,25, 30, 35, 40, 45, 50}
τf {1.0, 1.76, 2.44, 3.04, 3.56, 4.0}
ρ {10 000, 20 000, . . . , 100 000}

Threshold mix t {2, 5,10, 20, 30, 40}

Binomial Pool mix
α {0.1, 0.2, 0.3, 0.4,0.5, 0.6, 0.7, 0.8, 0.9}
t {5,10}

6 Evaluation

6.1 Experimental setup

We evaluate the effectiveness of the LSDA approach against synthetic anonymized
traces created by a simulator written in the Python language.2 We simu-
late a population of Nusers users with f contacts each, to whom they send
messages with equal probability (i.e., pj,i = 1/f if i is friends with j, zero
otherwise). In order to easily study the influence of the system parameters
on the success of the attack, in our simulations we further fix the senders that
send messages to each receiver to be such that fj = f . In other words, ev-
ery sender (receiver) profile has the same number of non-zero elements, and
hence τf = 1. In the first part of the evaluation messages are anonymized
using a threshold mix with threshold t; and in the second part using a bi-
nomial pool mix where each round t messages arrive to the mix3, and each
message in the pool has a probability α of leaving the mix. We consider
that the adversary observes ρ rounds of mixing.

Table 6.1 summarizes the values of the parameters used in our experi-
ments, where bold numbers indicate the parameters of the baseline experi-
ment. The values used in our experiments, though rather unrealistic, have
been chosen in order to cover a wide variety of scenarios in which to study
the performance of the attack while ensuring that experiments could be car-
ried out in reasonable time. We note, however, that the results regarding
the LSDA can be easily extrapolated to any set of parameters as long as
the proportion among them is preserved. Unfortunately, we cannot make a
similar claim for other attacks: their heuristic nature makes it difficult to
obtain analytical results that describe the dependence of their success on

2The code will be made available upon request.
3We fix the number of messages arriving in each round in order to simplify our sim-

ulations, but we recall that the method can be adapted to a variable number of arriving
messages (see Sect. 5).
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the system parameters, and the evolution of their error difficult to predict
as we will see throughout this section.

Besides testing the effectiveness of the LSDA when profiling users, we
also compare its results with those obtained performing the Statistical Dis-
closure Attack (SDA) [7, 9], the Perfect Matching Disclosure Attack (PMDA) [15],
the Normalized Statistical Disclosure Attack (NSDA) [15], and the Bayesian
inference-based attack Vida [10].

6.2 Success metrics

We recall that the goal of the adversary is to estimate the values pj,i with as
much accuracy as possible. We define two metrics to illustrate the profiling
accuracy of the attacks. The Mean Squared Error per transition probability
(MSEp) measures the average squared error between the elements of the
estimated matrix p̂ and the elements of the matrix p describing the actual
behavior of the users (see (3)), and is simply the total MSE normalized by
the number of elements:

MSEp = MSE/N2
users.

Secondly, we define the Mean Squared Error per sender profile (MSEqi):

MSEqi =

∑
j(p̂j,i − pj,i)2

Nusers
, i = 1, . . . , Nusers

which measures the average squared error between the the estimated q̂i
and actual qi user i’s sender profiles. Both MSEs measure the amount by
which the values output by the attack differ from the actual value to be
estimated. The smaller the MSE, the better is the adversary’s estimation of
the users’ actual profiles.

For each of the studied set of parameters (Nusers, f , t, ρ, τf ) we record
the sets of senders and receivers during ρ rounds and compute the MSEp
(or the MSEqi) for each of the attacks. We repeat this process 20 times and
plot the average of the result in our figures.

6.3 Results: Threshold mix

We first study the effectiveness of the LSDA in profiling messages anonymized
using a threshold mix in different scenarios.

6.3.1 Performance with respect to the number of rounds ρ

As we discuss in Sect. 4.2, the number of observed rounds ρ has a dominant
role in the estimation error incurred by the LSDA. We plot in Fig. 1, left,
the MSE per transition probability MSEp for the SDA, NSDA, PMDA and
LSDA.
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Figure 1: MSEp evolution with the number of rounds in the system ρ (N =
100, f = 25, t = 10, τf=1), and with the threshold mix t (N = 100, f = 25,
ρ = 10 000, τf = 1) (left and right, respectively).

The LSDA obtains the best results. Furthermore, we can see how the
approximation in (20), represented by • in the figure, reliably describes the
decrease in the profile estimation error as more information is made available
to the adversary.

It is also interesting to notice how the different attacks take advantage of
the information procured by additional rounds. The naive approach followed
by the SDA soon maxes out in terms of information extracted from the
observation and its MSEp does not decrease significantly as more rounds are
observed, confirming the results in [15]. The NSDA and PMDA perform
slightly better in this sense, although their MSEp also decreases slowly. The
LSDA, on the other hand, is able to extract information from each new
observed round reducing significantly the MSEp, that tends to zero as ρ→
∞. This is because, as opposed to its predecessors which process the rounds
one at a time, the LSDA considers all rounds simultaneously (by means of
the matrices Y and U).

6.3.2 Performance with respect to the mix threshold t

By observing (19) one can see that the threshold t of the mix has little
influence on the MSEp of the LSDA, becoming negligible as t increases and
t� 1. This is reflected by our experiments, shown in Fig. 1, left, where the
error of the LSDA soon becomes stable as the threshold of the mix grows.
We must note that the time necessary to observe ρ mixing rounds grows with
the size of the threshold mix. Hence, although the error is constant with t,
increasing the threshold delays the obtention of accurate user profiles.

This property does not hold for the other attacking approaches. As
expected, increasing the threshold has a negative effect on the other three
attacks. The SDA’s error, surprisingly, seems to grow proportionally to
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Figure 2: MSEp evolution with the number of users in the system Nusers

(f = 25, t = 10, ρ = 10 000, 100 000, τf = 1) (left and right, respectively).

(1−1/t) and thus it is greatly reduced as t increases. This is not the case for
the NSDA and PMDA, that rely on solving an optimization problem on the
underlying bipartite graph representing a mix round. As the threshold grows
this problem becomes harder and hence their MSEp significantly increases.

6.3.3 Performance with respect to the number of users Nusers

Next, we study the influence of the number of users in the system on the
estimation error. The results are shown in Fig. 2 for ρ = 10 000 (left) and
ρ = 100 000 (right). As expected, see (20), the LSDA’s MSEp grows slowly
with the number of users. The other three attacks, on the other hand,
improve their results when the number of users increase. In this case, if the
mix threshold is kept fixed, the intersection between the senders of different
mixing rounds becomes smaller, and thus the SDA can better identify their
sender profiles. The PMDA and the NSDA use the result of the SDA as
attack seed. Hence, the better estimations output by the SDA, the better
results obtained by the PMDA and the NSDA.

Even though Nusers has some effect on the MSEp of the LSDA the results
in Fig. 2 reinforce the idea that the number of rounds ρ is the main compo-
nent of the error. When ρ = 10 000 rounds are observed, the LSDA does not
provide better results than the other attacks. Nevertheless, as the number
of rounds increases, the LSDA outperforms the other attacks regardless of
the growth of the MSE with Nusers.

6.3.4 Performance with respect to the output variance σ2yj

The influence on the LSDA’s MSE of the output variance σ2yj can be studied
by varying the value of the parameters f and τf , while maintaining Nusers

and t constant, see (18). We first vary the number of friends of the senders
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Figure 3: MSEp evolution with the number of friends f (N = 100, f = 25,
ρ = 10 000, τf=1), and with τf (N = 100, f = 25, t = 10, ρ = 10 000) (left
and right, respectively).

f while keeping fj = f for all receivers j, ensuring that τf = 1. We observe
in Fig. 3, left, that the LSDA’s MSEp closely follows the prediction given in
(19).

In a second experiment, we fix the parameter f and vary τf to represent
different degrees of “hubness” in the population. We construct populations
such that there are α = 0, · · · , f hub receivers that have Nusers friends, while
the remaining Nusers − α receivers are assigned small amounts of friends in
order to obtain different τf arbitrarily chosen between τf,1 = 1 and τf,2 =
Nusers/f . The result is shown in Fig. 3, right. It is worthy to note that the
SDA significantly benefits from the hubness of the population. As some users
concentrate the traffic the sending profiles become more uniform: all users
tend to send their messages to the same set of receivers. In this scenario
the strategy of the SDA, that assigns equal probability to every receiver in
a mix batch, closely models reality and thus the error tends to zero. While
the error of the SDA is very small, the estimated profiles still have small
biases toward some users. This effect is amplified by the NSDA and PMDA,
significantly increasing their estimation error.

6.3.5 Performance with respect to the user behavior

Our experiments so far considered a very simplistic population in which
users choose among their friends uniformly at random (which we denote
as SDA). As it has been discussed in the past [10, 15], this population is
unlikely to represent real users. We now evaluate the four attacks against
two more realistic populations in which users choose the recipients according
to an arbitrary multinomial distribution, more (SKW) or less (ARB) skewed
depending on the experiment.
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We show in Fig. 4 (left) box plots representing the distribution of the
MSE per sender profile MSEqi for all users in the population. We also plot
MSEp for each attack in the figure, representing it with ? (note that the
MSEp is the mean of MSEqi for all i). We recall that, as the PMDA and
NSDA, the LSDA makes no assumptions on the users’ profiles, while the
SDA assumes uniform behavior. Hence, as expected, when the profiles be-
come increasingly skewed the SDA performs the worst, obtaining the LSDA
the smallest MSEp. Furthermore, it is worth noticing that the user behavior
has a strong influence on the variance of the MSEqi . The fact that users
have favorite friends who receive a large fraction of their messages makes
the probability of these receivers easy to estimate, while for receivers that
are not often chosen the estimates are poor. This explains the large variance
in the SKW population with respect to the other population types.

6.3.6 Comparison between attack principles

Throughout the evaluation section we have considered four disclosure attacks
that estimate users profiles using statistics and optimization techniques. We
now compare these attacks to Vida, the Bayesian inference-based machine
learning algorithm proposed by Danezis and Troncoso in [10]. Additionally,
we also test the efficacy of simply setting the negative probabilities out-
put by the unconstrained LSDA to zero (denoted as Z-LSDA), and of the
constrained LSDA version, that we call C-LSDA.

We implement the alternating projection strategy described Sect. 4.3 for
the constrained version. While this approach is much faster than solving
the constrained problem in (2), due to memory limitations we had to reduce
the number of rounds analyzed in order to obtain results at the time of
submission.4 In order to make our results comparable to that in previous
sections we choose the following parameters Nusers = 20, t = 5, f = 5,
ρ = 1000, and τf = 1. These parameters ensure that the average number of
messages observed by the adversary from each sender to each sender’s friend
is the same as in the baseline example above.

We can see in Fig. 4 (right), which shows box plots representing the
distribution of the MSEqi for all users under observation, that Vida outper-
forms the statistical variants. In order to simplify the figure, we have not
plotted the the MSEp, that lies extremely close to the median in all cases.

We have already discussed that the LSDA obtains an advantage over the
SDA, PMDA, and NSDA by considering all observed rounds simultaneously,
but does not account for the one-to-one relationship between send and re-
ceived messages in the individual rounds of mixing. As we see in the figure,
this advantage can be increased by not considering the negative probabilities
(Z-LSDA). The best results, close to Vida’s performance, are obtained when

4We plan to include results for ρ = 10000 in the final version of the paper.
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Figure 4: MSEqi evolution with respect to the population type for all attacks
(N = 100, f = 25, t = 10, ρ = 10 000, τf = 1) (left) and only comparison
between attack principles (right) (N = 20, f = 5, t = 5, ρ = 1000, τf = 1).
(We represent MSEp with a ?.)

constraints ensuring the estimated profiles are well-defined are imposed on
the solution (C-LSDA).

The approach followed in Vida, not only considers all rounds, but searches
for perfect matchings in each round improving the profile estimation con-
siderably with respect to the other attacks. While the effectiveness of Vida
is desirable, it comes at a high computational cost because each iteration
of the algorithm requires finding a perfect matching in all the ρ rounds
observed. We have also noticed that when the population characteristics
ease the profile estimation (few users with few friends) the performance of
Vida is significantly affected. This is because in this case the set of possible
matchings is reduced and finding them becomes increasingly difficult.

6.4 Results: Pool mix

We now proceed to evaluate the LSDA profiling performance when mes-
sages are anonymized using a threshold binomial pool mix. We recall that
in such mix arriving messages are stored on a pool, and each round (i.e.,
when t messages are received) leave the mix with probability α. Otherwise,
messages stay on the pool until the next round, when they are mixed with
the arriving fresh messages and again probabilistically selected to be fired
or not. Additionally, we compare the LSDA with the SDA, the only attack
in the literature that has been applied to pool mixes.

6.4.1 Performance with respect to delay

Given the operation of the mix, the delay (in rounds) suffered by messages
traversing the mix follows a geometric distribution with parameter α and
hence its mean is (1−α)/α. In Fig. 5, left, we illustrate the tradeoff between
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the profiling accuracy of the LSDA and α. As expected, small values of α
(i.e., large delays) result in larger error than when messages abandon the
mix very fast. The longer the delay, the more messages participate in the
mixing (recall that the mean size of the pool is m = t−αt

α ), and the more
difficult it is to estimate relations between senders and receivers. One can
also see that the empirical error closely follows the prediction given by (34).

The figure also shows the evolution of the MSE per transition probability
MSEp of the SDA. Perhaps surprisingly, it seems that the SDA outperforms
the LSDA for small values of α, and that further its MSEp is independent
from the pool mix firing probability. Fig. 5 (right) shows a comparison
between the real profile of a given user (—), and the estimations output by
the LSDA (· · · ) and SDA (- -). A closer look at the estimated profiles reveals
that actually the SDA’s output resembles noise with mean 1/Nusers. Only
when α takes values closer to 1, i.e., when the pool mix operation is most
similar to that of a threshold mix, the user’s friends stand out in the profile
output by the SDA. Thus, if we measure the percentage of friends correctly
identified by both attacks, i.e., the percentage of real friends contained in
the f users assigned the largest probabilities in each of the user profiles, we
find that when least information is available (α = 0.1,ρ = 10 000), the LSDA
correctly identifies 47% of the users’ friends, while the SDA only uncovers
37%. This difference is reduced when α is increased to 0.9, and the LSDA
and SDA correctly identify 93% and 91% of friends, respectively.

6.4.2 Performance with respect to the number of rounds ρ

Fig. 6, left shows the evolution of the MSEp with the number of rounds
for two firing probabilities: α = 0.5, and α = 0.9. Similarly to the case of
the threshold mix (see Fig. 1, left), and as predicted by (34), augmenting
the number of observed rounds decreases significantly the error incurred by
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the LSDA. We can see that the empirical results closely follow our MSEp
prediction (represented by • in the figure).

As we have explained, the larger the firing probability α, the more similar
to the threshold mix is the pool mix behavior, and hence the better is the
estimation of the LSDA. The SDA, however, does not take much advantage
of this fact, hence the difference between the MSEp of both attacks increases
with α. Moreover, observing more rounds does not significantly improve the
SDA’s performance, as illustrated by the first and second rows in Fig. 5
(right). The SDA’s naive approach takes little advantage of the information
procured by additional observations, and its output error remains virtually
constant as the number of rounds grows. For α = 0.1 the LSDA correctly
identifies 47% of the users’ friends when 10 000 rounds are observed, and
75% when ρ is increased to 100 000. The SDA’s performance in identifying
friends, however, only improves from 37% to 55%.

6.4.3 Comparison between attack principles

We show in Fig. 6 (right), box plots representing the distribution of the
MSEqi for all users under observation for the SDA, the LSDA, the Z-LSDA
(profiles obtained setting the negative probabilities output by the uncon-
strained LSDA to zero), and the C-LSDA (profiles obtained constraining
the solution of the LSDA, Sect. 4.3). We use the parameters in Sect. 6.3.6
for the reasons outlined above.

The SDA results reflect the fact that the attack output is virtually in-
dependent from the input, and hence its error in profiling has almost no
variance. We also observe that the Z-LSDA obtains much better results
in terms of MSEqi than the bare bones LSDA. This is because the uncon-
strained LSDA’s estimate includes negative probabilities that increase the
mean squared error (cf. Fig. 5 (right)), while in practice gives perfect infor-
mation to the adversary who infers that the corresponding users cannot be
friends. Similarly to the threshold mix, the error is further reduced when
constrains are imposed to ensure that the estimated profiles are well-defined.

7 Discussion and Future Work

We have shown that the Least Squares based approach is significantly more
effective than its statistical predecessors in learning the users’ profiles. More-
over, in the unconstrained case the matrix operations performed by the
LSDA have much smaller computational requirements than the round-by-
round processing carried out by the PMDA, NSDA or Vida. This decrease in
computation comes at the cost of memory: the LSDA has to deal with large
matrices. The parameters we have used in this paper generated matrices
that fitted comfortably in a commodity computer, but larger mix networks
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Figure 6: MSEp evolution with the number of pool mix rounds ρ (N = 100,
f = 25, t = 10, α = 0.5, τf=1), comparison between MSEp output by the
different attack principles (right) (N = 20, f = 5, t = 5, ρ = 1000, τf = 1,
α = 0.5).

may need extra memory. When memory is an issue, a gradient-based ap-
proach can be used to iteratively process the rounds obtaining the same
result while considerably reducing the computational requirements of the
attack.

The constrained LSDA considers all users simultaneously with a much
higher computational load, which can be reduced again with iterative ap-
proaches as the alternate optimization solution that we have discussed.
Moreover, our results show that the setting to zero the negative probabilities
output by the unconstrained LSDA yields results close to the constrained
solution at a minimal cost.

A common limitation of previously proposed disclosure attacks is that
they are designed considering that user profiles are static. This assumption
is rather unrealistic, as user’s friendships are not guaranteed to be stable
over time. The aforementioned iterative approach can not only be used to
reduce the LSDA’s computational requirements, but can be further adapted
to account for temporal changes in the profiles. Extending the LSDA to
accommodate such evolution is a promising line of future work.

In some cases it might be possible that some of the transition probabili-
ties are known. It is possible to modify the machine learning approach [10]
to account for this extra knowledge, but this is non-trivial for the SDA,
PMDA or NSDA. In contrast, the Least Squares formulation can be easily
adapted to consider this additional information, in a similar way as we did
to show that the SDA is a particular, but largely suboptimal, instance of
LSDA.

Finally, we have presented the attack against the threshold binomial pool
mix assuming that the number of messages arriving to the mix is constant
every round and that the firing probability is constant. However, the prin-
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ciples behind the attack make it easily adaptable to other mixing strategies
where these conditions do not hold, for example, timed mixes (where the
pool mix fires periodically regardless of the number of messages it has re-
ceived) by adapting the construction of the matrices UT

s and B to account
for the specific system parameters and mixing algorithm. It must be noted
that such adjustments would require adapting the derivations in the ap-
pendix; however, the methodology will still be valid. In fact, equipped with
these tools, we plan to develop a framework to compare different mixing
strategies and design new ones.

8 Conclusion

We have introduced the Least Squares Disclosure Attack, that estimates
user profiles minimizing the prediction error of the output given the input.
By modeling the estimation of profiles as a Least Squares problem, we are
able to obtain analytic results that predict the profiling error for a given set
of system parameters. This feature permits the designer of a high-latency
anonymous communication system to choose parameters that provide a de-
sired level of protection depending on the population characteristics without
the need to perform simulations which may require a large computational
effort as in the case of the matching-based approaches [10, 15].

Moreover, our attack is not limited to the analysis of threshold mixes but,
contrary to most previous proposals, can be easily extended to more complex
mixing strategies such as pool mixes. We have empirically evaluated the
LSDA’s performance in a wide variety of scenarios proving that it is superior
to previous proposals, and that our formulas closely model its error.

9 Derivation of MSE for the pool mix.

First, we introduce the following three lemmas:

Lemma 1 Let A = dIn + c1n×n, with d and c two real numbers. Then

A−1 = d−1
(

In −
c

nc+ d
1n×n

)
Proof: See [20].

Lemma 2 We will also need the following result. Let M be an arbitrary
matrix of size ρ× ρ. Then, for large ρ

UTMU ≈ tr(M)tpxINusers +
(
sum(M)t2p2x − tr(M)tp2x

)
1Nusers×Nusers (35)

where tr(M) stands for the trace of M and sum(M) is the summation of all
the elements of M.
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Proof: The input sequences Xr
i , Xr

k , for all i, k = 1, · · · , Nusers are er-
godic in the first and second order joint moments, so the product UTMU
will converge to its expected value. Let Xj , mj denote the jth column of U
and M, respectively. Then, the (i, j)th element of UTMU can be written
as

E{(UTMU)i,j} = E{XT
i MXj} =

ρ∑
r=1

E{Xr
jX

T
i }mr (36)

We must distinguish the cases i 6= j and i = j. For the first, we use the
facts that E{Xr

iX
l
j} = t2p2x when r 6= l, and E{Xr

iX
l
j} = t2p2x − tp2x when

r = l, to write

E{(UTMU)i,j} = t2p2x

ρ∑
r=1

1Tρ mr−tp2x
ρ∑
r=1

Mr,r = t2p2xsum(M)−tp2xtr(M), i 6= j

(37)
For the case i = j we use the fact that E{(Xr

i )2} = t2p2x + tpx(1 − px), so
now

E{(UTMU)i,i} = t2p2x

ρ∑
r=1

1Tρ mr+tpx(1−px)

ρ∑
r=1

Mr,r = t2p2xsum(M)+tpx(1−px)tr(M),

(38)
Combining (37) and (38) we obtain (35). This completes the proof.

We can start now to derive an expression for the MSE. From (12) we
can write the MSE as the sum of the traces of the covariance matrix for the
estimated profile error corresponding to each user. Thus, we focus first on
determining such covariance matrix, which for the jth user, and similarly to
(11) becomes

E[(pj − p̂j)(pj − p̂j)
T ] = (R̂xs)

−1Û
T
s ΣyjÛs(R̂xs)

−1 (39)

where
R̂xs

.
= Û

T
s Ûs = (UT + NT

0 )BTB(U + N0) (40)

is an estimate of the correlation matrix of x̂rs.
First, we compute the covariance matrix Σyj of Yj , whose entries are

Cov{Y r
j , Y

l
j }, for all r, l = 1, · · · , ρ. Under the assumption that each sender

and receiver have exactly f friends, we can see Y r
j as the sum of r in-

dependent binomial processes with t trials and probabilities pxα(1 − α)k,
k = 0, · · · , r − 1. Then,

Cov{Y r
j , Y

l
j } = −tp2xα2

r−1∑
m=0

l−1∑
k=0

(1− α)m(1− α)k, r 6= l

Var{Y r
j } = tpxα

r−1∑
m=0

(1− α)m − tp2xα2
r−1∑
m=0

(1− α)2m (41)

27



For large ρ, most of the main diagonal terms can be well approximated by
making r →∞. In such case, we can write

Σyj ≈ tpxIρ − tp2xBBT (42)

We also need to write the estimated correlation matrix R̂xs in a way
that does not depend on the particular input. We will assume that N0 = 0,
as the impact of the initial conditions can be neglected for a large number of
rounds. Therefore, R̂xs = UTBTBU, so from Lemma 2 we need to obtain
tr(BTB) and sum(BTB). To this end, and for large ρ, we can neglect border
effects and approximate B by a doubly infinite lower triangular matrix whose
columns contain the filter samples bk

.
= α(1 − α)kuk, where uk is the unit-

step function, and then truncating it to a ρ × ρ lower triangular matrix.
Now, if ∗ denotes convolution, we can write

tr(BTB) ≈ ρ(bk ∗ b−k)|k=0; sum(BTB) ≈ ρ
∞∑

k=−∞
bk ∗ b−k (43)

From the definition, we find that

bk ∗ b−k =
α

2− α
(1− α)|k| (44)

from which it follows that tr(BTB) = ρα/(2−α)
.
= ραq and sum(BTB) = ρ.

Then, we can write R̂xs = dxsINusers + cxs1Nusers×Nusers , where

cxs
.
= ρtp2x(t− αq); dxs

.
= ραqtpx (45)

On the other hand, application of Lemma 1 and some algebra allows us
to write

R̂
−1
xs = d−1xs (INusers − θ1Nusers×Nusers) (46)

R̂
−2
xs = d−2xs

(
INusers − (2θ −Nusersθ

2)1Nusers×Nusers

)
(47)

where θ
.
= px(1− αq/t).

With the previous derivations, the trace of (39) can be expanded as
follows

tr(R̂
−1
xs UTBTΣyjBUR̂

−1
xs ) = tpxtr(R̂

−1
xs )− tp2xtr(UT (BTB)2UR̂

−2
xs ) (48)

We develop next the two summands in (48). From (46) we have

tr(R̂
−1
xs ) = Nusersd

−1
xs −Nusersθ =

Nusers

ρtαq
(Nusers − 1 + αq/t) (49)

which coincides with (17) for α = 1.
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For the second summand in (48) we use (47) together with Lemma 2 and
simplify terms to show

UT (BTB)2UR̂
−2
xs = d−2xs tr((BTB)2)tpxINusers

+ d−2xs
(
sum((BTB)2t2p2x(1−Nusersθ)

2 − tr((BTB)2)tp2x
)
1Nusers×Nusers(50)

Following the same reasoning as above, for large ρ we can write

tr((BTB)2) ≈ ρ(bk∗b−k∗bk∗b−k)|k=0; sum((BTB)2) ≈ ρ
∞∑

k=−∞
bk∗b−k∗bk∗b−k

(51)
These two quantities can be evaluated using the Z-Transform and the Residue
Theorem, to show that

tr((BTB)2) ≈ ρα

(2− α)3
; sum((BTB)2) ≈ ρ (52)

In any case it is interesting to note that without any approximation both
the trace and the sum of (BTB)2 can be bounded from above by ρ and from
below by 0.

Now, we can plug (52) in (50) to find

tr(UT (BTB)2UR̂
−2
xs ) ≈ d−2xs Nusersρ

(
α

(2− α)3
tpx(1− px) +

α2
q

t
t2p2x

)
(53)

Substituting (49) and (53) in (48) we find that

tr(R̂
−1
xs UTBTΣyjBUR̂

−1
xs ) ≈ Nusers − 1 + αq/t

ραq
− (Nusers − 1)/(2− α) + 1/t

ρNusers

(54)
where αq = α/(2− α).

Finally, from (11)

MSE =

Nusers∑
j=1

tr
(
E[(pj − p̂j)(pj − p̂j)

T ]
)

= Nuserstr(R̂
−1
xs UTBTΣyjBUR̂

−1
xs )

(55)
where the last equality is a consequence of (54) being independent of j.
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