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Abstract. It is widely accepted that Disclosure Attacks are effective
against high-latency anonymous communication systems. A number of
Disclosure Attack variants can be found in the literature that effectively
de-anonymize traffic sent through a threshold mix. Nevertheless, these
attacks’ performance has been mostly evaluated through simulation and
how their effectiveness varies with the parameters of the system is not
well-understood. We present the LSDA, a novel disclosure attack based
on the Maximum Likelihood (ML) approach, in which user profiles are
estimated solving a Least Squares problem. Further, contrary to previous
heuristic-based attacks, this approach allows us to analytically derive
formulae that characterize the profiling error of the LSDA with respect
to the system’s parameters. We verify through simulation that the LSDA
recovers users’ profiles with greater accuracy than its predecessors, and
that our predictors for the error closely model reality.

1 Introduction

Mixes, relaying routers that hide the relation between incoming and outgoing
messages [2], are one of the main building blocks for high-latency anonymous
communications [4, 6, 9, 16]. A variety Disclosure or Intersection Attacks [1, 3,
7, 8, 11, 12, 17, 18, 20] have been proposed to uncover persistent and repeated
patterns of communication taking place through a mix. In a nutshell, these
attacks find a target user’s likely set of friends, also known as user profile, by
intersecting the recipient anonymity sets of the messages this user sends.

Even though all attacks operate on the same principle they differ on how they
exploit the observations in order to obtain user profiles. Statistical variants [3,
7, 20] rely on heuristics to operate. Therefore, it is difficult to obtain analytic
results that characterize the dependence of their effectiveness on the parameters
of the system. A similar situation arises when considering Vida, the Bayesian
inference-based method by Danezis and Troncoso [8]. The use of Bayesian sam-
pling techniques allow the adversary to analyze more complex systems than pre-
vious attacks, while recovering accurate user profiles. Nevertheless, the method
does neither allow for easy derivation of equations that predict the error when
profiling. As a result these attacks, as well as their sequels [5, 14, 15], have been
mostly evaluated through simulation.

In this paper we propose a novel profiling attack based on the Maximum
Likelihood (ML) approach. The attack estimates user profiles by solving a Least



Squares problem, ensuring that the mean squared error between the real and
estimated profiles is minimized. We empirically show that our attack indeed
minimizes the mean squared error with respect to heuristic disclosure attack
variants [3, 7, 20], although it performs slightly worse than the Bayesian ap-
proach [8].

Nevertheless, we note that the most outstanding feature of the Least Squares
approach is that, contrary to its predecessors, it allows us to derive analytical
expressions that describe the evolution of the profiling error with the parameters
of the system. This is a key property, as it allows designers to choose system
parameters that provide a certain level of protection without the need to make
simulations. We thoroughly validate our results through simulation, proving that
our formulae reliably predict our attack’s error as the parameters of the system
change.

The rest of the paper is organized as follows: in the next section we revisit
previously proposed Disclosure Attacks. We describe our system and adversarial
models in Sect. 3. Next, we introduce the Least Squares approach to disclosure in
Sect. 4, and we derive equations that characterize its performance with respect
to the system parameters. We validate these results in Sect. 5, and discuss future
lines of work in Sect. 6. Finally, we conclude in Sect. 7.

2 Related work

We can find different flavors of disclosure attacks in the literature [1, 3, 7, 8, 10–
13, 17, 18, 20] which we now proceed to revisit.

A first family of intersection attacks are the so-called Disclosure Attack [1,
10] and its sequels [11–13, 17]. These attacks rely on Graph theory in order to
uncover the recipient set of a target user Alice. They seek to identify mutually
disjoint sets of receivers amongst the recipient anonymity sets of the messages
sent by Alice, which are intersected with the anonymity sets of Alice’s sent mes-
sages to find her communication partners. The main drawback of the Disclosure
attack is that it is equivalent to solving a Constraint Satisfaction Problem which
is well-known to be NP-complete. The subfamily of Hitting Set Attacks [11, 12,
17] speeds up the search for Alice’s messages recipients by looking for unique
minimal hitting sets.

Pham et al. provide in [17] a security analysis of a mix-based system against
the Hitting Set Attack with respect to the system’s parameters. They derive
a relationship between the number of rounds the adversary need to observe to
uniquely identify the set of receivers. They further calculate the average compu-
tation complexity of the attack. The study by Pham et al. is similar to our work
in spirit, but different in that they focus on attacks that unambiguously identi-
fying recipient sets while our focus is on statistical attacks that only provide an
estimation of such sets as the ones discussed below.

The series of statistical attacks was started by Danezis in [3] where he in-
troduced the Statistical Disclosure Attack (SDA). Danezis observed that for a
large enough number of observed mixing rounds the average of the probabil-



ity distributions describing the recipient anonymity set [19] of Alice’s messages
offers a very good estimation of her sending profile. Danezis considers that in
each round where Alice sends a message, the recipient anonymity set of this
message is uniform over the receivers present in the round (and zero for the rest
of users). The SDA was subsequently extended to more complex mixing algo-
rithms [7], to traffic containing replies [5], to consider other users in order to
improve the identification of Alice’s contacts [14], and to evaluate more complex
user models [15].

Troncoso et al. proposed in [20] two variants of the SDA, the Perfect Matching
Disclosure Attack (PMDA) and the Normalized Statistical Disclosure Attack
(NSDA). Under the observation that in a round of mixing the relationships
between sent and received messages must be one-to-one, the PMDA and the
NSDA improve the profiling capability of the SDA by considering all senders and
receivers simultaneously. The profiling is done in two phases. In a first step the
adversary assigns most likely receivers to each of the senders in a round taking
into account interdependencies between senders and receivers. For this purpose
the PMDA searches for perfect matchings in the underlying graph representing
a mix round, while the NSDA normalizes the adjacency matrix representing this
graph. In a second step, the recipient anonymity set of each sender in a round is
built by, instead of considering all possible receivers in a round as equally likely,
considering the receiver identified in the first step as the most likely.

Last, Danezis and Troncoso propose to approach the estimation of user pro-
files as a Bayesian inference problem [8]. They introduce the use of Bayesian
sampling techniques to co-infer user communication profiles and de-anonymize
messages. The Bayesian approach can be adapted to analyze arbitrarily complex
systems and outputs reliable error estimates, but it requires the adversary to re-
peatedly seek for perfect matchings increasing the computational requirements
of the attack.

We note that previous authors evaluated the attacks either from mostly a
de-anonymization of individual messages perspective (e.g., [8, 20]), or from the
point of view of the number of rounds necessary to identify a percentage of Alice’s
recipients (e.g., [14, 15]). In this work we are interested in the accuracy with
which the adversary can infer the sender (respectively receiver) profile of Alice,
i.e., we not only seek to identify Alice’s correspondents, but also to estimate the
probability that Alice sends (or receives) a message to (from) them.

3 System model

In this section we describe our model of an anonymous communication system
an introduce the notation we use throughout the paper, which we summarize in
Table 3.

System model. We consider a system in which a population of Nusers users,
designated by an index i ∈ {1, . . . , Nusers}, communicate through a threshold
mix. This mix operates as follows. In each round of mixing it gathers t messages,



transforms them cryptographically, and outputs them in a random order; hence
hiding the correspondence between incoming and outgoing messages.

We model the number of messages that the ith user sends in round r as the
random variable Xr

i ; and denote as xri the actual number of messages i sends
in that round. Similarly, Y rj is the random variable that models the number
of messages that the jth user receives in round r; and yrj the actual number
of messages j receives in that round. Let xr and yr denote column vector that
contain as elements the number of messages sent or received by all users in round
r: xr = [xr1, · · · , xrNusers

]T , and yr = [yr1, · · · , yrNusers
]T , respectively. When it is

clear from the context, the superindex r is dropped.
Users in our population choose their recipients according to their sending

profile qi
.
= [p1,i, p2,i, · · · , pNusers,i]

T ; where pj,i models the probability that user
i sends a message to user j. We consider that a user i has f friends to whom
she sends with probability pj,i, and assign pj,i = 0 for each users j that is not
a friend of i. Conversely, pj is the column vector containing the probabilities

of those incoming messages to the jth user, i.e., pj
.
= [pj,1, pj,2, · · · , pj,Nusers

]T .
(This vector can be related to the receiving profile of user j through a simple

normalization, i.e., by dividing its components by
∑Nusers

i=1 pj,i.) We denote as
fj the number of senders that send messages to receiver j (i.e., the cardinality

of the set Fj = {i|pj,i > 0, pj,i ∈ pj}); and define τf
.
=
∑Nusers

i=1 f2i /(f
2Nusers),

which shall come handy in the performance evaluation performed in Sect. 5.

Adversary model. We consider a global passive adversary that observes the
system during ρ rounds. She can observe the identity of the senders and receivers
that communicate through the mix. As our objective is to illustrate the impact
of disclosure attacks on the anonymity provided by the mix we assume that the
cryptographic transformation performed during the mixing is perfect and thus
the adversary cannot gain any information from studying the content of the
messages.

The adversary’s goal is to uncover communication patterns from the observed
flow of messages. Formally, given the observation xr = {xri } and yr = {yrj}, for
i, j = 1, . . . , Nusers, and r = 1, . . . , ρ , the adversary’s goal is to obtain estimates
p̂j,i as close as possible to the probabilities pj,i, which in turn allow her to recover
the users’ sender and receiver profiles.

4 A Least Squares approach to Disclosure Attacks
(LSDA)

We aim here at deriving a profiling algorithm based on the Maximum Likelihood
(ML) approach to recover the communication patterns of users anonymously
communicating through a threshold mix. The general idea is to be able to esti-
mate the probabilities pj,i that user i sends a message to user j, which allow to
simultaneously determine the sender and receiver profiles of all users.

We make no assumptions on the behavior of the users other than being
memoryless (i.e., for a user the probability of sending a message to a specific



Table 1. Summary of notation

Symbol Meaning

Nusers Number of users in the population, denoted by i = {1, · · · , Nusers}
f Number of friends of each sender i
t Threshold mix
fj Number of senders sending messages to receiver j

τf
∑Nusers

j=1 f2
j /(f

2Nusers)

pj,i Probability that user i sends a message to user j
qi Sender profile of user i, qi = [p1,i, p2,i, · · · , pNusers,i]

T

pj Unnormalized receiver profile of user j, pj = [pj,1, pj,2, · · · , pj,Nusers ]
T

ρ Number of rounds observed by the adversary
xri (yrj ) Number of messages that the ith (jth) user sends (receives) in round r
xr (yr) Column vector containing elements xri (yrj ), i = 1, · · · , Nusers

p̂j,i Adversary’s estimation of pj,i
q̂i Adversary’s estimation of user i’s sender profile qi

p̂j Adversary’s estimation of user j’s unnormalized receiver profile pj

receiver does not depend on previously sent messages), independent (i.e., the
behavior of a certain user is independent from the others), with uniform priors
(i.e., any incoming message to the mix is a priori sent by any user with the
same probability), and stationary (i.e., the parameters modeling their statistical
behavior do not change with time).

4.1 Analysing one round of mixing

For simplicity of notation we will consider first a single round of observations,
and later explain how to extend the derivation to an arbitrary number of rounds.
Hence, for the moment, we will drop the superindex r. Let Yj,i be the random
variable that models the number of messages received by user j that were sent
by user i in the round under consideration. Then the number of messages that
the jth user receives in this round can be computed as:

Yj =

Nusers∑
i=1

Yj,i .

Recall that pj,i represents the probability that user i sends a message to user
j. Then, the probability of user j receiving yj,i messages when the number of
messages sent by user i is Xi = xi is given by a binomial distribution:

Pr(Yj,i = yj,i|Xi = xi) =

(
xi
yj,i

)
p
yj,i
j,i (1− pj,i)xi−yj,i , (1)

whose mean is xi · pj,i and variance xi · pj,i(1 − pj,i). This probability can be
approximated by a Gaussian with the same mean and variance.



It is important to notice that the variables Yj,i, j = 1, · · · , Nusers are not
independent, and rather they are jointly modeled by a multinomial distribution.
However, the covariance cov(Yj,i, Yk,i) = −xi · pj,i · pk,i, k 6= j, which is small
(in comparison with diagonal terms of the covariance matrix) if the transition
probabilities are also small. Moreover, in such case the variance of the binomial
can be approximated by xi · pj,i. Therefore, when the transition probabilities
are small, and recalling that the sum of independent Gaussian random variables
is itself Gaussian, we can approximate the conditional distribution of Yj by a
normal:

Pr(Yj |X = x) ∼ N

(
Nusers∑
i=1

xipj,i,

Nusers∑
i=1

xipj,i

)
,

and consider that cov(Yj , Yk) ≈ 0, whenever k 6= j.

Under the hypothesis above, since the random variables Yj are approximately
independent, we can write the joint probability of Y as

Pr(Y|X = x) ∼ N (Hp,Σy) ,

where pT
.
= [pT1 ,p

T
2 , · · · ,pTNusers

], Σy
.
= diag(Hp), and HT .

= x⊗ INusers
. Here,

In denotes the identity matrix of size n×n, and⊗ denotes the Kronecker product.

For a ML solution to the profiling problem, after observing Y = y, we seek
that vector p̂ or probabilities that maximizes Pr(Y = y|X = x).1 This can be
explicitly written as follows:

p̂ = arg max
p∈P

1√
det(Σy)

· exp

(
−1

2
(y −Hp)TΣ−1y (y −Hp)

)
, (2)

where P denotes the set of valid probability vectors.2

For the unconstrained problem in (2) it is possible to uncouple the different
terms and show that the solution must satisfy

xT p̂j =
1

2

(√
1 + 4y2j − 1

)
, j = 1, · · · , Nusers , (3)

where p̂j is the estimated unnormalized receiver profile of user j.

The right hand side of (3) is smaller than yj ; however, it can be well approxi-
mated by yj when the latter is large. Notice that (3) becomes an underdetermined
linear system of equations.

1 Notice that since the random variable X does not depend on the probabilities p, the
maximization of Pr(Y = y|X = x) is equivalent to that of Pr(Y = y;X = x).

2 Without further constraints, that may be furnished when there is partial knowledge
about the transition probabilities, P is simply given by the constraints 0 ≤ pj,i ≤ 1
for all j, i, and

∑Nusers
j=1 pj,i = 1, for all i.



4.2 Analysing ρ rounds

A different situation arises when the number of observed rounds is larger than
the number of users. In this case, we form the following vectors/matrices:

YT .
= [Y 1

1 , Y
2
1 , · · · , Y

ρ
1 , Y

1
2 , Y

2
2 , · · · , Y

ρ
2 , · · · , Y 1

Nusers
, Y 2
Nusers

, · · · , Y ρNusers
]

UT .
= [x1,x2, · · · ,xρ]

H
.
= U⊗ INusers

The ML solution must satisfy (2). However, notice that in the case of ρ rounds,
the involved matrices and vectors are larger than those found in the case of a
single observation.

Unlike (3), a closed-form solution seems not exist (even for the unconstrained
case, i.e., when no constraints are imposed upon P). We examine next some
approximate solutions to the unconstrained problem that satisfy that p̂→ p as
ρ → ∞. To make this possible, we disregard the dependence of the covariance
matrix Σy with p making the following approximation Σy ≈ diag(y).

In such case, the approximate ML estimator is given by

p̂ = arg min
p∈P
||Σ−1/2y (y −Hp)||2 , (4)

which is nothing but a constrained weighted least squares (WLS) problem.
For simplicity, we consider here the unweighted least squares (LS) case, i.e.,

p̂ = arg min
p∈P
||y −Hp||2 , (5)

which, for the unconstrained case, has the well-known Moore-Penrose pseudoin-
verse solution:

p̂ = (HTH)−1HTy . (6)

At first sight, it might look that the matrix inversion needed in (6) is formidable:
the matrix HTH has size N2

users ×N2
users. However, its block-diagonal structure

allows for a much more efficient solution; indeed,

HTH = (U⊗ INusers
)T ·U⊗ INusers

= (UTU)⊗ INusers

and, hence,
(HTH)−1 = (UTU)−1 ⊗ INusers

where now UTU has size Nusers ×Nusers.
The decoupling above allows us to write a more efficient solution as follows.

Let yj = [y1j , y
2
j , · · · y

ρ
j ]T . Then, the LS estimate p̂j for the jth probability vector

can be written as

p̂j = (UTU)−1UTyj , j = 1, · · · , Nusers .

The decoupling above is possible only in the unconstrained case; this consider-
ation, together with the simplicity of the performance analysis, make us focus



on the unconstrained LS approach. Notice, however, that, as a consequence, the
obtained solution is not guaranteed to meet the constraints on the transition
probabilities. This can be overcome by projecting the solution onto the set P. In
any case, the fact that the error p− p̂ tends to zero as ρ → ∞, ensures that p̂
can be made arbitrarily close to P by increasing the number of rounds. Finally,
note that when p̂j is computed for all users, it is also possible to recover the
sender profiles qi by taking the rows of the matrix p̂.

In any case, it is worth remarking that there are many iterative algorithms
for solving (constrained) least squares problems, which do not require matrix
inversion. We leave the discussion on how they can be adapted to the problem
as subject for future work. It is also worth stressing that we could have arrived
at the LS estimate from the perspective of minimizing the mean square error
between the observed y and a predictor based on a linear combination of the
given inputs x1,x2, · · · ,xρ.

Finally, we note that the original Statistical Disclosure Attack (SDA) cor-
responds to a particular case of the proposed LS estimator. The SDA model
assumes that the first user (Alice) sends only one message to an unknown re-
cipient chosen uniformly from a set f friends. The other users send messages
to recipients chosen uniformly from the set of all users pj,i = 1/Nusers,∀i 6= 1.
From this considerations, for a given round r where Alice does send a message,
we have that xr1 = 1 and

∑Nusers

j=2 xri = (t−1), and all the transition probabilities
of the form pj,i, for i ≥ 2 are known to be equal to 1/Nusers. If we suppose that
in all rounds Alice transmits a message, we will have a vector y which contains
the ρ · Nusers observations, p1 is unknown and all pi, i = 2, · · · , Nusers are
known. From here, it is possible to find that the LS estimate of the unknown
probabilities is

p̂j,1 =
1

ρ

ρ∑
r=1

yrj −
(t− 1)

Nusers
, j = 1, · · · , Nusers

which coincides with the SDA estimate. (We leave a more detailed derivation of
this equation for an extended version of this paper.)

4.3 Performance analysis with respect to the system parameters

The Least Squares estimate in (6) is unbiased: it is straightforward to show that
E[p̂] = p. On the other hand, the covariance matrix of p̂, for a fixed matrix H,
is given by

E[(p− p̂)(p− p̂)T ] = (HTH)−1HTΣyH(HTH)−1 . (7)

Notice that the performance will depend on the actual input matrix H; how-
ever, when the input process is wide-sense stationary, and ρ → ∞ then UTU
will converge to the input autocorrelation matrix Rx. Then, when the number
of observations is large, approximating UTU ≈ Rx will allow us to extract some



quantitative conclusions that are independent of U. To this end, notice that if
Cov(Yi, Yj) ≈ 0 for all i 6= j, then

Σy ≈ diag(ξy)⊗ INusers ,

with ξy = [Var{Y1}, · · · ,Var{YNusers}].
In this case, (7) becomes

E[(p− p̂)(p− p̂)T ] = diag(ξy)⊗ (UTU)−1 . (8)

Still we would need to quantify how large (UTU)−1 is. Since UTU is symmetric,
we can write the following eigendecomposition

UTU = QΛQ−1 , (9)

where Q is orthonormal and Λ is diagonal. In this case, (UTU)−1 = Q−1Λ−1Q.
Then, if we define the transformed probability space where p′j

.
= Qpj and p̂′j

.
=

Qp̂j we have

E[(p′ − p̂′)(p′ − p̂′)T ] = diag(ξy)⊗Λ−1 (10)

A measure of the total error variance made with the proposed estimator is given
by the trace. Notice that

E
[
tr
(
(p′ − p̂′)(p′ − p̂′)T

)]
= E

[
tr
(
(p− p̂)(p− p̂)T

)]
=

Nusers∑
i=1

σ2
yi ·

Nusers∑
j=1

λ−1u,j

(11)
where λu,j , j = 1, · · · , Nusers denote the eigenvalues of UTU.

Equation (11) can be interpreted as having two terms that depend on the
output covariance and input autocorrelation, respectively. In fact, for some cases
of interest, it is possible to derive explicit expressions, as we discuss next.

Consider the case where each user has exactly the same probability 1/Nuser
of sending a message to one of her friends and that each message is sent inde-
pendently. Then, if t messages are sent per round, the observed input vector at
the jth round xj will follow a multinomial distribution for which

E{X2
i } = t2(p2x + px(1− px))

E{XiXk} = t2p2x − np2x, i 6= k

where px = 1/Nusers. Then, the autocorrelation matrix Rx can be shown to have
(Nusers − 1) identical eigenvalues which are equal to ρ · t · px and the remaining
eigenvalue equal to ρ · t · px + ρ · t · p2x(t− 1)Nusers. Therefore,

Nusers∑
j=1

λ−1u,j =
Nusers

ρt

(
Nusers − 1 +

1

t

)
(12)

Next we focus on the output variance. We consider the case where each user
has f friends in her sending profile to whom she sends messages with probability



1/f each. Let Fj be the set of users that send messages to the jth user with
non-zero probability, and let fj be its cardinality. Then, for the input conditions
discussed in the previous paragraph (i.e., i.i.d. uniform users), the probability
that one given message is sent by one user in Fj is fj/Nusers. In turn, the
probability that one message originating from a user in Fj is sent to the jth
user is 1/f . Therefore, we can see Y kj as the output of a binomial process with
probability

pyj =
fj

fNusers
,

and with t messages at its input. Hence, the variance of Yj is

σ2
yj = t · pyj (1− pyj ) =

t · fj
f ·Nusers

·
(

1− fj
f ·Nusers

)
,

so the sum of variances becomes

Nusers∑
j=1

σ2
yj = t

(
1−

∑Nusers

j=1 f2j

f2N2
users

)
= t

(
1− τf

Nusers

)
, (13)

where we have used the fact that
∑Nusers

i=1 fj = f · Nusers, and we have defined

τf
.
=
∑Nusers

j=1 f2j /(f
2Nusers).

Combining (12) and (13) we can write the MSE as

E
[
tr
(
(p− p̂)(p− p̂)T

)]
=

1

ρ

(
Nusers − 1 +

1

t

)
· (Nusers − τf ) . (14)

It is useful to interpret (14) in terms of the number of friends of each receiver.
We will consider two particular cases of interest: 1) If each receiver has exactly
f friends, then τf = τf,1 = 1; 2) If only f receivers have Nusers friends, and
the remaining Nusers − f receivers have no friends, then τf = τf,2 = Nusers/f .
The second case models a situation where f receivers act as hubs (i.e., f users
concentrate the traffic of all the population), while in the first there is absolutely
no skew in the distribution. In fact, using the Lagrange multipliers technique, it
can be shown that for all other cases, including random connections (but always
keeping the constraint that each sender has exactly f friends), the parameter
τf satisfies that τf,1 ≤ τf ≤ τf,2. Since (14) monotonically decreases with τf ,
we can conclude that for the symmetric case (i.e., τf = 1) the MSE is larger,
revealing that it will be harder to learn the transition matrix.

When Nusers is large, we can approximate (14) as follows

E
[
tr
(
(p− p̂)(p− p̂)T

)]
≈ N2

users

ρ
. (15)

If we recall that there are N2
users probabilities to estimate from the tran-

sition matrix, we can conclude that the variance per transition element pj,i is
approximately 1/ρ. The total MSE decreases as 1/ρ with the number of rounds



ρ; this implies that the unconstrained, unweighted LS estimator is asymptoti-
cally efficient as ρ → ∞. Even though this is somewhat to be expected, notice
that other simpler estimators might not share this desirable property, as we will
experimentally confirm in Sect. 5.

5 Evaluation

5.1 Experimental setup

We evaluate the effectiveness of the Least Squares approach to Disclosure Attacks
(LSDA) against synthetic anonymized traces created by a simulator written in
the Python language.3 We simulate a population of Nusers users with f contacts
each, to whom they send messages with equal probability (i.e., pj,i = 1/f if i
is friends with j, zero otherwise). In order to easily study the influence of the
system parameters on the success of the attack, in our simulations we further
fix the senders that send messages to each receiver to be fj = f . In other words,
every sender (receiver) profile has the same number of non-zero elements, and
hence τf = 1. Messages are anonymized using a threshold mix with threshold
t, and we consider that the adversary observes ρ rounds of mixing. Table 5.1
summarizes the values of the parameters used in our experiments, where bold
numbers indicate the parameters of the baseline experiment.

Table 2. System parameters used in the experiments.

Parameter Value

Nusers {50,100, 150, 200, 250, 300, 350, 400, 450, 500}
f {5, 10, 15, 20,25, 30, 35, 40, 45, 50}
t {2, 5,10, 20, 30, 40}
ρ {10000, 20 000, . . . , 100 000}
τf {1.0, 1.76, 2.44, 3.04, 3.56, 4.0}

The parameters’ values used in our experiments, though rather unrealistic,
have been chosen in order to cover a wide variety of scenarios in which to study
the performance of the attack while ensuring that experiments could be carried
out in reasonable time. We note, however, that the results regarding the LSDA
can be easily extrapolated to any set of parameters as long as the proportion
amongst them is preserved. Unfortunately, we cannot make a similar claim for the
other attacks. Their heuristic nature hinders the search for analytical formulae
describing the dependence of their success on the system parameters, which is
difficult to characterize and predict as we will see throughout this section.

Besides testing the effectiveness of the LSDA when profiling users, we also
compare its results to those obtained performing the Statistical Disclosure Attack

3 The code will be made available upon request.



(SDA) [3, 7], the Perfect Matching Disclosure Attack (PMDA) [20], the Normal-
ized Statistical Disclosure Attack (NSDA) [20], and the Bayesian inference-based
attack Vida [8].

5.2 Success metrics

We recall that the goal of the adversary is to estimate the values pj,i with as much
accuracy as possible. The LSDA, as described in Sect. 4, is optimized to minimize
the Mean Squared Error (MSE) between the actual transition probabilities pj,i
and the adversary’s estimated p̂j,i.

We define two metrics to illustrate the profiling accuracy of the attacks.
The Mean Squared Error per transition probability (MSEp) measures the average
squared error between the elmements of the estimated matrix p̂ and the elements
of the matrix p describing the actual behaviour of the users (see (6)):

MSEp =

∑
i,j(p̂j,i − pj,i)2

N2
users

.

Secondly, we define the Mean Squared Error per sender profile (MSEqi):

MSEqi =

∑
j(p̂j,i − pj,i)2

Nusers
, i = 1, . . . , Nusers

which measures the average squared error between the probability of the
estimated q̂i and actual qi user i’s sender profiles. Both MSEs measure the
amount by which the values output by the attack differ from the actual value to
be estimated. The smaller the MSE, the better is the adversary’s estimation of
the users’ actual profiles.

For each of the studied set of parameters (Nusers, f , t, ρ, τf ) we record the
sets of senders and receivers during ρ rounds and compute the MSEp (or the
MSEqi) for each of the attacks. We repeat this process 20 times and plot the
average of the result in our figures.

5.3 Results

Estimating sender and receiver profiles with the LSDA. We first illus-
trate how the LSDA can simultaneously estimate sender and receiver profiles.
Traditionally, Disclosure Attacks focus in estimating the sender profiles; and re-
ceiver profiles can be inferred by resolving the inverse problem (i.e., performing
the same attack inverting the role of senders and receivers). Even the Reverse
Statistical Disclosure Attack [14], that explicitly requires receiver profiles to im-
prove the estimation of the sender profiles, includes a step in which the SDA is
applied in the reverse direction before results can be obtained.

The LSDA estimates the full matrix p in one go. By either considering
the rows or columns of this matrix the adversary can recover the unnormal-
ized receiver profile pj = [pj,1, pj,2, · · · , pj,Nusers

]T , or the sender profile qi =

[p1,i, p2,i, · · · , pNusers,i]
T without any additional operation. Fig. 1, left, shows box



plots4 describing the distribution of the MSEp over 20 experiments for senders
and receiver profiles, respectively. The right-hand side of the figure shows the
sender and the receiver profiles computed performing the LSDA in the reverse
direction, considering the receivers as senders, and vice versa.
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Fig. 1. LSDA’s MSEp per transition probability when inferring sender and receiver
profiles in the forward (left) and reverse (right) directions (Nusers = 100, f = 25,
t = 10, ρ = 10 000, τf = 1).

We can see that the results obtained in the “forward” and reverse direction
are not the same. In fact, we have observed that in each instance there is a
direction that is better than the other in terms of MSEp. While it is not possible
to decide which side is going to provide better results, because as the LSDA
makes no hypothesis about the profiles a priori all profiles are equally likely, it
is easy to see that the average of the estimations p̂ in both directions will yield
a MSE per transition probability smaller than the worst case.

Performance with respect to the number of rounds ρ. As we discuss in
Sect. 4.3, the number of observed rounds ρ has a dominant role in the estimation
error incurred by the LSDA. We plot in Fig. 2, left, the MSE per transition
probability MSEp for the SDA, NSDA, PMDA and LSDA.

The LSDA, optimized to minimize the MSEp, obtains the best results. Fur-
ther, we can see how the approximation in Eq. (15), represented by • in the
figure, reliably describes the decrease in the profile estimation error as more
information is made available to the adversary.

4 The line in the middle of the box represents the median of the distribution. The
lower and upper limits of the box correspond, respectively, to the distribution’s first
(Q1) and third quartiles (Q3). We also show the outliers, represented with +: values
x which are “far” from the rest of the distribution (x > Q3 + 1.5(Q3 − Q1) or
x < Q1− 1 : 5(Q3−Q1)).
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Fig. 2. MSEp evolution with the number of rounds in the system ρ (N = 100, f = 25,
t = 10, τf=1), and with the threshold mix t (N = 100, f = 25, ρ = 10 000, τf = 1)
(left and right, respectively).

It is also interesting to notice how the different attacks take advantage of the
information procured by additional rounds. The naive approach followed by the
SDA soon maxes out in terms of information extracted from the observation and
its MSEp does not decrease significantly as more rounds are observed, confirming
the results in [20]. The NSDA and PMDA perform slightly better in this sense,
although their MSEp also decreases slowly. The LSDA, on the other hand, is
able to obtain information from each new observed round reducing significantly
the MSEp, that tends to zero as ρ → ∞. This is because, as opposed to its
predecessors which process the rounds one at a time, the LSDA considers all
rounds simultaneously (by means of the matrices Y and U).

Performance with respect to the mix threshold t. By observing Eq. (14)
one can see that the threshold t of the mix has little influence on the MSEp of
the LSDA, becoming negligible as t increases and t >> 1. This is reflected by our
experiments, shown in Fig. 2, left, where the error of the LSDA soon becomes
stable as the threshold of the mix grows.

This desirable property does not hold for the other approaches. As expected,
increasing the threshold has a negative effect on the three attacks. Nevertheless
this effect differs depending on the approach used. The SDA’s, surprisingly, seems
to grow proportionally to (1 − 1/t) and thus the increase of the error with the
threshold is greatly reduced as t increases. This is not the case for the NSDA
and PMDA that are based on solving an optimization problem on the underlying
bipartite graph representing a mix round which becomes harder as the threshold
grows. Therefore, their MSEp significantly increases with the number of messages
processed in each mix round.



Performance with respect to the number of users Nusers. Next, we study
the influence of the number of users in the system on the estimation error. The
results are shown in Fig. 3 for ρ = 10 000 (left) and ρ = 100 000 (right). As
expected (see 15), the LSDA’s MSEp grows slowly with the number of users.
The other three attacks, on the other hand, improve when the number of users
increase. We note that the PMDA and the NSDA use the result of the SDA as
seed for the profiling, hence the better estimations output by the SDA, the better
results for the PMDA and the NSDA. When the number of users increases while
the threshold is kept constant the intersection of the sets of senders of different
rounds becomes smaller, and hence the SDA can better identify their sender
profiles.
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Fig. 3. MSEp evolution with the number of users in the system Nusers (f = 25, t = 10,
ρ = 10 000, 100 000, τf = 1) (left and right, respectively).

Even though Nusers has some effect on the MSEp of the LSDA the results
in Fig. 3 reinforce the idea that the number of rounds ρ is the main component
of the error. When ρ = 10 000 rounds are observed the LSDA does not provide
better results than the other attacks. Nevertheless, as the number of rounds
increases, the LSDA outperforms the other attacks regardless of the growth of
the MSE with Nusers.

Performance with respect to the output variance σ2
yj

. The influence

on the LSDA’s MSE of the output variance σ2
yj can be studied by varying the

value of the parameters f and τf , while maintaining Nusers and t constant (see
Eq. (13)). We first vary the number of friends of the senders f while keeping
fj = f for all receivers j, ensuring that τf = 1. We observe in Fig. 4, left, that
the LSDA’s MSEp slowly grows with the number of friends. This implies that
our formula (14), which is invariant with f , fails to predict the actual variation.

In a second experiment, we fix the parameter f vary τf to represent different
degrees of “hubness” in the population. We construct populations such in which



there are α = 0, · · · , f receivers that have Nusers friends, while the remaining
Nusers − α receivers have f − α friends, obtaining values of τf between 1 and
Nusers/f . The result is shown in Fig. 4, right. As in the previous case, formula
(14) which predicts a decrease in the MSE with τf , wrongly reflects reality.
It is worthy to note that the SDA significantly benefits from the hubness of
the population. As some users concentrate the traffic, and the sending profiles
become more uniform all users tend to send their messages to the same set of
receivers. In this scenario the strategy of the SDA, that assigns equal probability
to every receiver in a mix batch, closely models reality and the error tends to
zero. While the error of the SDA is very small, the estimated profiles still have
small biases toward some users. This effect is amplified by the NSDA and PMDA,
significantly increasing their estimation error.

To uncover the reason for this behaviour, we have experimentally computed∑Nusers

i=1 σ2
yi and verified that it is nearly constant with f ; on the other hand,

the sum of the inverse eigenvalues only depends on the input observation, and
thus is also constant with f . We conjecture that the decoupling between H and
y, which is implicitly assumed in (7), must be reconsidered for a more accurate
analysis of the dependence of the MSE with respect to f and τf .
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Fig. 4. MSEp evolution with the number of friends f (N = 100, f = 25, ρ = 10 000,
τf=1), and with τf (N = 100, f = 25, t = 10, ρ = 10 000) (left and right, respectively).

Performance with respect to the user behaviour. Our experiments so
far considered a very simplistic population in which users choose amongst their
friends uniformly at random (which we denote as SDA). As it has been discussed
in the past [8, 20] this population is unlikely to represent real users. We now
evaluate the four attacks against two more realistic populations in which users
choose the recipients according to an arbitrary multinomial distribution, more
(SKW) or less (ARB) skewed depending on the experiment.



We show in Fig. 5 (left) box plots representing the distribution of the MSE
per sender profile MSEqi for all users in the population. We also plot the MSEp
for each attack in the figure, representing it with ? (note that the MSEp is also the
mean of MSEqi for all i). We recall that, as the PMDA and NSDA, the LSDA
makes no assumptions on the users’ profiles, while the SDA assumes uniform
behavior. Hence, as expected when the profiles become increasingly skewed the
SDA performs the worst, obtaining the LSDA the smallest MSEp. Furthermore,
it is worthy to notice that the user behaviour has a strong influence on the
variance of the MSEqi . The fact that users have favorite friends who receive a
large fraction of their messages makes the probability of these receivers easy to
estimate, while for receivers that are not often chosen the attacks’ estimations
are poor. This explains the large variance in the SKW population with respect
to the other population types.
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Fig. 5. MSEqi evolution with respect to the population type for all attacks (left) and
only comparison between attack principles (right) (N = 100, f = 25, t = 10, ρ = 10 000,
τf = 1). (We represent MSEp with a ?.)

Comparison between attack principles. Throughout the evaluation sec-
tion we have considered four disclosure attacks that estimate users profiles using
statistics and optimization techniques. We now compare these attacks to Vida,
the Bayesian inference-based machine learning algorithm proposed by Danezis
and Troncoso in [8]. We can see in Fig. 5 (right), which shows box plots repre-
senting the distribution of the MSEqi for all users under observation, that Vida
outperforms the statistical variants. In order to simplify the figure, we have not
plotted the the MSEp, that lies extremely close to the median in all cases.

We have already discussed that the LSDA obtains an advantage over the
SDA, PMDA, and NSDA by considering all observed rounds simultaneously,
but does not account for the one-to-one relationship between send and received
messages in the individual rounds of mixing. Vida, on the other hand, not only



considers all rounds, but searches for perfect matchings in each round improving
the profile estimation considerably. These results seemingly contradict the per-
formance evaluation in [8]. This is because the comparison performed by Danezis
and Troncoso was with respect to the message de-anonymization success rate,
while we focus on the estimation of profiles. In fact, the results reported by
Danezis and Troncoso show that when 512 rounds of mixing are observed the
profiling accuracy of the algorithm is excellent.

While the effectiveness of Vida is desirable, it comes at a high computational
cost because each iteration of the algorithm requires finding a perfect matchings
in all the ρ rounds observed. We note however that, as in [8], we have used
the SDA’s result as seed for the machine learning engine. We note that using
the LSDA, which yields better estimation of the real profiles than the the SDA,
instead may significantly speed up the learning time.

6 Discussion

We have seen that the LSDA profiling algorithm is more effective than its statis-
tical predecessors. Further, the matrix operations performed by the LSDA have
much smaller computational requirements than the round-by-round processing
carried out by the PMDA or the NSDA. This decrease in computation comes
at the cost of memory, as the LSDA operate with big matrices that have to be
loaded to the RAM. The parameters we have tried generated matrices that fitted
comfortably in any commodity computer, but larger networks may need extra
memory. Nevertheless, when memory is an issue a gradient-based approach can
be used to iteratively process the rounds obtaining the same result. This iterative
approach also reduces the computational requirements of the attack, that would
deal with smaller matrixes. This iterative approach can be further adapted to ac-
count for temporal changes in the profiles. Extending the LSDA to accommodate
such evolution is a promising line of future work.

The fact that we have considered user profiling as an unconstrained problem
(see Eq. (2)) resulted in some of the probabilities p̂j,i estimated by the LSDA
being smaller than zero, corresponding to receivers j that are not friends of
user i. When pj,i = 0 the algorithm returns p̂j,i that lie near this value, but
as the solution is unconstrained it is not guaranteed that p̂j,i ≥ 0. One could
reduce the error by just setting those probabilities to zero, disregarding that∑
qi =

∑
j pj,i = 1. Alternatively, it is possible to establish constraints on

the Eq. (2) to ensure that the profiles recovered by the LSDA are well-defined.
However, enforcing such constraints will no longer guarantee the decoupling of
the unnormalized receiver profiles, and hence the solution is likely to be quite
cumbersome. The development and analysis of such solution is left as subject
for future research.

Up to know only the SDA has been adapted to traffic analysis of anonymous
communications carried out trough a pool mix [16]. This is because the internal
mechanism of the mix, that may delay messages for more than one round, hin-
ders the construction of a bipartite graph between senders and receivers. Hence,



adapting the PMDA or NSDA to such scenario is non-trivial. The independence
of the LSDA from the mix threshold make it an ideal candidate for the analysis
of pool mixes. Further work is needed in order to adapt the matrix construction
process in the LSDA to take into account for the probabilistic behavior of the
pool mix.

Finally, in some cases it might be possible that some of the transition prob-
abilities are known. It is possible to modify the machine learning approach [8]
to account for this extra knowledge, but this is non-trivial for the SDA, PMDA
or NSDA. The Least Squares formulation can be easily adapted to consider this
additional information. Without loss of generality let us assume that p1,1 is
known. As this corresponds to the first element of p, one can work instead with
an equivalent problem in which we remove the first column of H and p1,1 from p;
consequently, the observation vector y is replaced by y− p1,1h1. This procedure
can be repeated for every known transition probability. Similar considerations
can be made for the case where the transition probabilities pj,i depend on a
smaller set of parameters (e.g., when some of the probabilities are known to be
identical).

7 Conclusion

Since Kesdogan and Agrawal [1, 12] introduced the Disclosure Attack to profile
users sending messages through an anonymous network, a stream of efficient
statistical variants have been proposed [3, 7, 5, 8, 14, 15, 20]. Nevertheless, these
attacks have only been evaluated empirically and the dependence of their success
on the system parameters was only understood to the extent the parameters were
used in the simulations.

We have introduced the LSDA, a new approach to Disclosure based on solving
a Least Square problem (LSDA), that minimizes the mean squared error between
the estimated and real profiles. Further, the LSDA is the first disclosure attack
able to simultaneously estimate sender and receiver profiles. The main advantage
of our approach is that it allows the analyst to predict the profiling error given
the system parameters. This capability is essential at the time of designing high-
latency anonymous communication systems, as it permits the designer to choose
the system parameters that provide a desired level of protection depending on
the population characteristics without the need to perform simulations. We have
empirically evaluated the LSDA and we have proved that our equations closely
model its error. Our results also confirm that previous attacks’ profiling error is
not easy to predict as the system’s parameters change.
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