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Abstract—In multibeam satellite systems, there is a growing
need for signal processing techniques able to mitigate the in-
terference among beams, since they could enable a much more
aggressive spectrum reuse. In this paper, we investigate the effect
of the absence of perfect Channel State Information (CSI) at
the receiver end of the multibeam satellite return link. Under
the assumption of a large number of beams, random matrix
theory tools are used to obtain closed-form expressions of the
performance for a given channel matrix and different profiles of
estimation errors.

Index Terms—Multiuser detection; on-ground beamforming;
rain fading; multibeam satellites.

I. INTRODUCTION

In the last few years, the use of multiple spot beams in
modern broadband satellites has increased, in an effort to serve
higher throughput demands with a scalable cost. For this task,
frequency reuse among users beams is required and, if total
spectrum reuse is the goal, then it is necessary to somehow
counteract the interference among beams that appears due to
the side lobes in the satellite’s radiation pattern. Many studies,
such as [1], [2], have been conducted in order to evaluate the
performance of interference mitigation techniques both in the
forward link and return link.

However, it is important to support the practical application
of these techniques with adequate performance prediction
tools which consider commonly found impairments. One of
the impairments to be taken into account is the non-perfect
nature of the Channel State Information (CSI) available at the
receiver, which will degrade the performance of the above
mentioned interference mitigation schemes. In such a case,
what the receiver has is an estimate of the channel matrix of
the form H + E, where H is the actual channel matrix and E
is a random matrix modeling the estimation errors.

In general, such a problem is difficult to solve analytically,
because it requires manipulating the eigenvalue distribution of
complicated matrices. The available litereature reports solu-
tions for some cases; for instance, [3] studies the performance
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of both the Zero-Forcing (ZF) and Linear Minimum Mean-
Squared Error (LMMSE) receivers under imperfect CSI, but
under the assumptions of H consisting of i.i.d. entries (which
is common in terrestrial scenarios).

In this work, we propose to study the mean squared error
(MSE) obtained by a LMMSE receiver. Differently from other
studies, we will allow H to be any fixed matrix with finite
entries; this allows to accommodate any antenna radiation
pattern, provided in numerical or analytical form, at the cost of
focusing over a time interval during which H can be assumed
not to change (that is, we focus on a coherence interval of the
channel). Also, we will be assuming that the user terminals
are fixed.

The proposed method relies on a tight approximation for
the error covariance matrix for medium and high signal to
interference plus noise ratio (SINR), and then exploits the
large dimensionality of the system by resorting to asymptotic
random matrix theory (RMT). As a result, the MSE will
be proven to converge to a non-random value as the matrix
dimensions grow large while preserving their proportion, and
this value will be computed efficiently by solving a system of
equations which has a unique solution. This procedure will be
valid for any error matrix E with zero-mean and independent
entries of finite variance, which leaves room for a number of
estimation error profiles.

The structure of the paper is the following: Section II
describes the sytem model and the metric of study, Section III
explains the proposed method, Section IV illustrates its perfor-
mance by computer simulations and, finally, conclusions are
drawn on Section V.

II. SYSTEM MODEL
A. Channel Model

The system under study consists of a coverage area formed
by K beam spots in which a single user is active at a given
time and carrier block. The satellite uses a fed reflector antenna
array with N (N > K) feeds and relays the impinging signals
to a gateway station on Earth through a transparent link.

The signal model for a given time instant will thus read as
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where y € is the set of received symbols, s € CK*1 is
the set of unit-power transmitted symbols, H € CV>*¥ is the

y=Hs+n
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channel matrix and n € CV*! contains zero-mean Gaussian
samples with covariance matrix E [nnH ] = 3; for notational
convenience, we will also define 3 such that & = Nofl, with
Ny the noise power.

Upon reception of y, the gateway will use a LMMSE re-
ceiver to recover s. However, we will assume that it has perfect
knowledge of the noise covariance, but only an estimate of the
channel matrix, I:I, so that the receiver operation will read as

s=WHy 2)

where W is the LMMSE combining matrix built from
channel estimates [4]
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B. Estimation errors

We will assume data aided channel estimation, where each
user employs a different training sequence of length L, known
as its unique word. As in [5] and [6], we will neglect the
impairments caused by imperfect synchronization, and assume
that the different unique words can be considered orthogonal.
Following this considerations, we come up with the following
model for the estimation errors

A Ny
H=H+ TE @)
=H+oE

where H is a perfectly known deterministic matrix, E is
assumed to be a matrix of independent, zero-mean Gaussian
entries, and we have defined o = Ny /L for simplicity.

From (4), we can see that the variance of the error at each
entry will be proportional to the noise power and inversely pro-
portional to the training sequence length. However, note that
so far we have imposed no further constraints on the variance
of each element in E. As we will discuss in Section III-B, we
will allow each element to have a different variance as long
as some mild constraints are satisfied.

C. Mean squared error as performance metric

A common performance metric is the mean-squared error,
defined as

MSE = E [[|s — §/]*] . ©))
The error covariance matrix, denoted as Q, would read as
Q=E[(s—5)(s—9)"] ©)
and the error for the i-th user would therefore be
€ = Qi (7)

so that, averaging the error over all the users, we can define:
o1
2
€“ = — trace Q. 8
7 traceQ ®)

One of the reasons for the popularity of this metric is its
immediate relation with the SINR after combining, namely [4,
Eq. (6.32)]

pi =—= — L. ©))
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Other reason is that, when stated as in (8), it can be analytically
tackled for a number of cases of interest. For example, under
the assumption of perfect CSI, the matrix Q would have the
following expression [4]

Q=(1+H'S'H) . (10)

Unfortunately, obtaining Q in our case would lead to a
much more complex expression, so that deriving closed-form
formulas for €2 or any p; seems analytically intractable. To
overcome this problem, in the next section we will explore
the use of an approximation of Q which holds whenever the
SINR is not very low. From this expression, we will make use
of an existing result in the field of RMT to compute €%; we
will also discuss on the conditions the system must meet for
the validity of this result.

III. APPROXIMATION OF €2
A. Approximation of Q

One of the problems for computing €? is that, with imper-
fect CSI, the covariance matrix has a much more involved
expression. As a consequence, we will firstly derive a much
more tractable approximation which will hold for medium and
high SINR values.

Lemma 1. Assume that the receiver uses a LMMSE receiver,
but has only an imperfect estimation of the channel matrix H
given by H = H+ oE. Then, the error covariance matrix can
be approximated by

Q~ (1+%) (I+ﬂHz*1ﬂ)7l.

Proof: Expanding the channel model, and taking into
account that H = H 4+ oE, we have

1D

y=8—aEs+n. (12)

Let us define u = aEs + n with E [uu”] = (1+ K/L)3.
After applying the LMMSE receiver, we will have
§=WH7Hs - WHu. (13)

To obtain an approximation, we will start by focusing on the
SINR interval in which the contribution to the error is much
greater in WHu than in WH Hs; to this end, recall that the
transmit power is included into H. Assuming this is so, we
can approximate the covariance matrix by

Q=~E [WH uu’? W]
K\ - = 14
= <1 + f> Wi EW. (1

Plugging the expression of W we get
K
~|(1+ —
a=(7)
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where in the last equahty we have used the approximation
(I +HER" 1H> HZS'H ~ I for simplifying the first
two factors.

| |

The main advantage of the expression above is that it allows
a simple computation of €2. Recalling that ¥ = Ny, then

1 R -1
€ Xtrace[(I—i—HHE_lH) }

1=1 1
K
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where \; {} denotes the i-th largest eigenvalue of the matrix
between brackets. In the limit, we have that

N |

Z{HHE 1H} (16)

le

No + A {HHE H}

lim €=
N,K—o0

a7

== NO . SI:IHE—II:I(—NO).

Here, Sa(z) denotes the Stieltjes transform [7] of the (em-
pirical eigenvalue distribution of) matrix A, hence the last
equality follows directly from its definition

Sx(z) =E [Xlz} .

B. Computing the Stieltjes transform

(18)

Linking €? with the Stieltjes transform of HY 271121 will
prove very useful for our purposes, since this transform has
been derived for a wide range of matrices, many times without
requiring the actual empirical eigenvalue distribution. In our
case, we will make use of the following result from [8]:

Lemma 2. Let A be a matrix of the form

A-—L=oX
VK
where ® denotes the Hadamard (or entry-wise) product, X
has zero-mean i.i.d elements with some finite moment of order
higher than four and Z, the so-called variance profile, has
only real finite entries; consider also a deterministic matrix A
whose columns have finite Euclidean norm, and denote ® =
A+ A
Then, there exists a deterministic matrix T(NO) such that,
while the ratio K /N is kept constant,

19)

. 1 =
ylim = trace T(No) = No - Serre(—No).  (20)

n [8] they also prove that 1/K trace T(Ny) can be com-
puted by solving a system of N + K equations which has a
unique solution.

Applying this result to our problem, we immediately have
that

A =HXH/? (1)

and

A = oX'/?E. (22)
From the expression above, we can see that the assumptions
on A always hold. In what refers to A, the variance of its
elements will be finite, and thus the condition of some finite
moment of order higher than four —which is needed for the
proof of Lemma 2 given in [8]- is met. Still, we need to check
under which conditions the elements of A are independent!;
we will do this in the following paragraphs, and we will also
point out a common particular case of this problem which
leads to a simple solution.

1) Conditions on : Now that A = aX/?E, it is worth
discussing which conditions must 3 meet in order to fulfill
the assumptions of Lemma 2, and in particular the assumption
of independence among its entries. To do this, let us define
e = vec (A) so that e € CEN*1 jg the stack of all the columns
of A.

For the entries of A to be independent, we must have that

Eleiej] =Ele;]Ele;] =0 i # (23)
given that all the elements have zero mean and that we
have assumed E to be formed by Gaussian elements; this is
equivalent to saying that the covariance matrix of e, E [eeH ]
must be diagonal. Operating, we have that

E [eeH] =a’E {vec (21/2E> vec (21/2E> H]

o [(I @ 21/2) vec (E) vec (E)" (1 ® thﬂ

=’ (I®X)
(24)

where ® denotes the Kronecker product and we have used the
identity vec (AB) = (I® A) vec (B).

From this equation, it is clear that 3 must be diagonal
for (23) to hold, even though its elements can be different.
However, and as we will show in Section IV, it is still possible
to obtain good results as long as the off diagonal elements of
3} are very small.

2) The particular case ¥ = Nol, E;; = 1: Assume now
that 3 = Nyl, and that the elements of E have unit variance.
These conditions lead to a very simple, illustrative solution
since, in this case, the system of equations N + K to be solved

'Tt is worth noticing that, even though the elements of X must be identically
distributed, those of A are allowed to have different variances; it suffices to
comprise them in matrix =.



Table I
SIMULATION PARAMETERS

Simulation parameters

Ka band (30 GHz)

Frequency band

User rate 4 Mbaud/s
Receiver noise figure 2.5dB
Total receiver noise temperature 517K
Feed gain patterns Provided by ESA
Number of beams K =100
Number of feeds N =155

UTs location distribution Fixed, one per beam

Training sequence length 256 symbols

Monte Carlo iterations 10,000
reads as
x = trace(T)
y = trace(T)
1 o -1
T <N0(1 an)+ HHH) 25)
14+ ay
1 -1
T = ( No(1 I H'H
< o(1+ay) +1+oz:1: )

with o« = Ny/L; as proven in [8], the solution is unique.

The above system can be straightforwardly extended to the
case Z;; = C, with C some real, finite constant different from
1, by a simple scaling of «. However, when the assumptions
above are not met, we must resort to a more involved for-
mulation of the system which requires the definition of some
auxiliary matrices; the expression for the general case can be
checked on Appendix A.

Before going further and showing the simulation results, let
us summarize the procedure we have described so far: in order
to compute €2, we start by obtaining an approximation of the
error covariance matrix Q (Lemma 1); then, we use a result
from RMT (Lemma 2) to compute its trace —and thus compute
€2— by solving a system of N + K equations.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the derived
approximation by computer simulations. The simulator setup
is summarized on Table I; we used a 155 x 100 beam pattern
provided by the European Space Agency (ESA) —aimed at
covering the whole European continent— where each feed
contributes to forming about six beams.

Additionally, we will also test the case in which 3 is not
diagonal, but has small off-diagonal elements. We will do
so by assuming a fixed beamforming matrix B € C100%155
with BB a matrix with small off-diagonal elements?, to be
applied on the received vector y before any processing; this
matrix also comes from ESA, and is aimed at minimizing the
average interference for a uniform distribution of the users

2This is a consequence of B having to force zeros on off-diagonal elements
of the product BH in order to minimize interference.
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Figure 1. Comparison between the MSE and its approximation, both for

uncorrelated noise and correlated noise (CN). MC stands for Monte Carlo,
and Approx. is the derived approximation.

within their beam spots. With this fixed beamforming, the
deterministic matrix A would be given by BHX” /2 whereas
the random matrix is «BX/?E and ¥ = N,BB*.

The system of equations (25) was solved by Matlab’s
function fminsearch. With uncorrelated noise, the convergence
of the algorithm is very fast —almost instantaneous— but, with
correlated noise, the new variance profile of matrix A and
the existence of some non-zero off-diagonal elements will
affect the accuracy and convergence speed; still, results can be
obtained fastly by feeding the algorithm with a good starting
point.

Focusing on the results, Figure 1 compares the derived ap-
proximation with the actual Monte Carlo results as a function
of the terminals’ equivalent isotropic radiated power (EIRP);
the accuracy is quite remarkable whenever the EIRP is not very
low, since that would be the area where the approximation of
Q in (14) does not hold. Additionally, Figure 2 depicts the
accuracy by means of the absolute relative error. We can see
that that the proposed method is more accurate when >=1,
and that its accuracy increases as the SINR increases.

V. CONCLUSIONS

In this paper, we have obtained a tight approximation for
the mean-squared error of a multi-user communications system
with interference mitigation. In particular, we have tackled the
problem of a satellite return link equipped with an LMMSE
receiver that has access to partial CSI only. Our method relies
on an approximation of the error covariance matrix, for which
existing results in the field of random matrix theory can be
applied. Simulation results have shown a remarkable tightness
at medium and high SINR.

APPENDIX A
FINDING T IN THE GENERAL CASE

When the variance profile of matrix A is not constant, then
we must resort to a more general formulation of the system, as
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Figure 2. Accuracy of the approximation measured by the absolute relative
error.

described in [8]. In this case, before describing the expressions
of T and T, we need to define

i(2) = — e 1<i<N
z (1 + % tralce(DiT(z))) 26)
vile) = z (1+ % trace(D;T(z))) lsi<K
where
D; = diag (col;(E)) 27
and
D, = diag (row;(E)) . (28)

Here, col;(M) and row;(M) denote the i-th column and the
i-th row of matrix M, respectively, and diag(m) denotes a
diagonal matrix whose diagonal is constituted by the elements
in vector m.

From (26), we also build

U(z) = diag(¢i(2))

B (2) = ding(i5(2)) )
and finally
T(z) = (\Irl(z) - ZA@(Z)AH)_l
. . 1 (30)
T(z) = (\Il_l(z) - ZAHLP(Z)A)
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