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Abstract

We introduce a new blind criterion for carrier phase recpwErQAM modulated data, based on the
maximization of the average of theth power of the phase-compensated received data véctwrm. In
order to improve the performance of state-of-the-art highder estimators for cross-QAM constellations,
which are sensitive to finite precision effects, our focusrislow-order methodsg(= 1 and 2). Fixed-
point iterations with good local convergence propertiesgiven for these cases; different existing phase
estimators can be used as initializers, depending on thatipe environment and application constraints.
A variance analysis of the novel estimators is derived, tvlihows that they are competitive against
higher-order estimators. More importantly, Monte Carlmliations show that the novel schemes remain
robust to quantization effects and finite precision implataon, and thus they constitute an attractive

choice in realistic scenarios.
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Blind ¢;-Norm-Based Phase Estimation for
Cross-QAM Robust to Finite Precision Effects

. INTRODUCTION

Carrier phase recovery is a key element in bandpass digitahwnication receivers. Many authors
have addressed this topic over the last years, yielding a wadiety of recovery methods depending on
the modulation scheme and application constraints [1]-[Bf evolution of digital communications has
fostered the use of denser constellations such as QuaslrAtuplitude Modulation (QAM) at higher
transmission rates, posing new challenges to the recepematon in general; and in particular to the
estimation of the unknown carrier phase offset, a task thatle performed resorting to either trained
or non-data-aided (NDA, dolind) methods. Our focus is on NDA phase estimation schemese(siay
provide better spectral efficiency) for QAM communicatigrstems.

Existing NDA methods can be roughly classified into two catéxs. Histogram-based schemes [1], [3]
estimate the probability density function (pdf) of the phas a suitable nonlinear transformation of the
observed data. The phase offset affects this pdf as a cyuficfsom which it can be estimated. Although
these methods present good performance, their computhtioad is relatively high. In addition, they
require previous estimation of the channel gain [1] or theRShperation point [3].

On the other hand, higher-order statistics (HOS)-basetiodstobtain the phase estimate as a function
of the sample averages of nonlinear transformations of #éta. @ his class includes the classical fourth-
power (4P) estimator [4], the Viterbi and Viterbi (V&V) faiyiof estimators [5], which were originally
proposed for Phase-Shift Keying (PSK) modulation, andtiiginder estimates such as that of Cartwright
(C8) [6] and the so-called concentration ellipse orientatfCEO) method [7]. All of these apply fixed
nonlinear transformations to the observed data, and doegpiine previous gain control or knowledge of
the SNR. Generalizations of the V&V family were proposeddh [9], where the nonlinearity is matched
to the particular constellation and optimized in terms @& #stimation variance. This approach provides
good performance, but similarly to histogram-based meth@dequires knowledge of the overall gain
and of the effective SNR.

Low computational complexity makes the standard 4P estimadry attractive for practical imple-
mentation. Its asymptotic variance was analyzed in [4], $8pwing that for a given sample size, it does

not decrease with increasingly high SNR (except in the case @QPSK constellation). This error floor

March 15, 2009 DRAFT



is induced by the so-calleself-noisedue to the multimodulus nature of QAM constellations. Despi
this drawback, performance is considered acceptable foaregqQAM constellations (it is known that
the NDA Maximum Likelihood estimator reduces to the 4P eaton as the SNR approaches zero [4]);
however, its self-noise-induced error floor is much higlerdross-QAM constellations, in which several
corner symbols in the constellation (those with larger nhasjuare missing. For these cases, eighth-order
methods such as C8 and CEO constitute a better choice, disgeptovide lower variance floors at
medium to high SNR, at the expense of an increase in comyplexit

Dense QAM constellations are very sensitive to phase erewsseen in Fig. 1, which shows the
symbol error rate (SER) versus the SNR per bit (gN&irves, obtained by simulatibfior uncoded 32-
and 128-QAM in additive white Gaussian noise (AWGN) undeuahber of phase offsets. Clearly, even
relatively small phase errors may incur a substantial gegnalterms of SNR (e.g.1.25 and5.25 dB
for 32- and 128-QAM respectively, for a phase offset3dfat a target raw SER af0—?).

Practical implementation of digital receivers must uguédice hardware limitations imposed by cost,
size, speed, and power consumption constraints. In thésatisns, fixed point arithmetic devices may
be the only available choice. Similarly, if high-speed agalo-digital converters (ADCs) are required,
the available resolution may not be sufficiently high so agtmre quantization effects in the design. In
particular, these effects will impact different phaseraation algorithms in a different way, so that the
choice of an estimator will be determined by its behaviohwgjuantized data and fixed point arithmetic
processing, rather than by its theoretical asymptoticavené under infinite precision. Although estimation
performance is difficult to analyze under finite wordlengémstraints, intuitively one would expect that
estimators requiring fewer, lower-order operations onabgerved data be more robust in these situations.
For example, the performance of the 4P phase estimate ictexp® degrade more gracefully than that
of eighth-order methods such as C8 and CEO.

These considerations motivate the search for low-compld¥DA phase estimators for cross-QAM
systems. In this paper we develop two such schemes by mam@niertain cost functions arising from
geometrical considerations based on the square-like sbBgBAM constellations. Although it is not
possible to derive closed-form expressions for these miagis, we present simple iterations which
locally converge to the desired values, and which can baliz#d by any suitable scheme providing
a coarse phase estimate. The choice of the initializer ghbeltailored to the operation environment

(constellation size, number of samples, availability afring data, etc.).

IClosed-form expressions for the SER of cross-QAM in AWGN karewn only for zero phase offset [10], [11].
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The paper is organized as follows. Section Il presents peasimodel and reviews the classical one-
shot estimators that will be considered in the paper. Mazation of the/;-norm as a criterion for phase
estimation is justified in Section Ill, whereas the two pregd estimators are derived in Section IV. Sec-
tion V provides an analysis in terms of variance, initiai@a and computational complexity. Simulation
results, for both floating point and fixed point implemerdas, are shown in Section VI, and conclusions
are drawn in Section VII.

Notation is as follows: for a complex numbey the real and imaginary parts are denoted: and 2
respectively, whereas afg} denotes the phase. Thus= z + jz = |2| - &%}, Superscript denotes
complex conjugation. Theomplex sigrof z is defined as csgir) = sgn(z) + jsgn(z), where for real
x, sgn(z) = x/|z| if = # 0 and zero otherwise. Throughout the paper we use the figed pointwith
two different meanings. A point, € R is said to be a fixed point of a transformatign: R — R if
f(xzg) = xo. On the other hand, we refer to fixed point (as opposed to figgidint) implementations
of a given algorithm as the format used to store and manipuiambers within a processing device.

Which of the two meanings applies in each case should be tilearthe context.

I[I. SYSTEM MODEL AND CLASSICAL ESTIMATORS

Consider the receiver of QAM system, in which the receiveghai is sampled at the baud rate
after front-end processing. Assuming that carrier fregyercovery has been previously established, the

observed data can be written as
rk:akeje—knk, k=0,1,...,L—1, Q)

where{a;} are the transmitted symbols, drawn equiprobably from a tetiation .4 with size A/ and
varianceE,, and{n;} are the complex-valued noise samples. The noise is assusnedrean, circular
white Gaussian with variance?, and independent of the symbols. The phase offsit assumed to
vary slowly; thus, it can be taken as constant within the blot L samples. The goal is to identify
without knowledge of the symbols, or the variances?,, 2. Due to the quadrant symmetry of QAM
constellations, this phase offset can only be blindly idexat up to a four-fold ambiguity; hence, we
assume thaly| < «/4.

The V&V family of estimators [5] embraces a wide range of cesi. Of particular interest are power-

law estimators L
R 1 - .
Ow-p = Za_rg{_ Z |rk|pey4arg{m}} 7 2)
k=0
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wherep is an integer. Fop = 0, the corresponding estimafiy., discards the envelope information of

the received signal. On the other hand, foe 4 one obtains the 4P estimator [4], [2]:

fap = —arg{ Z Tk} 3)

In order to improve the performance of the 4P method with<@4AM constellations, Cartwright [6]
proposed the eighth-order estimator
ZAkBkZAlCl ZAz > BC

écg = ltan_ L (4)

4 ZAkBkZBlOI ZB,%ZAZCl ’

where Ay = Re{r}}, By = Im {r}} andCjy, = |rg|*, and all summations it and!/ in (4) run from0

to L — 1. We note that the four quadrant inverse tangent functioredguired in (4). The price to pay
for the reduced variance of (4) with respect to that of (3) isigher computational load. A different
eighth-order estimator (CEO) was proposed in [7]; its comfonal complexity and performance with

cross-QAM constellations are similar to those of (4).

[Il. PHASE ESTIMATION BASED ON/;-NORM MAXIMIZATION

Consider the mapping : C — R? that assigns to each complex numbet z + jZ the real vector
z = f(z) = [z Z]T. Under f, multiplication by a phase term¥®in C becomes multiplication by an

orthogonal rotation matrix ifR2. Given a candidate estimafe let us define the de-rotated samples
yr =€ 0y = G + jiik, (5)

and consider the effect of such de-rotation on the vegtos f(y) = [7x x]” . In particular, we focus

on the resulting/;-norm of the phase-compensated vector

Ykl = Tkl + Tl (6)

We claim that maximization of thé,-norm with respect td@ is a meaningful criterion for obtaining a
phase estimate with QAM constellations. To see this, it &rirctive to consider the geometry of the
simplest case, i.e. a QPSK constellatiof = 4) A = {V/E,e’(iT"%) 0 < n < 3} in the noiseless
case. Recall that thg-ball defined by||y||; = ~ is a diamond with corners # ++]7 and[+y 0].

It is clear from Fig. 2 that any rotation od by an angle that is not of the formr /2 with n integer can
only result in a smaller averagg-norm of the rotated constellation. That is, thenorm is maximized

when the positioning of the constellation is restored tooitginal regular grid.
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Observe that for QPSK the averaggenorm of the constellation coincides with tlig-norm of any of
its elements, for all phase offsets. This is because thistetiation can be obtained by picking any of
its elements and all possible rotations by an integer nialty 7 /2 rad, and the/;-norm is preserved
by these operations, as it can be easily chetkEdr larger constellations this property does not hold
anymore, although it can be checked that the avefagmrm still attains its maximum for a zero phase

offset. This is shown in Figs. 3 and 4, which plot the costs

Jq(9) = E{llyllf} = E{(lgl + 13"} ()

for ¢ = 1 and 2, in terms of the residual phase err- 6. The jagged appearance df and J, is
due to the fact that thé;-norm is not everywhere differentiable. Besides the ddsgiebal maximum
at zero phase offset, these costs present additional log&ihma for 16-QAM as well as for cross-QAM

constellations; for square QAM with/ > 16, both are unimodal.

IV. FIXED POINT ITERATIONS FOR PHASE ESTIMATION

Since no closed-form expressions for the maximalgf) are available, one must resort to numerical
optimization strategies, e.g. gradient ascent or Newtomithod. We propose alternative fixed point
iterations which are computationally simpler than Newsomiethod and, in contrast to gradient ascent,
do not require stepsize tuning. Our focus is dsqr(é) for ¢ = 1 and 2, as their lower order yields

computationally simpler schemes robust to finite precigfiacts, as will be shown in Section VI.

A. Maximization ofJ; (0)

The goal is to find a maximum of; (6) = E {|gk| + |gk|}. If J1 is differentiable at such point, then
dJ1(0) /00 must vanish. From (5), note that

O _ Ok _ g 90 _ o 8)
90 90 o0 '
Therefore, at the points at which is differentiable,
dJ1(0 _ L
alg ) E {sgn(yx) 9r — SON(Jx) Jr } - 9)
If 4, is a maximum ofJ;, then (9) equals zero (if it exists), i.e.
E {sgn(yx) gx} = E {sgn(yx) yx} - (10)

2Conjugation is anothef;-norm-preserving operation.
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Now, if we write r, = 7, + j7%, then from (5)
U = Tk cos B + 7, siné, U = Tk cos§ — 7 sin é, (12)

and we arrive at
- E{sgn(gk) 7 — sgn(ik) 7}
tan 9* = E {Sgn(gk) 7 + Sgn(gk) fk} (12)
_ —E{Im{esgn(ys) - ri}} (13)
E {Re {csgn(yx) - v} }

— tan (—arg{E {csgn(ys) - r{}}). (14)

Note that (14) characterizes the extremaJpfonly implicitly, since the right-hand side of (14) depends
on 6,. Nevertheless, this condition suggests a fixed point iterab obtaind,. Given the observations
{rr} and a suitable initializatioré(l), we substitute the expectation in (14) by a sample mean s th

iteratively compute

L1 .
0, = —arg{ > ngn(rk : e‘m)) -r}i} : (15)

k=0
B. Maximization of/,(6)
The costJ,; can be written as
Jo(0) = B { (gl + [5)?} = B {luul?} +2- B {7kl - 15l} - (16)

SinceE {|yx|*} is invariant under phase rotations, maximizifgd) amounts to maximizing { |7, }-

Using basic trigonometric relations, it is found that
1

Uik = TPy cos(20) — 5(77/% — 7}) sin(26). 17)
Therefore, at the points at which is differentiable,
PO~ {sgnmu) (7~ )} cos(20) — E {san(gidi) 2rei}sin2d).  (19)
Observe that
72— 7 = Re {r,%} , 27T = Im {r,%} ) (29)
(@) = san(ude) = son(im {rte 7)) @0
If 4, is a maximum ofJ, at which J, happens to be differentiable, then (18) must be zero, i.e.,
tan(20,) — b {Re {rf) sk(?*)} 1)
B {im {r?} s(0.)}
= tan (arg{—jE {r,% sk(é*)}}) . (22)
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Since the right-hand side of (22) dependséanthis condition does not provide the desired solution in
closed form, but similarly to (15), it suggests a fixed potetation. Given the observatioqs;} and a
suitable initializatiorééz), the expectation in (22) is replaced by a sample mean and%ﬁ)ei:s iteratively

computed as follows:

sp(0P) = sgn(Im {r,%e—ﬂéﬁ?)})  k=0,....,L—1, (23a)
L-1
i@ _ 1 20 @l _ T
62 = 3 arg{k; [rEsr (6 )}} T (23b)

V. DISCUSSION ANDANALYSIS

A. Algorithm initialization

~

The costs/,(#) are multimodal in general, due to finite sample effects (withes-QAM, multimodality
is the rule even ag, — o), and hence the proposed iterative schemes may experiengergence to
undesirable solutions. Initialization must be good enot@yket the starting point within the domain of
attraction of the global maximum. Potential initializersclude those methods discussed in Section Il.
The use of the novel iterative methods as refinements of #relatd estimators of Section Il is justified
only if they are able to provide better performance than tiilizer, and at a reasonable computational

cost. Both issues are discussed next.

B. Computational complexity

Consider the standard 4P estimator (3). Obtaining the geeraaluey", r{ requires6L real multipli-
cations andiL real additions. On the other hand, computation of the C8nedé (4) required1L real
multiplications andB L real additions. Thus, the C8 estimate is about twice as estge@as the standard
fourth-phase estimate.

However, quantifying the computational load associate@ tgiven estimator is not always such a
straightforward task. Consider for instance the estirfiagg from (2), which must computg,, e/adlre} —
(> cos(darg{ri})+7 > sin(4arg{ry}). This in turn requires (i) extraction of the phase of the ctemp
numbersry, i.e., Cartesian-to-Polar (C2P) conversion; (ii) comfiataof the termscos(4arg{rx}) and
sin(4arg{rx}); and (iii) averaging these values. The last step amount/toeal additions; however,
the first two steps are likely to be implemented as look-upetdbUT) operations. Thus, complexity

comparisons of the 4P, C8, and V&V-0 estimators will dependte relative costs assigned to memory
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area, hardware multipliers, etc.

In a similar vein, iteration (15) requires phase rotations (in order to obtain cs(gm-e—jés)))
and2L real additions per iteration. Phase rotations can be pagdrvery efficiently (with shift-and-add
operations only) with CORDIC hardware [12], [13]. Alterivaly, with a previous C2P module providing
|rr| and arg{r }, determination of the csgn terms only requifeadditions per iteration. The scheme (23)
is slightly more costly than (15) due to the need to precompgit although it can also benefit from
C2P/CORDIC modules for the computation@(éﬁf)). Complexity evaluation of the proposed estimators
should also take into account the need for proper inititibra(and also the fact that some of the partial

results of the initialization stage can be reused in sulesgigjterations).

C. Asymptotic Variances

Using a small-error analysis, it is possible to obtain olb&am expressions for the asymptotic
variances of the estimatés? = lim,,_. é,(ﬂ), g = 1, 2. Details are given in the Appendix, and the
results are summarized in the following theorem.

Theorem 5.1:Assuming that the iterations (15) and (23) are initializedfisiently close to the true
phase offset and that the Signal-to-Noise Ratip= E,/c? is sufficiently high, the estimate®!) and

6 are asymptotically unbiased, and their asymptotic vagarare given by

. 1 2
; @O _p2l — = _ 2
L@;{)LE{(@ 0) } = 3z ((2 dy) + n)’ (24)
R 1 (ea+by 2 1
. (2) - 2 - 4 4 4 -
lim LE {(6® -0} 2 < Tty 772) : (25)
whereby, ¢4, d,,, go are constellation-dependent constants:
E {a'} . E{la*}
b4 = E(% ’ C4 = E(% ’
. E{(a*csgn(a))"} . E{a’sgn(Im {a?})}
dn = n/2 ’ g2 = B .

The asymptotic variances (24)-(25) depend on the constellaand the SNR, but not on the value
of 6; this is also the case for the 4P estimate, whose asymptatiance was given in [2]. Using that
expression and (24)-(25), one can obtain the ratio of liaissthe SNR tends to infinity) of the asymptotic
variances of the new estimates to that of the 4P estimate

limy oo LE { (09 — 6)%}

* limy oo LE {6 — 02} (26)

Qg

3Note that the operation counts given above for the 4P and 6&nses will change if a previous LUT-based C2P stage is

applied to the observed data, which makes direct comparigtmVV&V-0 even more difficult.
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These ratios are given in Table I, showing that the new schgmaeorm similarly to the 4P estimator
with square QAM, but they consistently offer a sizable inyenment (about one order of magnitude

reduction of the asymptotic variance) with cross-QAM cefliations.

V1. SIMULATION RESULTS

We present the results obtained with the novel iterativamegors, using Monte Carlo simulations,
under both floating point and fixed point implementationse Tocus is on 32- and 128-QAM cross

constellations.

A. Floating point precision

Convergence properties were investigated first, with a @ludisetd = 20°. Fig. 5 shows the Root
Mean Square Error (RMSE) as a function of the number of itemat Both estimators were initialized
using the 4P method (the RMSE shown for iteration zero cpoess tofsp), and different values of
the SNR per bit [defined as SNR= E, /(02 log, M)] are considered. Convergence slows down with
decreasing SNRas expected, but nevertheless, for practical situatiorevaiterations suffice.

Note from Fig. 5 that for 128-QAM and SNR= 30 dB, the RMSE actuallyncreasesafter the second
iteration. This effect is due to the fact that, occasionale initializer @.p in this case) will fail to
set the starting point within the domain of attraction of thesired solution, so that convergence to an
undesired local maximum of the cog} takes place. The nonzero probability of these events pulls u
the final RMSE of the estimates.

Fig. 6 shows the RMSE of the proposed estimators (fixing thabar of iterations to five), together
with those offsp and fcg, as a function of the SNR per bit. For 32-QAM, the iterativéireators are
initialized até,p; they perform similarly tdicg in the high SNR region, although the latter degrades more
gracefully as the noise increases. Good agreement witthtadtical variance predicted by (24)-(25) is
observed for SNR> 14 dB.

Whereasdsr seems to be a sufficiently good initializer with 32-QAM, theuation is different for
128-QAM: occasional convergence to local maxima prevdrgsRMSE of the iterative estimators from
reaching their theoretical asymptotic values. Anotheiopis to usefcg as initializer. Note from Fig. 6
that the theoretical RMSE of the iterative estimators wigilB-QAM in high SNR lies below the observed
RMSE offcg, so that it makes sense to apply these schemes as refinem@ngsAs shown, this initializer
avoids the problem of convergence to local maxima. Of cquaiedhese considerations depend on the

number of samples used for the estimation; too low a value bfcould result indcg not being a good
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10

initializer either. But in general, it can be said that thegleestimators have the potential to improve the
performance of either fourth- or eighth-order schemes leith computational complexity. This potential

is even greater under finite precision constraints, as gesminext.

B. Fixed point implementation

The performance of the different estimators is evaluatetkuuantization and fixed point arithmetic
conditions. The goal is to test the robustness of each mathddr realistic implementation constraints.
The receiver ADC quantizes each real-valued (in-phase aadrgture) data sample 1 bits. The binary
point is set to the right of the first bit, which is the sign Bitie full-scale value of the ADC is chosen
in order to set the probability of clipping a0—2 under AWGN, measured at a reference SNR for which
a raw SER ofl0~! is obtained.

When working with fixed point systems, care must be taken ileoto minimize the effects of
underflow and overflow. Appropriate scalings must be intoedliat certain stages in order to obtain
a suitable tradeoff between the probabilities of these twdegirable events, denoted I, and P,
respectively. The locations and values (usually powerswaf, tfor efficiency reasons) of the scaling
factors must be determined by careful study/fand P, at each of the intermediate computations.
Of the estimators considered in this paper, it was found skating was beneficial for the C8 and 4P
schemes whe®8 < 18 and9 bits respectively, but not for the proposed iterative md#hd his confirms
what one would expect by considering the number of produmisived in each case.

In the simulations, wordlengths ranging frabh= 30 down to 8 bits have been tested, and the scalings
were optimized for each estimator. Whéhis sufficiently high, the convergence and the RMSE of all
estimators follow the floating point results shown in thevpras section. However, the performance
of the methods tested degrades below a certain valuB,oivhich depends on the estimator and the
constellation. It was observed that in gendi@l is more sensitive to finite wordlength effects than the
rest of estimators, where#@$!) and 2 are much more robust in this sense. Next we review in detail
the results of our fixed point simulations in terms of bias &MSE for the 32-QAM and 128-QAM
constellations.

1) Fixed point bias: All estimators are unbiased for sufficiently large wordldrsy but asB is
decreased an offset-dependent bias appears, whose nugggiaws inversely td3. Figs. 7 and 8 show
the bias for 32- and 128-QAM respectively in termsglpat SNR, = 30 dB and for different wordlengths.
At such high SNR values, the bias can only be attributablenitefprecision effects. Clearlycg is more

severely affected than the rest of estimators. For 32-Q%A,already shows bias & = 14 bits, and
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11

for B < 10 bits it becomes useless. The remaining estimators degrace gnacefully, withd,p and§(®
exhibiting the smallest peak bias (abOu°® and1.0° for B = 10 and8 bits respectively). For 128-QAM,

fcg is seen to have a peak bias of already forB = 14 bits. Note that &° phase error would incur

an SNR penalty of3.0 dB for a SER of10~? (see Fig. 1b). The bias of the other schemes becomes
noticeable only forB < 12 bits.

2) Fixed point RMSE:Results for 32-QAM are given in Fig. 9 fat = 1024 symbols,§ = 20° and
different values ofB. With B > 12 bits, all methods perform similarly to the floating point eagor
B = 12 bits, only dcg shows a small degradation, which becomes very large forlsmabrdlengths. In
contrast,sp is Not as sensitive (the small decrease in RMSE with respetitet finite precision curve
is achieved in exchange for a slight bias), similarly to tleet estimatorg)"), (2, which achieve a
much smaller asymptotic RMSE.

Results for 128-QAM, see Fig. 10, roughly follow those forQ2aM, but with all estimators suffering
larger performance losses. FBr= 14 and 12 bits, fcg exhibits a large RMSE of aboa® (due to its
large bias, see Fig. 8). Nevertheless, it still provides edgaitializer for9(1) and#(2), which reach their
asymptotic variances at high SNRFor B = 10 the high RMSE offcg (3.3°) pulls up the RMSEs of
6 and 62 when they start fronfics. The performance of4e is not affected by finite wordlengths as
small asB = 10 bits, and thus when this estimate is used to initiaiZe8 and ), these achieve the

same RMSE as in the floating point implementation (see Fiy. 6b

VIlI. CONCLUSIONS

The relatively poor behavior of classical NDA phase estorsatvith cross-QAM constellations moti-
vated the development of higher-order schemes with imgrgearformance. These, however, are more
sensitive to finite precision issues. The estimators pregas this paper attempt to sidestep this problem:
they achieve a low variance and are less prone to these Haefificts due to their low order, as
simulations have confirmed. Hence, these new schemes tcoastppealing choices for receiver design
under tight wordlength constraints.

A key issue in the proposed iterative estimators is thetfalization. We have seen that standard one-
shot methods (eighth- and fourth-order) can provide adequ@arse estimators for this purpose. Different
strategies are also possible: for example, the low complexid adequate performance of the 0-th order
Viterbi&Viterbi estimator makes it attractive as initiadir for 32-QAM. Yet another possibility arises
whenever training symbols are inserted in the transmittaché, as it is usually the case in practice. A

data-aided phase estimator based just on these trainingotyrmay well present a variance too large
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for decoding purposes (due to a limited number of trainintajebut sufficiently low to initialize the
proposed iterative schemes. Siggmiblindapproach would significantly improve the quality of the plai

data-aided phase estimate.

APPENDIX
PROOF OFTHEOREM 5.1

Let 6 be a fixed point of (15). In order to prove (24), let us define

L1 )
p= % > r,’;csgn(rke‘j"m) . (27)
k=0

Thend() satisfies)(!) = —arg{p}. Let us also define
p=E {ricsgn(re) } =5+ jp, (28)
whered is the true phase offset. Then, similarly to [2], we can write

s o (m{p}\ . /Im{p} —Im{p—p}
= (Gey) ~ o (e et ) )

so that a first-order approximation of the argument in (2@)Jdg

0 ~ —tan! (@ + e> , (30)
p

o1 . p N
€ = = (Im{p—p}—tRe{p—p})- (31)
p p
Note thatr,e 7% = a;, + my, wherem;, = n,e 7% is a noise process with the same statistical properties

asng. Hence, if the SNR is sufficiently high, csﬁﬂke‘j") = csgn(ax + my) ~ csgn(ay), so that

p ~ E{ricsgn(a)} (32)
= E{ajcsgn(ay)} €7 + E {njcsgn(ax)}, (33)
N e’ N———
=v/E.d; =0

and the approximation error in (32) decays exponentiakly fith the SNR. The statistid; turns out
to be real and positive for QAM constellations, and therefetan'(5/p) — 6 as the SNR goes to

infinity. Then a first-order expansion of (30) yields
) ~ 6 — € cos? 6. (34)
With the asymptotic approximatiop~ /E,d,e~7?, (31) becomes

E%Im{(ﬁ—p)eje}/(ﬁcosﬂ). (35)
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Note that if the SNR is sufficiently large and the phase efrerd() is sufficiently small, therp is an

unbiased estimate gf

E{p} = lelE{rkcsgn(rke b ))}
k=0
= lLz:lE{rkcsgn(a el (00" )+nke‘j9m)}
1§ (i
- ZE{chsgn(ak)} X p,
L=

&Q

Hence, from (34)-(36)§()) is asymptotically unbiased.

In order to compute the asymptotic variance, some straighérd manipulations show that

w? {(5— )&’} = 5 [Ip— o~ Re {(5— p)?e™}].

Therefore, from (34)-(35) and (37),

lim LE {(é(l) - 9)2} = 00849[/121;0 LE {62}

L—oo

= o i - e )],

wheres;, so are given by

B{1p - P} = B{I o}

51

52

March 15, 2009

Q

&Q

Q

1L1L1

12 Z Z E {rmcsgn(rke 29) csgn* (rle ye)} B |p|2

k=0 =0
(L2L7—2L ‘E {Tchgn(rke_ja)Hz + é Lz_lE {‘”f’Q ‘ngn(r’“e_ﬁ) ‘2} = lof
k=0
(17 ) 1ok 7 {in?} -
% (2. +20* — o),

E{(-p?} = E{* - p?}

(1= 7)o+ 7B {(rieson(an))?} - 5°

% (Eadge‘ﬂ(’ — p2) .

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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Substituting (43) and (47) in (39), and noting tiidt= E,d? cos? 6, the final result (24) is obtained. The

proof of (25) follows analogous steps.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]
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TABLES

TABLE |
ASYMPTOTIC VARIANCE RATIOS(26) FOR SEVERALQAM CONSTELLATION SIZES

M 1] 16 32 64 128 256 512 1024 2048

a; | 201 006 093 006 081 005 079 0.05
az | 201 0.09 098 008 086 0.08 084 0.08
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32-QAM, 0° < [9] < 12°

10 :
—
.\§I —
o Q
10t NS 3
\ ! :
107} S 4
et
&
_ Q
103 v 3
—0]=0°
—— 0] = 3°
10°H —o— 0] = 6° .
—o— 0] =9°
—— 0] = 12° Y
5 10 25

15 20
SNRy, (dB)

(@)

30

16

128-QAM, 0° < |f] < 6°

Q. o 4
10_2V A4 Q s
ot
2 N
107 4
— 9] =0° N
—— 0] = 1.5°
10°H —o— 18] = 3° \ |
—o—10] = 4.5°
—— 9| = 6°
10 15 20 25 30
SNRy, (dB)
(b)
phasdsafts

Fig. 1. SER versus SNFfor (a) 32-QAM and (b) 128-QAM with different static

Im

Fig. 2. Effect of a rotation on the average-norm of a QPSK constellation. Solid dots: original corlstédn; empty dots:

rotated constellation
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Fig. 3. Square QAM constellations: behavior of thenorm based costd,(#) (normalized to their maximum value).= 1
(solid) and 2 (dashed)
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Fig. 4. Cross QAM constellations: behavior of thenorm based costd,(#) (normalized to their maximum valuej. = 1
(solid) and 2 (dashed)
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32-QAM, 6 = 20°, L = 1024
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128-QAM, 6 = 20°, L = 2048
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Fig. 5. RMSE vs. number of iterations for (a) 32-QAM and (bB4QAM. The method in parentheses afterand J; indicates

which estimator was used as initializer for the respectigeation
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Fig. 6. RMSE vs. SNR per bit for (a) 32-QAM and (b) 128-QAM. Mers are as follows: 4P0), C8 (&), J1 (X), J2 (o).

J1 and J> are initialized with 4P (solid line) and C8 (dashed line).sbed thin lines indicate the theoretical RMSE values for

estimatorsdsp, 6 and§®
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32-QAM, L = 1024, SNRy, = 30 dB, 14 bits
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Fig. 7.

Markers are common to all figures as indicated in (a)
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Bias versug. 32-QAM, L = 1024, SNR, = 30 dB. () B = 14, (b) B = 12, (c) B = 10, and (d) B = 8 hits.
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128-QAM, L = 2048, SNRy}, = 30 dB, 14 bits 128-QAM, L = 2048, SNRy}, = 30 dB, 12 bits
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Fig. 8. Bias versu®. 128-QAM, L = 2048, SNR, = 30 dB. (a) B = 14, (b) B = 12, (¢) B = 10, and (d) B = 8 hits.
Markers are common to all figures as indicated in (d)
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32-QAM, 0 = 20°, L = 1024, 12 bits
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Fig. 9. RMSE versus SNR32-QAM, L = 1024, SNR, = 30 dB. (a) B = 12, (b) B = 10, and (c) B = 8 bits. Markers are
as follows: 4P 0), C8 (), J1 (x), J2 (o). J1 and J2 are initialized with 4P (solid line) and C8 (dashed line)
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128-QAM, 6 = 20°, L = 2048, 14 bits
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Fig. 10. RMSE versus SNR128-QAM, L = 2048, SNR, = 30 dB. (a) B = 14, (b) B = 12, and (c)B = 10 bits. Markers
are as follows: 4Pf{), C8 (), J1 (%), J2 (o). J1 and J> are initialized with 4P (solid line) and C8 (dashed line)
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