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Abstract

We introduce a new blind criterion for carrier phase recovery of QAM modulated data, based on the

maximization of the average of theq-th power of the phase-compensated received data vector`1-norm. In

order to improve the performance of state-of-the-art higher-order estimators for cross-QAM constellations,

which are sensitive to finite precision effects, our focus ison low-order methods (q = 1 and 2). Fixed-

point iterations with good local convergence properties are given for these cases; different existing phase

estimators can be used as initializers, depending on the operation environment and application constraints.

A variance analysis of the novel estimators is derived, which shows that they are competitive against

higher-order estimators. More importantly, Monte Carlo simulations show that the novel schemes remain

robust to quantization effects and finite precision implementation, and thus they constitute an attractive

choice in realistic scenarios.
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Blind `1-Norm-Based Phase Estimation for

Cross-QAM Robust to Finite Precision Effects

I. INTRODUCTION

Carrier phase recovery is a key element in bandpass digital communication receivers. Many authors

have addressed this topic over the last years, yielding a wide variety of recovery methods depending on

the modulation scheme and application constraints [1]-[2]. The evolution of digital communications has

fostered the use of denser constellations such as Quadrature Amplitude Modulation (QAM) at higher

transmission rates, posing new challenges to the receiver operation in general; and in particular to the

estimation of the unknown carrier phase offset, a task that can be performed resorting to either trained

or non-data-aided (NDA, orblind) methods. Our focus is on NDA phase estimation schemes (since they

provide better spectral efficiency) for QAM communication systems.

Existing NDA methods can be roughly classified into two categories. Histogram-based schemes [1], [3]

estimate the probability density function (pdf) of the phase of a suitable nonlinear transformation of the

observed data. The phase offset affects this pdf as a cyclic shift, from which it can be estimated. Although

these methods present good performance, their computational load is relatively high. In addition, they

require previous estimation of the channel gain [1] or the SNR operation point [3].

On the other hand, higher-order statistics (HOS)-based methods obtain the phase estimate as a function

of the sample averages of nonlinear transformations of the data. This class includes the classical fourth-

power (4P) estimator [4], the Viterbi and Viterbi (V&V) family of estimators [5], which were originally

proposed for Phase-Shift Keying (PSK) modulation, and eighth-order estimates such as that of Cartwright

(C8) [6] and the so-called concentration ellipse orientation (CEO) method [7]. All of these apply fixed

nonlinear transformations to the observed data, and do not require previous gain control or knowledge of

the SNR. Generalizations of the V&V family were proposed in [8], [9], where the nonlinearity is matched

to the particular constellation and optimized in terms of the estimation variance. This approach provides

good performance, but similarly to histogram-based methods, it requires knowledge of the overall gain

and of the effective SNR.

Low computational complexity makes the standard 4P estimator very attractive for practical imple-

mentation. Its asymptotic variance was analyzed in [4], [2], showing that for a given sample size, it does

not decrease with increasingly high SNR (except in the case of a QPSK constellation). This error floor
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is induced by the so-calledself-noisedue to the multimodulus nature of QAM constellations. Despite

this drawback, performance is considered acceptable for square QAM constellations (it is known that

the NDA Maximum Likelihood estimator reduces to the 4P estimator as the SNR approaches zero [4]);

however, its self-noise-induced error floor is much higher for cross-QAM constellations, in which several

corner symbols in the constellation (those with larger modulus) are missing. For these cases, eighth-order

methods such as C8 and CEO constitute a better choice, since they provide lower variance floors at

medium to high SNR, at the expense of an increase in complexity.

Dense QAM constellations are very sensitive to phase errors, as seen in Fig. 1, which shows the

symbol error rate (SER) versus the SNR per bit (SNRb) curves, obtained by simulation1 for uncoded 32-

and 128-QAM in additive white Gaussian noise (AWGN) under a number of phase offsets. Clearly, even

relatively small phase errors may incur a substantial penalty in terms of SNRb (e.g. 1.25 and 5.25 dB

for 32- and 128-QAM respectively, for a phase offset of3◦ at a target raw SER of10−3).

Practical implementation of digital receivers must usually face hardware limitations imposed by cost,

size, speed, and power consumption constraints. In those situations, fixed point arithmetic devices may

be the only available choice. Similarly, if high-speed analog-to-digital converters (ADCs) are required,

the available resolution may not be sufficiently high so as toignore quantization effects in the design. In

particular, these effects will impact different phase estimation algorithms in a different way, so that the

choice of an estimator will be determined by its behavior with quantized data and fixed point arithmetic

processing, rather than by its theoretical asymptotic variance under infinite precision. Although estimation

performance is difficult to analyze under finite wordlength constraints, intuitively one would expect that

estimators requiring fewer, lower-order operations on theobserved data be more robust in these situations.

For example, the performance of the 4P phase estimate is expected to degrade more gracefully than that

of eighth-order methods such as C8 and CEO.

These considerations motivate the search for low-complexity NDA phase estimators for cross-QAM

systems. In this paper we develop two such schemes by maximizing certain cost functions arising from

geometrical considerations based on the square-like shapeof QAM constellations. Although it is not

possible to derive closed-form expressions for these maximizers, we present simple iterations which

locally converge to the desired values, and which can be initialized by any suitable scheme providing

a coarse phase estimate. The choice of the initializer should be tailored to the operation environment

(constellation size, number of samples, availability of training data, etc.).

1Closed-form expressions for the SER of cross-QAM in AWGN areknown only for zero phase offset [10], [11].
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The paper is organized as follows. Section II presents the signal model and reviews the classical one-

shot estimators that will be considered in the paper. Maximization of thè 1-norm as a criterion for phase

estimation is justified in Section III, whereas the two proposed estimators are derived in Section IV. Sec-

tion V provides an analysis in terms of variance, initialization and computational complexity. Simulation

results, for both floating point and fixed point implementations, are shown in Section VI, and conclusions

are drawn in Section VII.

Notation is as follows: for a complex numberz, the real and imaginary parts are denoted asz̄ and z̃

respectively, whereas arg{z} denotes the phase. Thus,z = z̄ + jz̃ = |z| · ejarg{z}. Superscript∗ denotes

complex conjugation. Thecomplex signof z is defined as csgn(z)
.
= sgn(z̄) + jsgn(z̃), where for real

x, sgn(x) = x/|x| if x 6= 0 and zero otherwise. Throughout the paper we use the termfixed pointwith

two different meanings. A pointx0 ∈ R is said to be a fixed point of a transformationf : R → R if

f(x0) = x0. On the other hand, we refer to fixed point (as opposed to floating point) implementations

of a given algorithm as the format used to store and manipulate numbers within a processing device.

Which of the two meanings applies in each case should be clearfrom the context.

II. SYSTEM MODEL AND CLASSICAL ESTIMATORS

Consider the receiver of QAM system, in which the received signal is sampled at the baud rate

after front-end processing. Assuming that carrier frequency recovery has been previously established, the

observed data can be written as

rk = akejθ + nk, k = 0, 1, . . . , L − 1, (1)

where{ak} are the transmitted symbols, drawn equiprobably from a constellation A with size M and

varianceEa, and{nk} are the complex-valued noise samples. The noise is assumed zero-mean, circular

white Gaussian with varianceσ2, and independent of the symbols. The phase offsetθ is assumed to

vary slowly; thus, it can be taken as constant within the block of L samples. The goal is to identifyθ

without knowledge of the symbolsak or the variancesEa, σ2. Due to the quadrant symmetry of QAM

constellations, this phase offset can only be blindly identified up to a four-fold ambiguity; hence, we

assume that|θ| < π/4.

The V&V family of estimators [5] embraces a wide range of choices. Of particular interest are power-

law estimators

θ̂VV-p =
1

4
arg

{

−
L−1∑

k=0

|rk|pej4arg{rk}
}

, (2)
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wherep is an integer. Forp = 0, the corresponding estimatêθVV-0 discards the envelope information of

the received signal. On the other hand, forp = 4 one obtains the 4P estimator [4], [2]:

θ̂4P =
1

4
arg

{

−
L−1∑

k=0

r4
k

}

, (3)

In order to improve the performance of the 4P method with cross-QAM constellations, Cartwright [6]

proposed the eighth-order estimator

θ̂C8 =
1

4
tan−1







∑

k

AkBk

∑

l

AlCl −
∑

k

A2
k

∑

l

BlCl

∑

k

AkBk

∑

l

BlCl −
∑

k

B2
k

∑

l

AlCl







, (4)

whereAk
.
= Re

{

r4
k

}

, Bk
.
= Im

{

r4
k

}

andCk
.
= |rk|4, and all summations ink and l in (4) run from 0

to L − 1. We note that the four quadrant inverse tangent function is required in (4). The price to pay

for the reduced variance of (4) with respect to that of (3) is ahigher computational load. A different

eighth-order estimator (CEO) was proposed in [7]; its computational complexity and performance with

cross-QAM constellations are similar to those of (4).

III. PHASE ESTIMATION BASED ON`1-NORM MAXIMIZATION

Consider the mappingf : C → R
2 that assigns to each complex numberz = z̄ + jz̃ the real vector

z
.
= f(z) = [z̄ z̃]T . Underf , multiplication by a phase term ejθ in C becomes multiplication by an

orthogonal rotation matrix inR2. Given a candidate estimatêθ, let us define the de-rotated samples

yk = e−jθ̂rk = ȳk + jỹk, (5)

and consider the effect of such de-rotation on the vectoryk = f(yk) = [ȳk ỹk]
T . In particular, we focus

on the resulting̀ 1-norm of the phase-compensated vector

||yk||1 = |ȳk| + |ỹk|. (6)

We claim that maximization of thè1-norm with respect tôθ is a meaningful criterion for obtaining a

phase estimate with QAM constellations. To see this, it is instructive to consider the geometry of the

simplest case, i.e. a QPSK constellation (M = 4) A = {
√

Eae
j( π

4
+n π

2
), 0 ≤ n ≤ 3} in the noiseless

case. Recall that thè1-ball defined by||y||1 = γ is a diamond with corners at[0 ±γ]T and[±γ 0]T .

It is clear from Fig. 2 that any rotation ofA by an angle that is not of the formnπ/2 with n integer can

only result in a smaller averagè1-norm of the rotated constellation. That is, the`1-norm is maximized

when the positioning of the constellation is restored to itsoriginal regular grid.
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Observe that for QPSK the average`1-norm of the constellation coincides with the`1-norm of any of

its elements, for all phase offsets. This is because this constellation can be obtained by picking any of

its elements and all possible rotations by an integer multiple of π/2 rad, and thè 1-norm is preserved

by these operations, as it can be easily checked2. For larger constellations this property does not hold

anymore, although it can be checked that the average`1-norm still attains its maximum for a zero phase

offset. This is shown in Figs. 3 and 4, which plot the costs

Jq(θ̂)
.
= E{||y||q1} = E{(|ȳ| + |ỹ|)q} (7)

for q = 1 and 2, in terms of the residual phase errorθ − θ̂. The jagged appearance ofJ1 and J2 is

due to the fact that thè1-norm is not everywhere differentiable. Besides the desired global maximum

at zero phase offset, these costs present additional local maxima for 16-QAM as well as for cross-QAM

constellations; for square QAM withM > 16, both are unimodal.

IV. F IXED POINT ITERATIONS FOR PHASE ESTIMATION

Since no closed-form expressions for the maxima ofJq(θ̂) are available, one must resort to numerical

optimization strategies, e.g. gradient ascent or Newton’smethod. We propose alternative fixed point

iterations which are computationally simpler than Newton’s method and, in contrast to gradient ascent,

do not require stepsize tuning. Our focus is onJq(θ̂) for q = 1 and 2, as their lower order yields

computationally simpler schemes robust to finite precisioneffects, as will be shown in Section VI.

A. Maximization ofJ1(θ̂)

The goal is to find a maximum ofJ1(θ̂)
.
= E {|ȳk| + |ỹk|}. If J1 is differentiable at such point, then

∂J1(θ̂)/∂θ̂ must vanish. From (5), note that

∂yk

∂θ̂
= −jyk ⇒ ∂ȳk

∂θ̂
= ỹk,

∂ỹk

∂θ̂
= −ȳk. (8)

Therefore, at the points at whichJ1 is differentiable,

∂J1(θ̂)

∂θ̂
= E {sgn(ȳk) ỹk − sgn(ỹk) ȳk} . (9)

If θ̂∗ is a maximum ofJ1, then (9) equals zero (if it exists), i.e.

E {sgn(ȳk) ỹk} = E {sgn(ỹk) ȳk} . (10)

2Conjugation is another̀1-norm-preserving operation.

March 15, 2009 DRAFT



6

Now, if we write rk = r̄k + jr̃k, then from (5)

ȳk = r̄k cos θ̂ + r̃k sin θ̂, ỹk = r̃k cos θ̂ − r̄k sin θ̂, (11)

and we arrive at

tan θ̂∗ =
E {sgn(ȳk) r̃k − sgn(ỹk) r̄k}
E {sgn(ȳk) r̄k + sgn(ỹk) r̃k}

(12)

=
−E {Im {csgn(yk) · r∗k}}
E
{
Re
{
csgn(yk) · r∗k

}} (13)

= tan (−arg{E {csgn(yk) · r∗k}}) . (14)

Note that (14) characterizes the extrema ofJ1 only implicitly, since the right-hand side of (14) depends

on θ̂∗. Nevertheless, this condition suggests a fixed point iteration to obtainθ̂∗. Given the observations

{rk} and a suitable initialization̂θ(1)
0 , we substitute the expectation in (14) by a sample mean and then

iteratively compute

θ̂
(1)
n+1 = −arg

{
L−1∑

k=0

csgn
(

rk · e−jθ̂(1)
n

)

· r∗k
}

. (15)

B. Maximization ofJ2(θ̂)

The costJ2 can be written as

J2(θ̂) = E
{

(|ȳk| + |ỹk|)2
}

= E
{

|yk|2
}

+ 2 · E {|ȳk| · |ỹk|} . (16)

SinceE
{
|yk|2

}
is invariant under phase rotations, maximizingJ2(θ̂) amounts to maximizingE {|ȳkỹk|}.

Using basic trigonometric relations, it is found that

ȳkỹk = r̄kr̃k cos(2θ̂) − 1

2
(r̄2

k − r̃2
k) sin(2θ̂). (17)

Therefore, at the points at whichJ2 is differentiable,

∂J2(θ̂)

∂θ̂
= −E

{

sgn(ȳkỹk) (r̄2
k − r̃2

k)
}

cos(2θ̂) − E {sgn(ȳkỹk) 2r̄k r̃k} sin(2θ̂). (18)

Observe that

r̄2
k − r̃2

k = Re
{

r2
k

}

, 2r̄k r̃k = Im
{

r2
k

}

, (19)

sk(θ̂)
.
= sgn(ȳkỹk) = sgn

(

Im
{

r2
ke−j2θ̂

})

. (20)

If θ̂∗ is a maximum ofJ2 at whichJ2 happens to be differentiable, then (18) must be zero, i.e.,

tan(2θ̂∗) = −
E
{

Re
{

r2
k

}

sk(θ̂∗)
}

E
{

Im
{
r2
k

}
sk(θ̂∗)

} (21)

= tan
(

arg
{

−jE
{

r2
k sk(θ̂∗)

}})

. (22)
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Since the right-hand side of (22) depends onθ̂∗, this condition does not provide the desired solution in

closed form, but similarly to (15), it suggests a fixed point iteration. Given the observations{rk} and a

suitable initialization̂θ(2)
0 , the expectation in (22) is replaced by a sample mean and thenθ̂

(2)
n is iteratively

computed as follows:

sk(θ̂
(2)
n ) = sgn

(

Im
{

r2
ke−j2θ̂(2)

n

})

, k = 0, . . . , L − 1, (23a)

θ̂
(2)
n+1 =

1

2
arg

{
L−1∑

k=0

[

r2
ksk(θ̂

(2)
n )

]
}

− π

4
. (23b)

V. D ISCUSSION ANDANALYSIS

A. Algorithm initialization

The costsJq(θ̂) are multimodal in general, due to finite sample effects (withcross-QAM, multimodality

is the rule even asL → ∞), and hence the proposed iterative schemes may experience convergence to

undesirable solutions. Initialization must be good enoughto set the starting point within the domain of

attraction of the global maximum. Potential initializers include those methods discussed in Section II.

The use of the novel iterative methods as refinements of the standard estimators of Section II is justified

only if they are able to provide better performance than the initializer, and at a reasonable computational

cost. Both issues are discussed next.

B. Computational complexity

Consider the standard 4P estimator (3). Obtaining the averaged value
∑

k r4
k requires6L real multipli-

cations and4L real additions. On the other hand, computation of the C8 estimate (4) requires11L real

multiplications and8L real additions. Thus, the C8 estimate is about twice as expensive as the standard

fourth-phase estimate.

However, quantifying the computational load associated toa given estimator is not always such a

straightforward task. Consider for instance the estimateθ̂VV-0 from (2), which must compute
∑

k ej4arg{rk} =

(
∑

k cos(4arg{rk})+j
∑

k sin(4arg{rk}). This in turn requires (i) extraction of the phase of the complex

numbersrk, i.e., Cartesian-to-Polar (C2P) conversion; (ii) computation of the termscos(4arg{rk}) and

sin(4arg{rk}); and (iii) averaging these values. The last step amounts to2L real additions; however,

the first two steps are likely to be implemented as look-up table (LUT) operations. Thus, complexity

comparisons of the 4P, C8, and V&V-0 estimators will depend on the relative costs assigned to memory
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area, hardware multipliers, etc.3

In a similar vein, iteration (15) requiresL phase rotations (in order to obtain csgn
(

rk · e−jθ̂(1)
n

)

)

and2L real additions per iteration. Phase rotations can be performed very efficiently (with shift-and-add

operations only) with CORDIC hardware [12], [13]. Alternatively, with a previous C2P module providing

|rk| and arg{rk}, determination of the csgn terms only requiresL additions per iteration. The scheme (23)

is slightly more costly than (15) due to the need to precompute r2
k, although it can also benefit from

C2P/CORDIC modules for the computation ofsk(θ̂
(2)
n ). Complexity evaluation of the proposed estimators

should also take into account the need for proper initialization (and also the fact that some of the partial

results of the initialization stage can be reused in subsequent iterations).

C. Asymptotic Variances

Using a small-error analysis, it is possible to obtain closed-form expressions for the asymptotic

variances of the estimateŝθ(q) .
= limn→∞ θ̂

(q)
n , q = 1, 2. Details are given in the Appendix, and the

results are summarized in the following theorem.

Theorem 5.1:Assuming that the iterations (15) and (23) are initialized sufficiently close to the true

phase offsetθ and that the Signal-to-Noise Ratioη .
= Ea/σ

2 is sufficiently high, the estimateŝθ(1) and

θ̂(2) are asymptotically unbiased, and their asymptotic variances are given by

lim
L→∞

LE
{

(θ̂(1) − θ)2
}

=
1

2d2
1

(

(2 − d2) +
2

η

)

, (24)

lim
L→∞

LE
{

(θ̂(2) − θ)2
}

=
1

4g̃2
2

(

c4 + b̄4

2
+

2

η
+

1

η2

)

, (25)

whereb4, c4, dn, g2 are constellation-dependent constants:

b4
.
=

E
{
a4
}

E2
a

, c4
.
=

E
{
|a|4

}

E2
a

,

dn
.
=

E {(a∗csgn(a))n}
E

n/2
a

, g2
.
=

E
{
a2sgn

(
Im
{
a2
})}

Ea
.

The asymptotic variances (24)-(25) depend on the constellation and the SNR, but not on the value

of θ; this is also the case for the 4P estimate, whose asymptotic variance was given in [2]. Using that

expression and (24)-(25), one can obtain the ratio of limits(as the SNR tends to infinity) of the asymptotic

variances of the new estimates to that of the 4P estimate

αq
.
=

limη,L→∞ LE
{

(θ̂(q) − θ)2
}

limη,L→∞ LE
{

(θ̂4P − θ)2
} . (26)

3Note that the operation counts given above for the 4P and C8 schemes will change if a previous LUT-based C2P stage is

applied to the observed data, which makes direct comparisonwith V&V-0 even more difficult.
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These ratios are given in Table I, showing that the new schemes perform similarly to the 4P estimator

with square QAM, but they consistently offer a sizable improvement (about one order of magnitude

reduction of the asymptotic variance) with cross-QAM constellations.

VI. SIMULATION RESULTS

We present the results obtained with the novel iterative estimators, using Monte Carlo simulations,

under both floating point and fixed point implementations. The focus is on 32- and 128-QAM cross

constellations.

A. Floating point precision

Convergence properties were investigated first, with a phase offsetθ = 20◦. Fig. 5 shows the Root

Mean Square Error (RMSE) as a function of the number of iterations. Both estimators were initialized

using the 4P method (the RMSE shown for iteration zero corresponds toθ̂4P), and different values of

the SNR per bit [defined as SNRb
.
= Ea/(σ

2 log2 M)] are considered. Convergence slows down with

decreasing SNRb as expected, but nevertheless, for practical situations a few iterations suffice.

Note from Fig. 5 that for 128-QAM and SNRb = 30 dB, the RMSE actuallyincreasesafter the second

iteration. This effect is due to the fact that, occasionally, the initializer (̂θ4P in this case) will fail to

set the starting point within the domain of attraction of thedesired solution, so that convergence to an

undesired local maximum of the costJq takes place. The nonzero probability of these events pulls up

the final RMSE of the estimates.

Fig. 6 shows the RMSE of the proposed estimators (fixing the number of iterations to five), together

with those ofθ̂4P and θ̂C8, as a function of the SNR per bit. For 32-QAM, the iterative estimators are

initialized atθ̂4P; they perform similarly tôθC8 in the high SNRb region, although the latter degrades more

gracefully as the noise increases. Good agreement with the theoretical variance predicted by (24)-(25) is

observed for SNRb ≥ 14 dB.

Whereasθ̂4P seems to be a sufficiently good initializer with 32-QAM, the situation is different for

128-QAM: occasional convergence to local maxima prevents the RMSE of the iterative estimators from

reaching their theoretical asymptotic values. Another option is to useθ̂C8 as initializer. Note from Fig. 6

that the theoretical RMSE of the iterative estimators with 128-QAM in high SNR lies below the observed

RMSE ofθ̂C8, so that it makes sense to apply these schemes as refinements to θ̂C8. As shown, this initializer

avoids the problem of convergence to local maxima. Of course, all these considerations depend on the

number of samplesL used for the estimation; too low a value ofL could result inθ̂C8 not being a good
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initializer either. But in general, it can be said that the novel estimators have the potential to improve the

performance of either fourth- or eighth-order schemes withlow computational complexity. This potential

is even greater under finite precision constraints, as discussed next.

B. Fixed point implementation

The performance of the different estimators is evaluated under quantization and fixed point arithmetic

conditions. The goal is to test the robustness of each methodunder realistic implementation constraints.

The receiver ADC quantizes each real-valued (in-phase and quadrature) data sample toB bits. The binary

point is set to the right of the first bit, which is the sign bit.The full-scale value of the ADC is chosen

in order to set the probability of clipping at10−3 under AWGN, measured at a reference SNR for which

a raw SER of10−1 is obtained.

When working with fixed point systems, care must be taken in order to minimize the effects of

underflow and overflow. Appropriate scalings must be introduced at certain stages in order to obtain

a suitable tradeoff between the probabilities of these two undesirable events, denoted byPu and Po

respectively. The locations and values (usually powers of two, for efficiency reasons) of the scaling

factors must be determined by careful study ofPu and Po at each of the intermediate computations.

Of the estimators considered in this paper, it was found thatscaling was beneficial for the C8 and 4P

schemes whenB ≤ 18 and9 bits respectively, but not for the proposed iterative methods. This confirms

what one would expect by considering the number of products involved in each case.

In the simulations, wordlengths ranging fromB = 30 down to 8 bits have been tested, and the scalings

were optimized for each estimator. WhenB is sufficiently high, the convergence and the RMSE of all

estimators follow the floating point results shown in the previous section. However, the performance

of the methods tested degrades below a certain value ofB, which depends on the estimator and the

constellation. It was observed that in generalθ̂C8 is more sensitive to finite wordlength effects than the

rest of estimators, whereaŝθ(1) and θ̂(2) are much more robust in this sense. Next we review in detail

the results of our fixed point simulations in terms of bias andRMSE for the 32-QAM and 128-QAM

constellations.

1) Fixed point bias: All estimators are unbiased for sufficiently large wordlengths, but asB is

decreased an offset-dependent bias appears, whose magnitude grows inversely toB. Figs. 7 and 8 show

the bias for 32- and 128-QAM respectively in terms ofθ, at SNRb = 30 dB and for different wordlengths.

At such high SNR values, the bias can only be attributable to finite precision effects. Clearly,̂θC8 is more

severely affected than the rest of estimators. For 32-QAM,θ̂C8 already shows bias atB = 14 bits, and
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for B ≤ 10 bits it becomes useless. The remaining estimators degrade more gracefully, withθ̂4P and θ̂(2)

exhibiting the smallest peak bias (about0.3◦ and1.0◦ for B = 10 and8 bits respectively). For 128-QAM,

θ̂C8 is seen to have a peak bias of2◦ already forB = 14 bits. Note that a2◦ phase error would incur

an SNRb penalty of3.0 dB for a SER of10−3 (see Fig. 1b). The bias of the other schemes becomes

noticeable only forB ≤ 12 bits.

2) Fixed point RMSE:Results for 32-QAM are given in Fig. 9 forL = 1024 symbols,θ = 20◦ and

different values ofB. With B > 12 bits, all methods perform similarly to the floating point case. For

B = 12 bits, only θ̂C8 shows a small degradation, which becomes very large for smaller wordlengths. In

contrast,θ̂4P is not as sensitive (the small decrease in RMSE with respect to the finite precision curve

is achieved in exchange for a slight bias), similarly to the novel estimatorŝθ(1), θ̂(2), which achieve a

much smaller asymptotic RMSE.

Results for 128-QAM, see Fig. 10, roughly follow those for 32-QAM, but with all estimators suffering

larger performance losses. ForB = 14 and 12 bits, θ̂C8 exhibits a large RMSE of about2◦ (due to its

large bias, see Fig. 8). Nevertheless, it still provides a good initializer for θ̂(1) and θ̂(2), which reach their

asymptotic variances at high SNRb. For B = 10 the high RMSE ofθ̂C8 (3.3◦) pulls up the RMSEs of

θ̂(1) and θ̂(2) when they start from̂θC8. The performance of̂θ4P is not affected by finite wordlengths as

small asB = 10 bits, and thus when this estimate is used to initializeθ̂(1) and θ̂(2), these achieve the

same RMSE as in the floating point implementation (see Fig. 6b).

VII. C ONCLUSIONS

The relatively poor behavior of classical NDA phase estimators with cross-QAM constellations moti-

vated the development of higher-order schemes with improved performance. These, however, are more

sensitive to finite precision issues. The estimators proposed in this paper attempt to sidestep this problem:

they achieve a low variance and are less prone to these harmful effects due to their low order, as

simulations have confirmed. Hence, these new schemes constitute appealing choices for receiver design

under tight wordlength constraints.

A key issue in the proposed iterative estimators is their initialization. We have seen that standard one-

shot methods (eighth- and fourth-order) can provide adequate coarse estimators for this purpose. Different

strategies are also possible: for example, the low complexity and adequate performance of the 0-th order

Viterbi&Viterbi estimator makes it attractive as initializer for 32-QAM. Yet another possibility arises

whenever training symbols are inserted in the transmitted frame, as it is usually the case in practice. A

data-aided phase estimator based just on these training symbols may well present a variance too large
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for decoding purposes (due to a limited number of training data), but sufficiently low to initialize the

proposed iterative schemes. Suchsemiblindapproach would significantly improve the quality of the plain

data-aided phase estimate.

APPENDIX

PROOF OFTHEOREM 5.1

Let θ̂(1) be a fixed point of (15). In order to prove (24), let us define

ρ̂
.
=

1

L

L−1∑

k=0

r∗kcsgn
(

rke−jθ̂(1)
)

. (27)

Then θ̂(1) satisfiesθ̂(1) = −arg{ρ̂}. Let us also define

ρ
.
= E

{

r∗kcsgn
(

rke−jθ
)}

= ρ̄ + jρ̃, (28)

whereθ is the true phase offset. Then, similarly to [2], we can write

θ̂(1) = −tan−1
(

Im {ρ̂}
Re {ρ̂}

)

= −tan−1
(

Im {ρ} − Im {ρ̂ − ρ}
Re {ρ} − Re {ρ̂ − ρ}

)

, (29)

so that a first-order approximation of the argument in (29) yields

θ̂(1) ≈ −tan−1
(

ρ̃

ρ̄
+ ε

)

, (30)

ε
.
=

1

ρ̄

(

Im {ρ̂ − ρ} − ρ̃

ρ̄
Re {ρ̂ − ρ}

)

. (31)

Note thatrke−jθ = ak + mk, wheremk = nke−jθ is a noise process with the same statistical properties

asnk. Hence, if the SNR is sufficiently high, csgn
(

rke−jθ
)

= csgn(ak + mk) ≈ csgn(ak), so that

ρ ≈ E {r∗kcsgn(ak)} (32)

= E {a∗kcsgn(ak)}
︸ ︷︷ ︸

=
√

Ead1

e−jθ + E {n∗
kcsgn(ak)}

︸ ︷︷ ︸

=0

, (33)

and the approximation error in (32) decays exponentially fast with the SNR. The statisticd1 turns out

to be real and positive for QAM constellations, and therefore −tan−1(ρ̃/ρ̄) → θ as the SNR goes to

infinity. Then a first-order expansion of (30) yields

θ̂(1) ≈ θ − ε · cos2 θ. (34)

With the asymptotic approximationρ ≈
√

Ead1e−jθ, (31) becomes

ε ≈ Im
{

(ρ̂ − ρ)ejθ
}

/(ρ̄ cos θ). (35)
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Note that if the SNR is sufficiently large and the phase errorθ − θ̂(1) is sufficiently small, then̂ρ is an

unbiased estimate ofρ:

E {ρ̂} =
1

L

L−1∑

k=0

E
{

r∗kcsgn
(

rke−jθ̂(1)
)}

=
1

L

L−1∑

k=0

E
{

r∗kcsgn
(

akej(θ−θ̂(1)) + nke−jθ̂(1)
)}

≈ 1

L

L−1∑

k=0

E {r∗kcsgn(ak)} ≈ ρ, (36)

Hence, from (34)-(36),̂θ(1) is asymptotically unbiased.

In order to compute the asymptotic variance, some straightforward manipulations show that

Im2
{

(ρ̂ − ρ)ejθ
}

=
1

2

[

|ρ̂ − ρ|2 − Re
{

(ρ̂ − ρ)2ej2θ
}]

. (37)

Therefore, from (34)-(35) and (37),

lim
L→∞

LE
{

(θ̂(1) − θ)2
}

= cos4 θ lim
L→∞

LE
{

ε2
}

(38)

=
cos2 θ

2ρ̄2
lim

L→∞
L
[

s1 − Re
{

s2ej2θ
}]

, (39)

wheres1, s2 are given by

s1
.
= E

{

|ρ̂ − ρ|2
}

= E
{

|ρ̂|2 − |ρ|2
}

≈ 1

L2

L−1∑

k=0

L−1∑

l=0

E
{

r∗krlcsgn
(

rke−jθ
)

csgn∗
(

rle
−jθ
)}

− |ρ|2 (40)

=
(L2 − L)

L2

∣
∣
∣E
{

r∗kcsgn
(

rke−jθ
)}∣
∣
∣

2
+

1

L2

L−1∑

k=0

E

{

|rk|2
∣
∣
∣csgn

(

rke−jθ
)∣
∣
∣

2
}

− |ρ|2 (41)

=

(

1 − 1

L

)

|ρ|2 +
2

L
E
{

|rk|2
}

− ρ2 (42)

=
1

L

(

2Ea + 2σ2 − |ρ|2
)

, (43)

s2
.
= E

{

(ρ̂ − ρ)2
}

= E
{

ρ̂2 − ρ2
}

≈ 1

L2

L−1∑

k=0

L−1∑

l=0

E
{

r∗kr
∗
l csgn

(

rke−jθ
)

csgn
(

rle
−jθ
)}

− ρ2 (44)

=
(L2 − L)

L2
E2
{

r∗kcsgn
(

rke−jθ
)}

+
1

L2

L−1∑

k=0

E

{(

r∗kcsgn
(

rke−jθ
))2

}

− ρ2 (45)

≈
(

1 − 1

L

)

ρ2 +
1

L
E
{

(r∗kcsgn(ak))
2
}

− ρ2 (46)

=
1

L

(

Ead2e−j2θ − ρ2
)

. (47)
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Substituting (43) and (47) in (39), and noting thatρ̄2 = Ead
2
1 cos2 θ, the final result (24) is obtained. The

proof of (25) follows analogous steps.

REFERENCES

[1] C. N. Georghiades, “Blind carrier phase acquisition forQAM constellations”,IEEE Trans. Commun., vol. 45, no. 11, pp.

1477–1486, Nov. 1997.

[2] E. Serpedin, P. Ciblat, G. B. Giannakis, and P. Loubaton,“Performance analysis of blind carrier phase estimators for

general QAM constellations”,IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 1816–1823, August 2001.

[3] G. Panci, S. Colonnese, S. Rinauro, and G. Scarano, “Gain-control-free near-efficient phase acquisition for QAM

constellations”,IEEE Trans. Signal Processing, vol. 56, no. 7, pp. 2849–2864, 2008.

[4] M. Moeneclaey and G. de Jonghe, “ML-oriented NDA carriersynchronization for general rotationally symmetric signal

constellations”,IEEE Trans. Commun., vol. 42, no. 8, pp. 2531–2533, August 1984.

[5] A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation ofPSK-modulated carrier phase with application to burst digital

transmission”,IEEE Trans. Inform. Theory, vol. IT-29, pp. 543–551, July 1983.

[6] K. V. Cartwright, “Blind phase recovery in cross QAM communication systems with eighth-order statistics”,IEEE Signal

Processing Lett., vol. 8, no. 12, pp. 304–306, December 2001.

[7] P. Campisi, G. Panci, S. Colonnese, and G. Scarano, “Blind phase recovery for QAM communication systems”,IEEE

Trans. Signal Processing, vol. 53, no. 4, pp. 1348–1358, 2005.

[8] Y. Wang and E. Serpedin, “A class of blind phase recovery techniques for higher order QAM modulations: Estimators

and bounds”,IEEE Signal Processing Lett., vol. 9, no. 10, pp. 301–304, October 2002.

[9] Y. Wang, E. Serpedin, and P. Ciblat, “Optimal blind nonlinear least-squares carrier phase and frequency offset estimation

for general QAM modulations”,IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 1040–1054, 2003.

[10] N.C. Beaulieu and Y. Chen, “Closed-form expressions for the exact symbol error probability of 32-cross-QAM in AWGN

and in slow Nakagami fading”,IEEE Commun. Lett., vol. 11, no. 4, pp. 310–312, April 2007.

[11] Jian Li, Xian-Da Zhang, and N.C. Beaulieu, “Precise calculation of the SEP of 128- and 512-cross-QAM in AWGN”,

IEEE Commun. Lett., vol. 12, no. 1, pp. 1–3, January 2008.

[12] Y. H. Hu, “CORDIC-based VLSI architectures for digitalsignal processing”,IEEE Signal Processing Mag., vol. 9, no. 3,

pp. 16–35, July 1992.

[13] K. Maharatna, A. Troya, S. Banerjee, and E. Grass, “Virtually scaling-free adaptive CORDIC rotator”,IEE Proc. Comput.

Digital Tech., vol. 151, no. 6, pp. 448–456, November 2004.

March 15, 2009 DRAFT



TABLES 15

TABLE I
ASYMPTOTIC VARIANCE RATIOS(26) FOR SEVERALQAM CONSTELLATION SIZES

M 16 32 64 128 256 512 1024 2048

α1 2.01 0.06 0.93 0.06 0.81 0.05 0.79 0.05
α2 2.01 0.09 0.98 0.08 0.86 0.08 0.84 0.08
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Fig. 1. SER versus SNRb for (a) 32-QAM and (b) 128-QAM with different static phase offsets

Fig. 2. Effect of a rotation on the average`1-norm of a QPSK constellation. Solid dots: original constellation; empty dots:
rotated constellation
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Fig. 6. RMSE vs. SNR per bit for (a) 32-QAM and (b) 128-QAM. Markers are as follows: 4P (2), C8 (3), J1 (×), J2 (◦).
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Fig. 7. Bias versusθ. 32-QAM, L = 1024, SNRb = 30 dB. (a) B = 14, (b) B = 12, (c) B = 10, and (d)B = 8 bits.
Markers are common to all figures as indicated in (a)
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Fig. 8. Bias versusθ. 128-QAM, L = 2048, SNRb = 30 dB. (a) B = 14, (b) B = 12, (c) B = 10, and (d)B = 8 bits.
Markers are common to all figures as indicated in (d)
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(c)

Fig. 9. RMSE versus SNRb. 32-QAM, L = 1024, SNRb = 30 dB. (a)B = 12, (b) B = 10, and (c)B = 8 bits. Markers are
as follows: 4P (2), C8 (3), J1 (×), J2 (◦). J1 andJ2 are initialized with 4P (solid line) and C8 (dashed line)
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Fig. 10. RMSE versus SNRb. 128-QAM, L = 2048, SNRb = 30 dB. (a)B = 14, (b) B = 12, and (c)B = 10 bits. Markers
are as follows: 4P (2), C8 (3), J1 (×), J2 (◦). J1 andJ2 are initialized with 4P (solid line) and C8 (dashed line)
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