ABSTRACT

In digital transmission systems the nonideal channel introduces distortion that
must be compensated for to provide reliable communication, a process known as
equalization. Recently there has been a great interest in the problem of blind equal-
ization of digital communication channels, in which the equalizer is computed by
the receiver without aid from the transmitter. This disposes of the need for sending
training signals, leading to higher bandwidth efficiency.

Many real world channels distort signals in a nonlinear fashion. However, most
of the literature on blind equalization is devoted to the linear case. This thesis
addresses the blind equalization problem for nonlinear single-input multiple-output
digital communication channels, based on the second order statistics (SOS) of the
received signal. The required channel diversity can be obtained by using several
sensors and/or by oversampling the received signal. In the latter case, the overall
system can be cast in a multirate framework. We provide the basic elements of a
theory of multirate nonlinear systems.

We consider the class of ‘linear in the parameters’ channels, which can be seen
as multiple-input systems in which the additional inputs are nonlinear functions of
the signal of interest. These models include (but are not limited to) polynomial
approximations of nonlinear systems. Although any SOS-based method can only
identify the channel to within a mixing matrix (at best), sufficient conditions are
given to ensure that the ambiguity is at a level that still allows for the computation

of linear finite impulse response equalizers from the received signal SOS, should such



equalizers exist. These conditions involve only statistical characteristics of the input
signal and the channel nonlinearities and can therefore be checked a priori. Based
on these conditions, blind algorithms are developed for the computation of the linear
equalizers in the case of independent sources. For correlated sources, a novel algorithm
is also given for the linear channel case. The new algorithms compare favorably to
previous approaches which do not fully exploit all the information available at the

receiver.
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CHAPTER 1

INTRODUCTION

Nowadays, the growing demand for spreading and exchanging information in
digital form requires ever increasing transmission capacity. However, increasing the
data rate in a digital communication system almost unavoidably translates into a
higher level of distortion in the received signal introduced by the communication
channel. In particular intersymbol interference (ISI), caused by the distortion intro-
duced by the finite bandwidth and the nonideal characteristics of the devices used
in the system, becomes more pronounced at high data rates for which the memory
of the channel spans more symbol intervals. This calls for more sophisticated signal
processing techniques in the receiver in order to compensate for this effect and yield
a reliable data link with an acceptably low error rate, especially when no knowledge
of the channel parameters is available a priori.

The general model of a digital transmission system considered in this thesis is
shown in Figure 1. The source is assumed to produce a stationary random sequence
{a(k)} of complex random variables, which are the data to be transmitted, at a rate
1/T. This data sequence is sent to a linear modulator which performs pulse shaping
and frequency translation so as to produce the continuous-time physical signal to be
transmitted. This signal is bandpass filtered to minimize out of band radiation and
then sent through the channel.

The received signal (channel output) is again bandpass filtered to reduce ther-

mal noise and adjacent channel interference effects and then demodulated (translated



to the baseband) and sampled. The block labeled ‘Equalizer’ in Figure 1 has the
mission of compensating for the channel induced distortion by adequately processing
the sampled signal. The equalizer output is then fed to a decision device (usually a
nearest-neighbor classifier) in order to produce an estimate {a(k — d)} of the trans-

mitted symbol sequence, possibly including a transmission delay d > 0.

a(k)
Source Modulator Bafrillggfss
Channel
Bandpass Demodu- ) : Decision . a(k—d
filter lator K Equalizer device ( )

Figure 1: Model for a communications system over a time-dispersive channel.

Although this receiver configuration (equalizer followed by a symbol-by-symbol
detector) is known to be suboptimal, it is widely used since it usually provides a good
trade-off between computational complexity and performance when compared to the
optimal receiver [24].

In this work we are primarily concerned about the effects of ISI in the received
signal and the corresponding problem of equalizer design. Hence it will be assumed
that the demodulator and sampler are ideal, that is, perfect carrier frequency, carrier
phase, and timing recovery are assumed. In addition the channel will be modeled

as a time-invariant system with additive noise (assumed statistically independent of



the transmitted symbols) at its output. The resulting baseband equivalent system is
shown in Figure 2, where now the block labeled ‘Time-invariant channel’ includes the

effects of the physical channel as well as the transmitter and receiver filters.

a(k) re(t)  ye(t)
Source Time-invariant r\% ><_, Equalizer [ Decision L a(k — d)
n.(t)

channel device

(Additive noise)

Figure 2: Baseband equivalent model of a communications system.

Traditionally, equalizer design has been based on the knowledge of the channel
characteristics, which in most practical situations is not available beforehand. Further
in many applications the channel is not exactly time-invariant. One possible approach
is to design and use a compromise equalizer which compensates for the average of the
range of expected channel characteristics. Sometimes, however, the variation of such
characteristics is big enough as to make this approach impractical. In such cases
the channel profile can be learned by transmitting a training signal known to the
receiver, which uses some kind of adaptation algorithm to identify the channel or
directly update the equalizer parameters [25].

In many applications the use of training signals may severely degrade the trans-
mission throughput, particularly for time-varying channels that require frequent re-
training. In those cases, blind equalization methods emerge as an attractive alterna-

tive. These techniques attempt to obtain the equalizer parameters (either directly or



by identifying the channel first) using the received signal and knowledge of the statis-
tics of the transmitted symbols, thus dispensing with the need for training signals.
In a general sense, blind equalization approaches can be divided in two categories,
depending on the kind of information about the received signal that they exploit:
second-order statistics (SOS) methods and higher-order statistics (HOS) methods.
HOS methods appeared first as they are the only class of blind techniques applicable
to linear single-input single-output (SISO) channels, since the SOS power spectrum
of the output of a linear SISO system does not convey information about the chan-
nel phase. On the other hand, in recent years there has been considerable interest
in SOS methods after the seminal work [29] showed that under certain conditions,
linear finite impulse response (FIR) single-input multiple-output (SIMO) channels
can be perfectly equalized by means of a bank of FIR filters, whose weights can be
computed from knowledge of the SOS of the received signal alone. A SIMO channel
can be obtained in practice either by sampling the received continuous-time signal at
a rate faster than the symbol rate whenever the continuous-time channel has excess
bandwidth, or by deploying multiple sensors at the receiver, or by a combination of
both. SOS-based methods are usually preferred since larger sample sets are generally
required to form reliable estimates of higher-order statistics.

With a few exceptions [12, 26], the study of SOS-based blind equalization tech-
niques has been devoted to the case of linear channels. Many communication chan-
nels, however, are inherently nonlinear. Examples include satellite and microwave
links where the amplifiers are operated at or near saturation for power efficiency rea-

sons, magnetic and optical recording channels, physiological systems, etc. Discarding



the channel nonlinearities when designing the equalizer may result in significant per-
formance degradation, which is clearly undesirable. On the other hand, nonlinear sys-
tems cannot be characterized by transfer functions and hence extensions of equalizer
design techniques available for the linear channel case are not straightforward. Most
results in nonlinear channel identification apply to SISO channels, based on input-
output (i.e. non-blind) methods, and often employing higher-order output statistics;
see e.g. [11] and the references therein. However, in view of the advantages that the
SIMO channel configuration offers in the linear case, it makes sense to ask whether
these features can be exploited as well when the channel becomes nonlinear. In this
thesis we consider several problems that arise when one adopts such a framework.
The remainder of this chapter is organized as follows. Section 1.1 reviews the
now well-understood problem of equalization of linear SIMO channels, from which
the work in this thesis takes off. Section 1.2 presents a review of the characteristics
of several nonlinear channels encountered in practical situations. An outline of the

thesis is then given in section 1.3.

1.1 Egqualization of linear SIMO channels
Suppose that the time-invariant channel in Figure 2 is linear with impulse re-

sponse h.(t). Then the received signal y.(¢) is given by

Ye(t) = > a(k)he(t — kT) + n.(t),

where T is the symbol interval and n.(t) is the additive noise. If several sensors
(say p) are used, then h.(t), n.(t), y.(t) are p x 1 vectors. In the single sensor case,
sampling y.(t) at a rate p/T also results in a multichannel configuration [29]. In both

cases the discrete-time input to the equalizer takes the form

y(k) = Z h(i)a(k — i) + n(k)



where y(k), h(k), n(k) are p x 1 vectors:

Yo(k) ho(k) no(k)

Yp—1(k) hp-1(k) np—1(k)
In this framework the channel is a 1-input, p-output system, while the equalizer is a

p-input, 1-output system. If the subchannels are FIR with transfer functions

then it can be shown that it is possible to find FIR filters G;(z) = Y7 g:(k)z7*,

0 <1< p-—1, satisfying
Hy(2)Go(2) + -+ + Hy1(2)Gp1(2) = 274 forany 0 <d<l+m—-1 (1.1)

provided that (i) the transfer functions H;(z) do not share any common zero, and
(i) m > zﬁ' These are known as the zero and length conditions [28]; eq. (1.1) is
known as a Bezout equation. The equalizer is then given by the set of filters Gy(z),
.., Gp_1(2). Note that ISI can be completely eliminated, since in the noiseless case
the equalizer output is simply a(k — d) if (1.1) is satisfied. This approach, in which
the equalizer is designed so that its output reduces to a delayed version of the symbol
sequence when the noise is absent is known as zero-forcing (ZF) equalization. Figure

3 illustrates the channel-equalizer configuration.

A useful interpretation of the Bezout equation is as follows: under the zero and



Ho(z) O Go(2)
Lo
a(k) Hi(2) ﬁxm Gi(2) & Detector— a(k — d)
— Hy1(2) ? Gp_1(2) 4
np-1(k)

Figure 3: Equalization of a linear SIMO channel.

length condition, the mp x (m + [) generalized Sylvester matrix

h(0) (1) RO 0 0 0 |
| 0 RO h) h(l) 0 0
0 -+ 0 0 A0) A1) - h()

has full column rank [29]. A is known as the channel convolution matrix, or simply

the channel matrix, since upon defining the vectors

V()= Ly ylk=1) - ylk—m+1) ]
NGk 2 k) nk-1) - nk—m+1)]"
Sk) = lak) atk—1) - ak—1—-m+1) 15

of sizes mp x 1, mp x 1 and (m + 1) x 1 respectively, one has
Y (k) = HS(k) + N(k).

If H has full column rank, then there exist mp x 1 vectors g4, 0 < d < m+1—1,

such that gfH = ef,, where e; is a (m +1) X 1 vector of all zeros except for a 1 in



the k-th position. In that case, if the noise is absent (N (k) = 0),
94 Y (k) = gi' HS (k) = €4, S (k) = a(k — d),

showing that the coefficients of the ZF equalizer with associated delay d can be
recovered from the vector g;. Observe that these vectors are just the rows of the
Moore-Penrose pseudoinverse matrix H*, since H*H = I if H has full column rank.
Tong, Xu and Kailath showed in [29] that the matrix H can be recovered to within a

scaling constant from the matrices
A A
Cy(0) = EY(R)Y(K)"].  C,(1) = EY (k)Y (k—1)"],

provided that the zero and length conditions are satisfied and that both the symbol
and noise sequences are white processes. Note that Cy(0), Cy(1) are simply second-
order statistics of the received signal, which can be estimated by the receiver without
aid from the transmitter (i.e. training signals).

A potential drawback of the ZF approach is that in the presence of noise a ZF
equalizer can yield unacceptably high noise enhancement, especially if the channel
has deep spectral nulls. A widely used alternate criterion is the minimization of the
mean-squared error (MSE) between the equalizer output and the transmitted symbol
sequence. This criterion can be seen as the best compromise between ISI reduction
and noise amplification. A relation linking the ZF and minimum-MSE (MMSE)
equalizers was shown in [22]. Its significance is that of showing how the MMSE
equalizers can be obtained from the ZF ones. Hence SOS-based blind methods can

be effectively used under the MMSE criterion.
1.2 Nonlinear channel examples

We present now a brief review of the particular characteristics of three kinds of

nonlinear channels found in practice: satellite and microwave radio links, magnetic



and optical recording channels.

1.2.1 Satellite microwave links

In these systems, operation of the satellite transponder and Earth station am-
plifiers (usually traveling-wave tubes (TWT)) at or near saturation may be necessary
in order to obtain good power efficiency [10]. This results in a nonlinearly distorted
signal at the amplifier output. Typically, a radiofrequency (RF) amplifier operated
in a nonlinear region exhibits two kinds of nonlinearities. The first one relates the
output power to the input power, and is often referred to as AM/AM conversion. The
second one relates the output phase shift to the input power, and is usually known as
AM/PM conversion. A popular model for these effects was given by Saleh [27]. Let
r(t) cos|w.t + ¥ (t)] be the RF input to the amplifier; here w, is the carrier frequency,
and 7(t), 1(t) are the modulated envelope and phase respectively. The corresponding

output is modeled as
Alr(t)] cos{wet + ¥(t) + @[r ()]}

where

2
QT QyT
A<T) = 1 +ﬁa7’2’ (D(T) = 1 +/B¢7‘2'

Here ag, 8., ay and [, are parameters depending on the particular amplifier. In a
satellite link model, this nonlinearity is preceded and followed by two linear time-
invariant systems hy,(t), Rdown(t) modeling respectively the uplink and downlink
propagation channels. In [5] it was shown that the sampled baseband equivalent
of the overall system can be accurately described by a truncated Volterra series of

the form

Ma;it1 Mot i 2i+1

y(k)=Z Z h2i+l<j17'"7j2i+1)Ha*<k_jl) H a(k — 5i), (1.2)

=0 71=0 J2i+1=0 =1 l=1+1
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where {a(k)} is the sequence of transmitted symbols, y(k) is the noiseless component
of the received signal, and hg; 1(ki,- -+, koip1) are the baseband equivalent Volterra
kernels, which can be determined from Ay, (t), hiown(t) and the coefficients of the Tay-
lor series expansion of the amplifier nonlinearity. Observe that only odd-order kernels
appear in (1.2), and that these have one more unconjugated input than conjugated
inputs. The absence of even-order distortions is due to the fact that they generate
spectral components which lie outside the channel bandwidth (centered at w.) and

therefore are rejected by the bandpass filter following the amplifier.

1.2.2 Magnetic digital channels

In digital saturation-recording, binary data are stored in the magnetic media
by saturating the corresponding bit positions in the media into one of two flux di-
rections, with a change in the direction of the flux representing a ‘1’ and no change
representing a ‘0’. No intermediate flux directions are allowed in saturation-recording
because of hysteresis effects in the media; thus the channel is inherently binary
(a(k) € {—1,+1}). In reading the storage media, a read-head output signal is in-
duced by changes in flux direction as the media passes under the head. This induced
signal is amplified and then processed by the detection circuitry to produce a decision.
Nominally, the read process is assumed to be linear; however, nonlinear interaction
between the stored flux regions on the disk can lead to significant nonlinear ISI in the
storage channel, especially in thin-film media and at high linear densities. Volterra
models for magnetic recording channels have been proposed in [6, 15]. In these mod-
els, data cross-products represent interactions between magnetic transitions in the
medium, which do not extend beyond a few bit intervals. Therefore the Volterra
kernels characterizing dependences on products involving well separated data tend to

have very small magnitudes, i.e. the memory of the nonlinearities is not excessively
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high (between 5 and 10). Usually third-order Volterra series provide an accurate
model of the nonlinear behavior of these systems. For example, for channels based
on magnetoresistive (MR) heads, the channel output can be accurately written as a

linear combination of the products
a(k), a(k)a(k —1), a(k)a(k —2), a(k)a(k —3), a(k)a(k —1)a(k —2),

and their delays, while for channels based on magnetoinductive (MI) heads the gen-

erating products are
a(k), a(k)a(k — 1)a(k — 2), a(k)a(k — 1)a(k — 3), a(k)a(k — 2)a(k — 3).

In particular, the second-order Volterra kernels are absent. This is a consequence
of the symmetry between the positive and negative pulses of the impulse response,

which is a typical feature of MI heads [6].

1.2.3 Optical recording channels

In these systems the data are recorded in the media using a tightly focused spot
of light (the optical stylus), produced by means of passing a laser beam through a
series of lenses. The stylus is made as small as possible (e.g. 0.8 um for standard
CDs) and is used to produce a series of small dents termed pits on the media surface.
The write beam is modulated by the binary data to be stored on the disk. The
most popular format is non-return to zero inverse (NRZI) modulation, in which the
beginning and end of a pit mark the positions of ‘1’ bits in the data. The write signal

that modulates the laser can be written as
w(t) = A+ AZ(—l)iS‘cep(t — 5.T),

where step(t) is the unit step function, 7" is the bit interval, 24 is the peak amplitude

of w(t) and the ‘1’ bits occur at times ji, jo, ...in the data stream.
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Readout from the media is accomplished with the laser operating in a low-power
mode. The reflected beam, collected by the objective lens used to focus the incident
beam on to the medium, is modulated as a result of the interaction with the physical
structure of the encoded information. FElements in the optical head convert this
modulation into an intensity variation, sensed by a combination of photodetectors,
to produce the electrical readout signal r(¢). In [16] the scalar theory of diffraction
was used in order to obtain a model of the readout process. The media reflectivity
was modeled making use of the Fourier series analysis of periodic structures, so that
the reflected light equals the incident field times the phase profile of the media. Thus
the model consists of four blocks: propagation from the laser to the disc, reflection,
propagation to the photodetector, and optoelectric conversion.

It was noted in [2] that the dominant source of nonlinearity in the process
arises from the photodetector, which responds to the incident intensity (i.e. the
squared magnitude of the incident field). Consequently a second-order Volterra se-
ries model for the optical recording channel was suggested. It turned out that such
linear-quadratic model provides an accurate representation of Hopkins’ model for the

readout process. The sampled readout signal is then modeled as
I lh Iy
y(k) = ; hi(t)a(k — i) + g;}hz(i,j)a(k —i)a(k — j) + n(k)
where a(k) € {—1,+1} is the data sequence to be recovered, h; and hy are the linear
and quadratic kernels respectively, and n(k) is additive noise. Although at moderate
recording densities nonlinear distortion in the readout signal is not too high (i.e.

|ha| < |hy]), its effect increases drastically as the data are packed more tightly in the

media [2].
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1.3 Thesis outline

The goal of this thesis is to extend the SOS-based techniques available for blind
equalization of linear channels to the case of nonlinear channels. In order to do so, a
series of problems that arise in that framework will have to be considered.

When the received signal is sampled at a rate faster than the symbol rate, the
overall system can be cast in a multirate framework. Although the area of multirate
linear systems is a well established field [31], a comparable theory of nonlinear mul-
tirate systems is unavailable. In Chapter II the basic elements of such a theory are
developed. Although our main motivation stems from the channel equalization prob-
lem, other applications such as subband nonlinear filtering could also benefit from
this theory.

As advanced in the previous sections, ZF and MMSE equalizers for linear SIMO
channels can be obtained from the received signal SOS under certain conditions. In
Chapter IIT we investigate possible extensions of this fact to include nonlinear SIMO
channels. As a result, conditions are derived which allow one to assess whether a
given type of nonlinear channel can be blindly equalized from SOS.

For nonlinear channels satisfying those conditions, the next logical step is to
derive a means to obtain the corresponding equalizers. In Chapter IV equalization
algorithms are developed for the important particular case in which the transmitted
symbols {a(k)} are independent and identically distributed (iid).

The equalizability conditions developed in Chapter III include the requirement
that a certain channel matrix be full column rank. In Chapter V we investigate the
possibility of relaxing this requirement, and then we develop equalization algorithms
for channels not satisfying this full rank condition.

Finally, Chapter VI presents a novel SOS-based blind equalization technique
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for linear channels with correlated input symbols {a(k)}, which constitutes a natural
extension of the original algorithm for white symbols of Tong, Xu and Kailath [29].

The proofs of all results in this thesis are presented in the appendix.
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CHAPTER 11

MULTIRATE NONLINEAR SYSTEMS

Since the decision device at the receiver end operates at the symbol rate 1/T
to produce one decision every T seconds, traditionally the received continuous-time
signal y.(t) was sampled at this same rate 1/7 and then these samples fed to the
equalizer. This configuration is known as baud-spaced equalization (BSE). The draw-
back of this approach is that the sampling process may introduce severe distortion due
to aliasing unless the spectral components of y.(t) beyond 1/(27") Hz are removed.
However, passing this signal through a receive filter with high attenuation beyond
1/(2T) Hz increases the overall ISI.

An alternative is to sample y.(t) every 7" < T seconds. In particular, if o
denotes the excess bandwidth, that is if the received signal y.(t) is confined to the

l+a 14a

frequency band [—=5, 5], one can choose T" <

T

o S0 that the sampling rate 1/7"

is greater than twice the highest frequency component of y.(¢) and the problem of
aliasing disappears. An equalizer operating on this principle is called a fractionally
spaced equalizer (FSE) [4]. An additional advantage of FSE over BSE is the high
degree of robustness with respect to variations in the sampling instant [25].

The fractionally spaced equalization setting can be cast in a multirate frame-
work. A multirate system is marked by the presence of two multirate elements, the
upsampler (or expander) and the downsampler (or decimator), shown in figure 4. An
M-fold downsampler operates on a sequence u(k) to produce the output sequence

zq4(k) = u(kM), effectively discarding M — 1 out of M consecutive samples. An
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L-fold upsampler operates on a sequence u(k) to produce the output sequence

u(k/L) if k mod L =0,
wu(k) =

0 else,

effectively introducing L — 1 zero samples between two consecutive samples of the

input sequence.

u(k) M zq(k) u(k) 1+ L xu (k)

(a) (b)

Figure 4: Multirate blocks. (a) M-fold downsampler, (b) L-fold upsampler.

In order to present the multirate setting of a fractionally spaced equalization
configuration in which the channel and/or the equalizer are nonlinear, we shall model

the input-output relation of the continuous-time channel as

Tc(t) :th(t_jT; a(j)’a<j_1)"")’ (2'1)

where the waveforms h.(t;-,-,---), which are termed chips, are zero outside the in-
terval (0,7). Thus h.(t — jT; a(j),a(j — 1),---) is the waveform generated in the
j-th symbol interval, and it depends on the symbols transmitted up to that point in
time since the channel is assumed causal. This description of the nonlinear channel
does not convey any loss of generality [4]. Further, we shall assume that the channel

response to a zero input signal is zero. Quantitatively,

ho(t — §T; a(j),a(j —1),---) =0  for jT<t< (j+1)T ifa(j)=0, (2.2)
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that is, if the current symbol is zero then the corresponding chip is identically zero

during that symbol interval.

a(k) re®) w2 ) = KT /p)
Source H, ?
T T
T ve(?) T/p
(a)
a(k) : b(k) r(k) y(k)
Source D H O >
T i
; (k) = v (KT/p)
(b)

Figure 5: Two equivalent channels. (a) Continuous-time, (b) discrete-time.

Consider now the continuous-time representation of figure 5(a), in which the

channel H, is given by the input-output relation (2.1) and its output is sampled at

a rate p/T. Let b(k) the sequence obtained after upsampling the sequence a(k) by a

factor of p; observe that downsampling b(k) by p recovers a(k), so that a(k) = b(kp).

This allows us to write

re(kT/p) = 3 he(kT/p = jT; a(j),a(j —1),-++)

(2.3)

= Y he(kT/p— §T; b(ip),b((G — Dp).b((G — 2)p),-+)  (24)

= Z;hc(/fT/p—j'T/p; b(5), (3" = p), b(j" — 2p),--+) (2.5)

J

= Z h(/f —jQ b<j)7b<j - 1)7b(j - 2)a )

j=—o0

). (2.6)
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In passing from (2.4) to (2.5) we have made j' = jp and used (2.2) since b(j) = 0
unless j mod p = 0. In passing from (2.5) to (2.6) we have introduced the discrete-

time chips

. . . . A : : . .

h(k—3; b(3),0(7—1),b(j=2),--) = he((k=3)T/p; b(3),b(j—p),b(j—2p), ). (2.7)
Therefore we have shown that the two systems shown in figure 5 are equivalent, where
H is the discrete-time channel defined by the input/output relation

r(k) = Y0 h(k = js b(j),b(G —1),--) (2.8)

j=—00
Similarly the FSE can be thought of as a SISO system G (possibly nonlinear) whose
output is decimated by a factor of p. The overall channel-equalizer configuration is

depicted in figure 6.

a(k) y(k) To decision device
— TP H ? G Ip —
n(

Figure 6: Multirate representation of a fractionally spaced equalizer.

Therefore the FSE setting with nonlinear channels and/or equalizers can be
viewed as a multirate system design problem in which some of the blocks are nonlinear.
Although a theory of linear multirate systems has achieved considerable maturity over
the past decades, a comparable theory for nonlinear multirate systems is unavailable.
In the remainder of this chapter the basic elements of such a theory are developed.
To do so, the use of transfer functions, a common tool in the analysis of multirate

linear systems, is replaced by operator techniques. Although our main motivation
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stems from the context of channel equalization, other applications could also benefit

from this theory, for example subband nonlinear filtering of digital images.

2.1 Review of the basic building blocks
We shall denote the M-fold downsampler and L-fold upsampler of figure 4 as
Dy and Uy respectively, so that when their input is u(k) their outputs become
Dyu(k) and Upu(k). As an example of this operator notation, the output of the FSE

configuration in figure 6 becomes
D,Gn(k) + HUya(k)].

The operators D,;, Uy are linear but not time invariant. An operator H is time
invariant if Hz™! = z7'H, where 27! is the unit delay operator, i. e. z7tu(k) =

u(k —1). If we define

T
Zy=|1 271 ... et (2.9)

we can list several useful properties of the operators D,, U,, [31]:

z'D, = D,z? (2.10)
Upyz"' = z7PU, (2.11)
D,U, = 1 (identity operator) (2.12)
p—l ,
2 9U,D,? = 1 (2.13)
=0
1 0 0
0O 0 --- z71
D,Z,7Z]U, = (2.14)
0 2! 0

Identities (2.10) and (2.11) are known as the noble identities [31]. Identities (2.13)

and (2.14) are illustrated in fig. 7.
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(1)
Ip tp — Tp i =
z @ z~1 21 21
Ip 1p — ! — TP Ip —
z : z~1 T 271 271
| : 1 . |271 |271 .
-1
z+—> Ip ®) TPJZ —’TPJ +—>~Lp—>
(a) (b)

Figure 7: Illustrating (a) identity (2.13), (b) identity (2.14).

A major feature of nonlinear operator theory is that with A, B, C nonlinear
operators, while (A + B)C = AC + BC, in general C(A + B) # CA + CB; and
AB # BA. Observe also that a m x [ nonlinear operator H does not necessarily
separate in to a m X [ matrix operator [H;;] such that for a [ x 1 vector input u(k) =

[u1(k), -+, u(k)]*, the i-th element of the output vector satisfies

I
[Hu(k))i = > Hiju;(k). (2.15)
7=1
Operators H that obey (2.15) will henceforth be referred to as matriz operators.

2.2 Polyphase representation
The polyphase representation plays a pivotal role in the study of multirate linear

systems. A general discrete-time linear filter

H(z) = i hyz=F

k=—o00
can be written, for a given integer p, as
p—1
H(z) =Y z7'Hy(2), (2.16)
=0
where Hy(z), ..., Hy_1(2) are the so-called (type I) polyphase components, given by
Hl(Z) = Z hkp_HZik, 0<iI< p—1. (217)

k=—o00
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In this section we develop an appropriate definition of the polyphase components of
a nonlinear operator H. First, we need to introduce the following result.

Lemma 2.1 If H s time invariant, then D,HU, 1is time invariant as well.

Lemma 2.1 allows us to introduce the polyphase components of H.

Definition 2.1 (Polyphase components) The p-fold polyphase components of an
operator H are defined as H; 2 D,z"HU,, for 0 <i<p-—1.

Several observations are in order:

1. From lemma 2.1, it follows that the polyphase components of a time invariant

operator are time invariant.

2. If H is linear time invariant, the polyphase components as defined above reduce
to the standard type I polyphase components [31]. That is, if H has transfer

function H(z) = Y0 2~ "H;(2?), then H; has transfer function H;(z).

3. In general, the polyphase components do not completely determine a nonlinear
time invariant operator. This is in contrast with the linear case. For example, let
Hu(k) = u(k)u(k —1). Then for all p > 1, all the p-fold polyphase components
of H are zero. This is so because the product of successive samples may be zero

due to the upsampling process implicit in the definition of H;.

Of particular interest are those operators which are completely described by
their polyphase components; we shall refer to the class of such operators as separable.
It is also of help to introduce the dilation of an operator, as follows:

Definition 2.2 (Dilation) Let H be a time invariant operator, defined by

Hu(k):f(..., u(k+2), u(lk+1), u(k), uk-—1), ),
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for some (nonlinear) function f. The p-fold dilation of H, H! is defined as

H“’]u(k)=f(---, ulk +2p), u(k+p), u(k), ulk—p), ) (2.18)

For example, if the operator H is defined as Hu(k) = u(k — 1) + uv*(k)u(k — 2),
then its dilation becomes HPlu(k) = u(k — p) + u?(k)u(k — 2p). The following two

fundamental properties of the dilation H! are readily checked:
1. The p-fold dilation of a time invariant operator is time invariant.

2. If H is linear time invariant with transfer function H(z), then the dilation H'P!

is linear time invariant with transfer function H(z?).

Less obvious is the following property:
Lemma 2.2 If H = FG with F and G time invariant, then HP! = FPIGEF,
Using this dilation operator, it is possible to reformulate the noble identities in the
nonlinear operator framework.
Lemma 2.3 (Noble identities) Let H be any time invariant operator such that

HO = 0 where 0 denotes the zero sequence. Then
HD,= D,H?  U,H = HPIU,. (2.19)

For linear H, these identities reduce to the familiar form depicted in figure 8, which
are a direct consequence of the linearity of D,, U, and properties (2.10) and (2.11).
As mentioned above, in general a nonlinear operator H is not uniquely deter-
mined by its polyphase components H;. In order to characterize the class of operators
for which an expression in terms of their polyphase components exists, the concept

of separability is introduced next.
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—lp H(z) — &= —|H() Ip
a)

— H(z) Tp =  —{1p H(z) —
(b)

Figure 8: The noble identities in the linear case, for (a) decimators and (b) expanders.

Definition 2.3 (Separability) A single-input single-output time invariant operator

H is said to be p-separable if there exists a p-input 1-output operator T such that

HY

HY
H=T , (2.20)

where Hy, ..., H,_1 are the p-fold polyphase components of H. If in addition T is
linear, then H 1s said to be linearly p-separable.
Every linear operator is clearly linearly p-separable for all p, since in view of (2.16)

one can take T = ZpT. Also note that it is not enough for H to be of the form

(FO)[]
(F)lel
H=T for some T, F© ... F®-1,
(F@=1)ll
in order to be p-separable; the operators F(©, ... F®=1) must also be the polyphase

components of H. This suggests that if H is p-separable as in (2.20), then the operator

T must satisfy some additional constraints. In particular the following result holds.
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Lemma 2.4 If the time invariant operator H is linearly p-separable, i.e. if (2.20)
holds with T' 1 X p linear, then one can assume without loss of generality that T = ZpT.
Lemma 2.4 shows that any linearly p-separable time invariant operator H can

be written as

p—1 p—1 )
H=Y z7HP =3 H:,
5=0 §=0
which is similar to the familiar polyphase decomposition (2.16) for linear systems. As

an example, let H be the nonlinear operator defined by
Hu(k) = u(k)u(k — 2) + v*(k — Du(k — 5).
Then H is linearly separable for p = 2, since
Hou(k) = u(k)u(k — 1),  Hyu(k) = v*(k)u(k — 2),

and H satisfies

Hu(k) = (H§ + 27 H") u(k).

In principle, one could similarly consider as separable those operators H satis-

fying

H= [ Sl (R - (R ]T (2.21)
for some 1-input, p-output operator 7. However, the analog of lemma 2.4 (i.e whether
linearity of T in (2.21) allows one to take T" = Z,) is not true for such operators.
The following example for p = 2 illustrates this point. Consider the nonlinear time
invariant operator F' defined via
% if u(k — 1) # 0,

0 otherwise,
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and let H = FIZ(1 + 27!). One can check that the 2-fold polyphase components of

H are just Hy = H, = F. However, one has

1
[ HE gP ] Z, = [ i gl ] |- FE 4 pll-1 = pl) 4 -1 pl)
-

which is not the same as F?I(1 4+ z71), due to the nonlinearity of F2.
2.3 Nonlinear filter banks

A configuration commonly found in signal processing is the maximally deci-
mated filter bank, shown in figure 9 for the linear filter case. This system is widely
used in the area of subband coding of speech and image signals, whose energy is not
evenly distributed in the frequency domain. First, the analysis filters H;(z) split the
input u(k) into p frequency subbands; the subband signals are decimated by a fac-
tor of p, appropriately coded, and stored/transmitted. The full band signal can be
reconstructed using the expanders, which restore the original sampling rate, and the
synthesis filters F;(z) which smooth out the upsampled signals. The outputs of the

synthesis filters are added up to produce the reconstructed signal 4(k). Several con-

u(k)

Ho(2) Lpf—1p Fy(2)

H,(z) Ip Tp Fi(z)

L H, o (2) Lp—d1p Fya(e) —— k)

Figure 9: Linear p-channel maximally decimated filter bank.
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siderations must be taken into account in filterbank design. Ideally, the reconstructed
signal @ (k) should be as accurate a replica of u(k) as possible. However, because of
the presence of decimators and expanders, the filter bank is in general a time-varying
system. Careful design of the analysis and synthesis filters can provided the desired
time invariance.

Once time invariance of the filter bank is achieved, it is possible to obtain per-
fect reconstruction, which means that u(k) = cu(k — d) for some ¢ # 0 and integer d.
Necessary and sufficient conditions for time invariance and perfect reconstruction are
known for linear filter banks [31]. In this section similar conditions for architectures
with nonlinear analysis and /or synthesis filters are developed. The utility of incorpo-
rating nonlinear filters in subband coding banks for digital images has been discussed
in [9, 13], where simple perfect reconstruction architectures were considered.

Figure 10(a) shows the general structure of a p-channel maximally decimated
nonlinear filter bank. If we denote the input-output relation of the filter bank as

y(k) = Gu(k), then we can write G explicitly as

T

G=FUD,| g® gO ... ge-y | (2.22)

where H® ..., H®=1 are the time-invariant single-input single-output analysis fil-
ters, and the p-input, 1-output operator F' represents the time invariant analysis bank.

Observe that in general F' need not be a matrix operator of the form

FO po ... pl-1 |, (2.23)

since nonlinear interactions between different subband signals are in principle pos-
sible (If F' is linear, though, it must be of the form 2.23)). Let X, be the p x p

exchange matrix with ones in the antidiagonal and zeros elsewhere. Let us introduce
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HO lp—=~1Tpr— y(k)

Sk

L oo L p 1o L Hp v
(a) (b)

Figure 10: A p-channel maximally decimated filterbank. (a) General form, (b) equiv-

alent system.

the operators

L, & [ .. 1 1]Up:ZpTUpo, (2.24)
A T
B, = Dp[l P ZP+1] =D,Z,, (2.25)
0 I,
R, 2 ! (2.26)
270

Then one has the following result:

Lemma 2.5 The filter bank (2.22) can be equivalently expressed as

G = L,FHB,, (2.27)

F=|\F , --- I F,| , H=D,| HFO O ... gk L,zR,.
(2.28)
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If in addition the analysis filters are linearly p-separable, then

1 =Y ... HY
A g =Y ... HD
g=| " ' ot (2.29)
- ép—l) H%P—l) L H;é—_ll) -

Note that F', H are time-invariant operators. This equivalent description of the filter
bank is depicted in figure 10(b). The formulation (2.27) is analog to the familiar
representation of linear filter banks in terms of the polyphase matrices [31]. If the

analysis filters are linear with polyphase decompositions
HO(z) = 27 HY (27)
§=0

then H in (2.29) reduces to the standard polyphase matrix with elements [H(2)];; =

H ](Z)(z) Similarly, if the synthesis bank F' assumes the particular matrix structure of

(2.23), then F' can be written as

E% B FPY
A Y FY, - EPY
_ Féo) Fo(l) FéP—l) |

and if these synthesis filters are linear with transfer functions
~ g
F(Z)(z) = Zz_’Fj (27)
j=0

then F is the polyphase matrix with elements [F(2)];; = Fp(]_')z-_l(z).

With the representation (2.27) for the filter bank, one can obtain conditions for
time invariance (G2~ = 27!'G) and perfect reconstruction (G = cz¢ for some ¢ # 0

and integer d) properties of the overall system.
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Lemma 2.6 (Filterbank time invariance) The filter bank G = Lpﬁ’ H B, s time
invariant if and only if FH commutes with the p X p operator R, given in (2.26).
Lemma 2.7 (Perfect reconstruction) The filter bank G = L,FHB, has the per-

fect reconstruction property if and only if

FH =cz ™
27, 0

for some ¢ # 0 and integers m, 0 <r <p—1.
2.4 Nonlinear fractionally spaced equalizers

The multirate equivalent of a fractionally spaced equalization setting was shown
in figure 6. Referring to this figure, and ignoring the additive noise n(k) at the channel
output, the mapping from the transmitted symbols {a(k)} to the equalizer output
{y(k)} can be written as

y(k) = D,GHU,a(k).

Therefore the ZF equalization problem is: given the channel H, find an equalizer
G such that D,GHU, = 2z~ for some integer d which represents the associated
equalization delay. In view of our definition of the polyphase components of a non-
linear operator (cf. definition 2.1), the overall system D,GHU, is just the 0-th p-fold
polyphase component of the operator GH; therefore if G, H are time invariant, so
is (GH)p = D,GHU,. The next result shows an alternative representation of this
setting.

Lemma 2.8 The operator (GH )y = D,GHU, can be equivalently expressed as

T

(GH)o=G| H, H - H

p—1 ?

(2.30)
where the p-input, 1-output operator G is given by

G =D,GZ!'U,
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and Hy, ..., H,_1 are the p-fold polyphase components of the channel H.

Lemma 2.8 is illustrated in figure 11. The overall operator can be explicitly
written in terms of the polyphase components of the channel, even if the channel H
18 not separable. This representation is similar to the linear multichannel framework
of figure 3. Observe that if the noise n(k) is taken into account, the configuration of
figure 6 is not equivalent to just the setting of figure 3 with the noise corrupting the
equalizer input unless the equalizer G is linear, since in general G[n(k)+ HUya(k)] #

Gn(k) + GHU,a(k).

|, To decision device

o

Figure 11: Equivalent fractionally spaced equalization setting (noiseless case).

In general, the overall system is not completely specified by the polyphase com-
ponents of the equalizer G. However, in the particular case of a linearly p-separable
G,one has G =[ glly ... GW, _, ]Z,, so that

G = D,GZ!U,
= D,| ¥y - GV, | 2200,

- [Go Gp_l]DprZpTUp. (2.31)
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In passing from the second to the third line we have used (2.19). Using (2.31) together

with (2.14) the following expression for the overall noiseless system is obtained:

~ T
GH) = G|l H, H - Hp_l]
- - T
= | Gy - Gy, DpzngUp[Ho oo Hy
Hy
1 0
= Gy . Gp—l
0 Zﬁlprl
H, |
p—1
= G0H0+Z_IZGZ'HP_Z'. (232)
=1

This is the expression found in the linear case; the difference is that now the polyphase
components GG;, H; may be nonlinear.

The zero-forcing equalizer design problem is seen to be equivalent to solving
for the G; in the nonlinear Bezout equation that is obtained by equating the right-
hand side of (2.32) to z~%. In this general framework, unless some assumptions are
adopted about the operators H;, even determining the existence of solutions G; (which
for practical purposes should be constrained to be stable and causal operators) to this
generalized Bezout equation appears to be a very difficult problem.

Due to this fact, in the remainder of this thesis we shall limit ourselves to non-
linear channels that admit a certain parametric description, as shown in the next
chapter. This class of channels includes as a particular case polynomial approxima-
tions of nonlinear systems (i.e. truncated Volterra series), which as saw in chapter I

constitute a popular description of nonlinear communication channels.
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CHAPTER II1

SOS-BASED BLIND EQUALIZABILITY OF NONLINEAR
CHANNELS

As seen in the previous chapter, it is often convenient to describe the input-
output relation of the nonlinear channel in parametric form. We shall assume that
this relation can be accurately described by the following 1-input p-output model:

4 Uk
y(k) =223 hijsi(k — j) + n(k), (3.1)
i=1j=0

where s,(k) £ a(k) is the scalar stationary channel input sequence, the terms s;(k) =
¢i(a(k),a(k —1),---) for i = 2, ..., q are scalar nonlinear causal functions of {a(k)};
h;; are p x 1 coefficient vectors, and n(k), y(k) are p x 1 signal vectors representing an
additive disturbance and the observed channel output, respectively. The noise {n(k)}
and the symbols {a(k)} are assumed to be independent. This model accommodates,
for example, polynomial approximations of nonlinear channels (Volterra models), for
which the generating terms s;(-) are monomial functions of a(k) and its delays [12].
It is assumed that the functions ¢;(-,,---) generating the nonlinearities are known,
so that all the uncertainty about the channel is in the coefficients h;;.

The advantage of using the model (3.1) resides in the fact that, while describing
a nonlinear input-output relation, it is linear in the channel parameters h;;. This
feature allows one to obtain a matrix-vector representation of the channel, which can
be exploited in order to extend SOS-based blind linear channel equalization techniques

to the case of interest.
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In this chapter we ask the following question: What information can be obtained

about the channel (3.1) from the SOS of its output? As stated in Chapter I, in the

linear channel case, under the ‘zero and length’ conditions the channel coefficients

can be estimated from SOS up to a multiplicative constant [28]. We shall show that

this is not true in general for the nonlinear model (3.1), but that nevertheless under

certain conditions the output SOS still contain enough information for the design of

ZF linear equalizers.

The channel input-output relation can be expressed in matrix-vector form as

follows. By collecting m successive observations in the vector
Yk 2 T T T T
k) = [y®)” yk-1" - ylk—m+1T ],

one can write
Y (k) =HS(k)+ N(k),

where N (k) and S(k) are the noise and signal vectors respectively, given by

N(k) 2 [n®)™ k=17 < alk—m+1)" ],

STk = lak) alk—1) - alk—1 —m+1) ],
ST(k) 2 [so(k) salk—1) - solk—l—m+1) |
| sg(k) sk —1) - sy(k—l,—m+1) ],

(3.2)

(3.4)

(3.5)

(3.6)

which represent the linear and nonlinear parts of S(k). The channel matrix H is

Hé[q.[l Hy - Hq],
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with every H; block Toeplitz:

hio hi -+ hy

7

hio hix -+ ha,

7

1>

pm x (m+1;). (3.7)

hz’O hil hili

H has size pm x (gm + 37—, [;). For convenience, let d; 2 m + [1, which is the size
of S1(k), and dy 2 (q—1)m—+1lp+---+ l4, which is the size of Sy(k). Thus S(k) has
size di + ds.

Giannakis and Serpedin considered in [12] the problem of equalizing Volterra
channels of the form (3.1). They pointed out that, even though the channel is nonlin-
ear, under certain conditions perfect zero-forcing equalization can still be achieved by
using a bank of linear finite impulse response (FIR) filters, which is a very appealing
result. They also presented a blind, deterministic approach for equalizer design. Al-
though this algorithm is elegant and relatively simple, it has several drawbacks. First
it assumes that the channel matrix H is full-rank and square, claiming that square-
ness can always be achieved, if necessary, by decreasing the number of channels p and
increasing the equalizer length m. However, a longer equalizer would increase the
computational complexity; further if some channels are to be dropped it is not possi-
ble to ensure a prior: that the surviving channels satisfy the corresponding full-rank
condition, even if the original set did. Thus the selection of the channels to drop is
a difficult problem. One issue addressed in this chapter is whether this squareness
assumption can be relaxed.

Secondly, in the event the linear kernel has the same length as another kernel,
i.e. I; =1 for some i > 2, [12] has to resort to higher order methods to equalize the

channel. In this chapter it is shown that this restriction on the linear kernel length
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is not necessary for SOS methods to apply.

Third, when a kernel other than the linear one has the largest memory (max{l;} #
[1), then the techniques of [12] only recover the input term s;(k) corresponding to this
largest kernel. In our case, we show that under the right conditions even the linear
kernel input a(k) is recoverable despite the violation of this particular length require-
ment.

Observe that the model (3.1) could be seen as a linear multiple-input multiple-
output (MIMO) system by viewing the signals {s;(k)}, 2 < i < ¢ as additional inputs.
Although SOS-based techniques exist for equalization within such a framework [28],
they usually assume that the different inputs are independent (which is no longer true
in our setting, since for i > 2, {s;(k)} is a function of {s;(k)} ), and they only resolve
‘H to within a mixing matrix. In the current context, this would mean that only a
linear mixture of a(k), sa(k), ..., s,(k) could be obtained. The results of this chapter
show that under right conditions the structure of the mixing matrix permits obtaining
linear ZF equalizers. These conditions are on the statistical properties of the symbols
a(-) and the remaining generating terms s;(-). Therefore they can be checked a priori
in order to determine whether a given channel structure can be equalized from SOS.

The following notation is adopted. E[-] denotes statistical expectation; (-)*, (-)7,
() and (-)* denote conjugate, transpose, conjugate transpose and pseudoinverse
respectively. Ji denotes the k x k shift matrix with ones in the first subdiagonal and
zeros elsewhere; Xy is the k£ X k exchange matrix with ones in the antidiagonal and
zeros elsewhere; and e, denotes a vector of all zeros except for a 1 in the k-th position.

We use the direct sum notation A @& B for block diagonal matrices:

0
Ao B 2

0 B
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3.1 Problem formulation
The second order statistical information about the channel output {y(k)} is

contained in the covariance sequence

Cy (1) cov[Y (k), Y (k —1)]
—  E[Y(R)Y(k—1)"] = EY(k)EY (k— )]

= HC,()H" + C.(D), (3.8)
where C5(1), C,(l) are the source and noise covariance sequences given by
Ci(l) & cov[S(k),S(k—=1)],  Cu(l) & cov[N(k), N(k —1)]. (3.9)

We consider covariance matrices rather than autocorrelation matrices, since the chan-
nel nonlinearities may induce nonzero mean {s;(k)} terms even if {a(k)} is zero
mean. Our goal is to extract as much information about the channel matrix ‘H from
the sequence {C,(l)} as possible. The following standard assumptions are adopted
throughout this chapter:
A1: The channel matrix H is tall and has full column rank.
A2: The noise {n(k)} is zero-mean white with covariance ¢21I,,.
A3: The covariance matrix C,(0) is positive definite.
Assumption A1 is a ‘coprimeness’ requirement on the subchannels. Since H is
pm X (gm + YL, 1), a necessary condition for A1 to hold is
q q
pm > qgm+ Yl = (p—q@m>>1; >0,
i=1 i=1
for which p > ¢ must hold. This condition parallels the ‘more outputs than inputs’
requirement in blind identification of MIMO channels [28]. Observe that A1 ensures

the existence of vectors g, such that gfH = e ;. Thus in the noiseless case, for
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0 < d < d;—1one has g!Y(k) = a(k — d) so that these pm x 1 vectors provide
ZF linear equalizers with associated delay d. Whether A1 can be relaxed will be
investigated in Chapter V.

Under A2, one has C,(I) = 02J?' . In particular,

npm:*
Cy(0) = HC,(0)H! + 021,

Since HC,(0)H is necessarily singular (because H is tall by assumption A1), it
is seen that o2 is the smallest eigenvalue of Cy,(0) and therefore it can be readily
obtained. Therefore the effect of noise can be removed from Cy(l) by subtracting the
matrix aﬁ]é’,ﬂ%. Henceforth we shall assume that this has been already done, so that
Cy(1) = HC,(HH".

Assumption A3 constitutes a ‘persistent excitation’ condition on the process

{a(k)}. It allows one to write
C,(0) = QQ" with @ invertible. (3.10)

In order to state the blind equalizability problem, let us first introduce the concept
of compatibility.
Definition 3.1 (Compatibility) A pm x (gm + Y9_, ;) matriz H is said to be

compatible with the second order statistics of {Y (k)} up to lag | if it satisfies
HO,(WHY = HO,(WHY,  1=0,1,...1. (3.11)

In view of this definition, it is clear that the best we can hope to extract from the
output channel SOS is a compatible matrix, which may or may not coincide with the
true channel matrix H. The problem then becomes determining whether this is good

enough for our purposes:
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Blind Equalizability Problem: Let H be compatible with the SOS of {Y (k)} up

to lag . Determine conditions under which a ZF equalizer gq for any compatible H

1s also a ZF equalizer for H:

gfﬁzeﬂrl - ngzcedHH, for some 0 < d < d; —1 and c # 0.

(3.12)

As said in Chapter I, this was solved in [29] for the particular case of linear

channels (¢ = 1) with white inputs, for which if # is compatible up to lag [ = 1, then

H = e°H for some real 6 so that (3.12) holds. This is not necessarily true in our

case, as shown by the following example. Suppose that the different terms {s;(k)}

are uncorrelated: cov(s;(ki1), sj(k2)] = 0if ¢ # j. Then C,(l) is block diagonal (with
q blocks in its diagonal) for all /, so that any matrix of the form

H = [ ej91H1 ej02H2 e ejequ ]

is compatible up to any lag. Thus in general H cannot be identified to within a single
scaling constant. However, this may not be necessary in order for (3.12) to hold, i.e. a
higher level of indeterminacy in the channel parameters could still allow equalization.
We explore this issue in the next section.
3.2 A test for blind equalizability
Let @ be a square root of Cs(0) as in (3.10). Define the normalized channel and

source covariance matrices respectively as
H2HQ, G0 2Q'c,m)Q". (3.13)

Note that in view of A1 and A3, H has full column rank. Using (3.13), the matrices
Cy(l) become

C,() = HC,()H", with Cs(0) = Iy, 44, (3.14)
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Similarly, if # is compatible up to lag [, let H = HQ, so that H satisfies
HC,(HY =HC,()H®, o0<i<I. (3.15)

For | = 0, (3.15) gives HHY = HH". Since H has full column rank, this implies
H = HP for some unitary matrix P (PP¥ = I .4,). Thus the corresponding

(unnormalized) compatible channel matrix must satisfy
H=HQ' =H(QPQ™), (3.16)

which shows that any compatible channel matrix is related to the true channel via
a mizing matriz of the form P = QPQ*. Observe that although P is unitary, in
general P is not. Let us introduce now the concept of admissibility.

Definition 3.2 (Admissibility) A (d;+ds)-square matriz T is said to be admissible

if it is of the form

A O
T = , with A dy X dy diagonal invertible, (3.17)

X X

where ‘X’ indicates irrelevant values. Note that if T is admissible and invertible, so
is T~L; and that any function of an admissible matriz is admissible.

Observe that if H = HP is compatible with P = QPQ ' admissible, then (3.12)
is satisfied. Thus resolution of the channel matrix to within this ambiguity suffices for
equalization purposes. Our goal is to determine conditions under which this mixing
matrix P is ensured to be admissible. To address this issue, we must explore the
constraints that the conditions (3.15) impose on the unitary matrix P. Substituting
H = HP into (3.15) and using the fact that H has full rank, these constraints can

be written as

PC(l) = C,()P, 1<I<l. (3.18)
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That is, P must commute with the normalized source covariance matrices C,(1), ...,
C,(l). Determining the general form of all unitary matrices P that satisfy (3.18)
requires solving [ linear sets of equations with quadratic constraints given by PP? =
Iy, 44,- Fortunately, this problem can be replaced by one of solving I linear sets
of equations with linear constraints. First recall that any unitary matrix P can be
written as P = e/ where W is a Hermitian matrix (W = W#) with all its eigenvalues
in [0,27) [19]. Then one has the following result:

Theorem 3.1 Let W be (d; +ds)-square Hermitian and P = /. Then P and C,(l)
commute if and only if W and C(l) commute.

In view of theorem 3.1, the problem of determining the set of unitary matrices that
commute with Cy(l) is equivalent to finding the set of Hermitian matrices that com-

mute with C,(l). Hence the blind equalizability problem can be broken into these

three steps:
1. Select a square root @ of C,(0).

2. Find all Hermitian matrices W commuting with C,(l) = Q'C,(1)Q~" for 1 <

<.

3. Check whether for these matrices W, QW Q™! is admissible. If so, the channel
can be equalized using second-order statistics, as QW Q™! admissible implies

dQWQT = QeI Q! = QPQ! admissible.

The utility of theorem 3.1 is revealed in that steps 2 and 3 above are much
easier to solve for Hermitian matrices than for unitary matrices.

Note that the matrix Q such that C,(0) = QQ" is not unique. Although it
is true that an adequate choice of ) can considerably simplify the test for SOS-

based equalizability, as will be discussed in section 3.3, it must be pointed out that
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the result of the test is independent of the particular (). This is because all square
roots can be parameterized as Q = QoU, where ( is a particular solution and U
is any unitary matrix. Hence P, unitary commutes with Q5 'C,(1)Qy" if and only
if P = UYPyU, which is unitary, commutes with Q~'C,(1)Q~". In addition, one
has QPQ™ ! = QuPyQyp", so that admissibility of QPQ~! is equivalent to that of
QoPoQy

We proceed now to determine sufficient conditions on the source statistics and
the channel nonlinearities in order to ensure success of the above SOS-based equaliz-
ability test a prior:.

3.3 Main results

It is useful to consider block lower triangular square roots @ (with block parti-
tion corresponding to linear and nonlinear parts of S(n), asin (3.17)), for the following
reason. Suppose that any Hermitian W solving step 2 of our test is block diagonal.
Then P = eV is block diagonal, so that if Q was block lower triangular, then so is
P = QPQ'. Having P block lower triangular (i.e. as in (3.17) but with A not nec-
essarily diagonal) can be seen as the first step towards admissibility; its significance
is that if a vector g4 satisfies gf";’:[ = efﬂ for some 0 < d < d; — 1, and P is block
lower triangular, then this vector removes all the nonlinear ISI since gi/H = el , P~}
and P~! is block lower triangular. Once this has been achieved, additional conditions

for the removal of the residual linear ISI can be sought.
3.3.1 A preliminary result

The following result gives sufficient conditions under which any Hermitian W

commuting with C;(1) is block diagonal.
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Theorem 3.2 Assume that there exists a matriz Q such that C,(0) = QQ* and

cm=gramer=| "t 0 (3.19

Co Cp
with Cj; having size d; x d;, i,j € {1,2}. Suppose that either (i) Ci1, Ca do not
share any eigenvalues; or (ii) Cy = 0, and Ci1, Cye do not share any elementary
Jordan block in their Jordan decompositions, i.e Jordan blocks belonging to the same

eigenvalues have different sizes. Then any Hermitian W commuting with Cs(1) must

have the following block diagonal form:
W =Wy & Way, (3.20)

with W;; Hermatian of size d; X d;, 1 =1, 2.

Most of the results in the next sections hinge on theorem 3.2.
3.3.2 A useful square root @

With the result from theorem 3.2 in mind, we shall focus on block triangular
square roots ) and look for conditions under which (3.19) is satisfied. To this end,

let us define the d; x d; matrices
A & cov[Si(n),S;(n)], By £ cov[Si(n),S;(n—1)],  i,je{1,2}, (3.21)

so that the covariance matrices Cs(0), Cs(1) can be written as

AL A B, B
co=|"" """, ocm=|"" ""]. (3.22)
A{é A22 BZl BQZ

With the vectors wi1, wio and wq; defined as

wy 2 cov[Si(n—1),a(n)] forie{1,2}, wy 2 cov[Sy(n),a(n —dy)], (3.23)
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the shift structure of the signal vector S;(n) yields the following relations:

By = JyAn+ewi (3.24)

= AnJdy + Xgwiel, (3.25)
By = Jg A+ ewll, (3.26)
By = Ag]dl—i—wgleg. (3.27)

Define the Schur complement of C(0) with respect to A}
Ay & Ay — AB AT A, (3.28)

which is positive definite. The following choice of ) will prove particularly useful:

i 0 AT 0
Q= 11H2 1/2 = Q7 = 1; 12 |’ (3.29)
AR AL Ay —Ay P AL AT A

with A}{z, A(l)/ 2 square roots of A, Ag respectively:
An = APAY?, Ao = A AT
Using (3.29), the matrix C,(1) = Q 'C,(1)Q ¥ becomes

= _ _ Bll BIQ - BllAl_llAIZ
C(1) = (4”@ 4,7 1 1 1

x (A% @ A7) (3.30)
where By is defined as

By £ Boy — AR ATIB AT Aps. (3.31)
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3.3.3 Block triangular C(1)
By using (3.24)-(3.27), the off-diagonal terms of the middle matrix in (3.30) can

be rewritten as

312 — BllA;11A12 = €1 (’U)12 — A{IQAfllwll)H, (332)
B21 — A{{QAl_llBll = (11)21 — A{{ZAl_llelwikl)edHl' (333)

Introduce the vectors

4

which comprise the coefficients of the optimum forward prediction error filter (FPEF)
and optimum backward prediction error filter (BPEF), respectively, of order d; asso-

ciated to the process {a(k)} [15]. These prediction errors are given by

f(k) = a(k)+a"S(k—1) (forward prediction error) (3.35)

b(k) = a(k—dy)+a"Si(k) (backward prediction error) (3.36)

One can readily check that

COV[SQ(k — 1), f(k)] = W12 + A{‘;oz = W12 — AgAl_llwll’ (337)
cov[Sy(k),b(k)] = wo + ALa = wy — AL A X4 w0}, (3.38)

Substituting (3.37)-(3.38) into (3.32)-(3.33), one obtains

B12 - B11A1_11A12 = €1 COV[SQ(k — 1), f(k)]H, (339)
Bgl — A{IQAI_IIBH = COV[SQ(k), b(k)]eg (340)

Thus for @ as in (3.29), C(1) is block lower triangular iff cov[Sy(k — 1), f(k)] = 0; in

that case, upon defining the vector

v 2 cov][Sy(n),b(n)], (3.41)
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the matrix C,(1) takes the form

C.(1) = AU = 0™ A7 ’ (3.42)
Ay Poel AT AT (By — vell At A) Ay
The following result gives sufficient conditions on the symbol statistics for having
C,(1) block lower triangular:
Theorem 3.3 Suppose that the symbol sequence {a(k)} is an autoregressive (AR)

process of order not exceeding dy with independent, identically distributed (iid) in-

novations, i.e. it is generated by means of stable all-pole filtering of an wid process

{w(k)} as follows:

a(k) = w(k) — z_;%a(k _a). (3.43)

Assume that A1-A3 hold, that

T2 || FW , Silk) >0 (3.44)
alk — dy) a(k — dy)

and that the matrices Jg, — e and AEI(BO —vef;l{1 Al_llAlz) do not have any common
eigenvalues. Then C,(1) is block lower triangular, and any matriz compatible with
the SOS of the channel output up to the lagl = 1 is related to the true channel matriz
via an admaissible matriz.

The following remarks are in order about theorem 3.3:

1. Condition (3.44) merely requires that the sequence {a(k)} do not contain deter-

ministic components, which is satisfied in any practical communication system.

2. The AR condition on the symbols {a(k)} is sufficient for having C,(1) block
lower triangular, but it is by no means necessary. If even for non-AR symbols

cov[Sy(k — 1), f(k)] = 0 holds, one can use theorem 3.2 in order to reduce the
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blind equalizability problem to an eigenvalue check on the matrices Jy, — e;af!

and Ay (By — vell AT Apy).

3. The matrix A;"'(By — vefl A;'A5) has a linear prediction interpretation. Let
Sy(k) be the prediction error obtained when approximating Ss(k) by a linear

function of Si(k):

Sy(k) = Sy(k) — TH S (k).

The value of I' that minimizes trace{cov[S(k), So(k)]} is T = A7;' 413, for which
one has cov[Sy(k), S2(k)] = Ay, and cov[Sy(k), So(k — 1)] = By — vell Al Ay
provided that cov[Sy(k — 1), f(k)] = 0 holds. Therefore

AN (By —vell AT Agp) = cov[Sa(k), So (k)] 7t cov[Sy(k), Sa(k — 1)].

The problem of isolating conditions under which this matrix and J, —e; ot do

not have common eigenvalues remains open.

4. Theorem 3.3 covers the important case of iid symbols {a(k)} (by having v, =
coo = g, = 0), for which « = a = 0, f(k) = a(k), b(k) = a(k — d;) and
Aj; = 021;,. More will be said about the iid input case in Theorem 3.4 and
section 3.3.5.
3.3.4 Block diagonal C,(1)
It is clear from (3.39)-(3.40) that for our choice of @, C,(1) is block diagonal if
and only if in addition to cov[Sa(n—1), f(n)] = 0 one also has v = cov[Sy(n), b(n)] = 0,

in which case the resulting value is
Cu(1) = [0 (Ja, — esa”) 1" @ [Ag /By Ay 7). (3.45)

The theorems below provide sufficient conditions for (3.45) to hold. The first one

makes the following additional assumptions:
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A4: The transmitted symbol sequence {a(k)} is iid with E[|a(k)|*] = o2.

a

A5: cov[Ss(k),a(k —dy)] = 0.
Observe that under assumptions A1-A5, and taking @ as in (3.29) with A}f =
o4ly,, in addition to being block diagonal the matrix C,(1) = Q71C,(1)Q~# takes

the form

Cy(1) = Ju, ® [A9*BoAy "), (3.46)
since o = 0 for iid {a(k)}.
Theorem 3.4 Under assumptions A1-A5, if the Jordan decomposition of the matriz
Ay'By has no Jordan block of size di associated to the zero eigenvalue, then any
matriz compatible with the channel output SOS up to lag 1 is related to the true
channel matriz by an admissible matriz.

A sufficient, though not necessary condition for A5 to hold is that A4 hold and
the linear kernel memory be no less than that of the nonlinear part. In that case,
Sy(k) is a function of a(k), a(k — 1), ..., a(k —dy + 1) so that if {a(k)} is iid then
the random variables Sy(k) and a(k — d;) are independent and A5 follows.

The next result applies for channels in which the linear and nonlinear parts are
uncorrelated.

Theorem 3.5 Assume that Y defined in (3.44) is positive definite and that for i > 1
and for all n,

covla(k), si(k —n)] = 0.
Then with Q as in (3.29), the matriz Cy(1) is block diagonal. If A7' By, and Ay Bas
do not share any elementary Jordan block in their Jordan decompositions, then for
any Hermitian W commuting with Cs(1) the matrizt QW Q™! is admissible.

Thus when the linear and nonlinear parts are uncorrelated, the ‘no common

Jordan blocks’ condition is sufficient for blind equalizability from C,(0), C(1).
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The next result is as follows:

Theorem 3.6 Suppose assumptions A1-A3 hold, the symbols {a(k)} are Gaussian,
and the memory of the nonlinear part of the channel does not exceed that of the linear
part, i.e. Sa(k) = ¢(S1(k)) where ¢(-) is a memoryless mapping. Also assume that
the Jordan decompositions of the matrices Jg, — e;a! and Ag'By do not have any
common elementary Jordan block, and that Y, defined in (3.44), is positive definite.
Then any matriz compatible with the SOS of the channel output up to the lag | = 1
15 related to the true channel matriz via an admissible matriz.

The following remarks are in order about theorem 3.3:

1. Gaussianity of the symbols {a(k)} is sufficient for having C,(1) block diag-
onal, but it is not necessary. In general, as long as cov[Sy(k — 1), f(k)] =
cov[Sy(k),b(k)] = 0 is satisfied, theorem 3.2 allows one to reduce the blind

H

equalizability problem to a check on the Jordan structures of J; — e;a” and

Ay By.

2. If the conditions of theorem 3.6 are satisfied, the color of the symbols {a(k)}
does not affect blind equalizability. It is conceivable, however, that for Gaussian
symbols a particular choice of the symbol autocorrelation could result in the

two diagonal blocks of C,(1) sharing a Jordan block.

3. An example of a communications system in which the symbols are approxi-
mately Gaussian is the Orthogonal Frequency Division Multiplexing (OFDM)
scheme [7], in which the original symbol stream is divided in blocks that undergo
an Inverse Discrete Fourier Transform (IDFT) operation prior to transmission.
If the original symbols were zero-mean iid then the IDFT output is asymptoti-

cally (i.e. as the block size tends to infinity) white Gaussian [8]. Constellation
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shaping is another technique that produces a Gaussian-like symbol sequence

[33].
3.3.5 A result for iid symbols

So far we have considered the problem of equalizability from Cy,(0) and Cy(1),
that is, we have taken [ = 1 in (3.1). Although it is desirable to keep [ small in order
to reduce complexity, other choices are clearly possible and may lead to different
equalizability conditions, as the next result shows.
Theorem 3.7 Under Assumptions A1-A3, suppose that the symbols {a(k)} are iid
and that the memory of the linear part of the channel is strictly greater than that of

the nonlinear part, i.e.

Sy(k) = ¢( a(k), ... ,a(k—di+2) ) with ¢(-,...,-) a memoryless mapping.
(3.47)
Then the ZF equalizers of delays 0 and dy —1 obtained for any channel matriz compat-
ible with the second-order statistics of the received signal up to lagl = d; —1 are also
ZF equalizers for the true channel. That is, (3.12) holds with d =0 and d = d; — 1.
Observe that although this result places more stringent requirements on the
source statistics and the channel memory than theorems 3.3- 3.6, it has the advantage
of completely disposing of the eigenvalue condition on C(1) that those results required
for equalizability (via theorem 3.2). We must also note that once the zero-delay ZF
equalizer is available, the ZF equalizers for other delays can be readily computed:
Lemma 3.1 Let gy be a zero-delay ZF equalizer for H, i.e. giH = efl. Under

assumptions A1 and A3, the ZF equalizer of delay d, g4, is given by

ga = Cy(o)#cy(d)goa (348)
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where Cy(0) and Cy(d) are de-noised output covariance matrices, i.e.
Cy(0) = HC,(0)HT,  Cy(d) = HC,(d)H".

3.4 Some examples
We give now some examples of application of the results developed in the pre-

vious sections.

3.4.1 Linear-quadratic channels

Suppose that the only nonlinearities in the channel are of quadratic type:
si(k) = a(k)a(k — n;) for some n; > 0 and 7 > 1.

It is assumed without loss of generality that n; # n; if ¢ # j. Suppose also that the
symbols {a(k)} are real, iid, and symmetrically distributed about the origin; in that

case, E[a"(k)] = 0 for n odd. Under these conditions, one has
cov[si(k), s;(k —n)] = 070(i — j)o(n),
where 0(+) is the Kronecker delta and

Ela*(k)] ifi =1,
o & cov[si(k),si(k)] ={ Ela(k)]? if i > 1 and n; # 0,
Ela*(k)] — E*[a*(k)] ifi>1and n; = 0.

In these conditions, assumptions A4-Ab5 are satisfied, and the source covariance ma-

trices are given by

CS(Z) = U%me-ll S Ungln+l2 DD Ugjylm-lq-

Thus by choosing Q = 011y, © -+ - @ 04l myy,, the corresponding normalized source

covariance sequence becomes simply

CS(Z) = JTln-l—ll ©® ‘]in—f—lz SERRR ‘]in-f—lq'
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Observe that C,(1) is already a Jordan form, whose only eigenvalue is zero, and which
has g elementary Jordan blocks of sizes m+1;, m+1(s, ..., m+1[,. Hence if [; # [, for
1 # 1, we can invoke Theorem 3.4 to conclude that the channel is blindly equalizable
from Cy(0), Cy(1).

In addition, this ‘length disparity condition’ is also necessary for blind equaliz-

ability from the channel output SOS. For if I, = [;, then any matrix of the form
H=HT S Ity @ & Iy,

with T of the form

cosa - Iy g—;ejﬁ sina -« Ly

T= (3.49)

g—feﬂ sina - Iy, —e/Btcosa- I,
is compatible with the channel output SOS up to any lag I. Therefore the ambiguity
represented by the parameters «, 3, v in (3.49) cannot be resolved using SOS. And
if g4 satisfies gf?fl = efﬂ for some 0 < d < m + l; — 1, when applied to the actual

channel g; does not totally remove ISI: in the noiseless case, one has

giY (k) =cosa-a(k —d) + %2 6-iPsina - so(k — d),
01

so that a certain amount of nonlinear ISI remains at the equalizer output.

3.4.2 Satellite links with PSK modulation

Here we consider the baseband equivalent nonlinear model for a satellite link.
As discussed in section 1.2.1, due to the bandpass nature of the channel these systems
can be modeled by the truncated Volterra series given in (1.2), which can be readily
reformulated to fit the model 3.1. The generating terms {s;(k)} are monomials that

can be written as
2m;+1

j=m;+1
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Figure 12: The PSK constellation for three values of M.

i.e. there is an odd number of terms in the monomial, with one more unconjugated
than conjugated terms.

We shall assume that the communication system uses phase-shift keying (PSK)
modulation, as this is a popular format for satellite links [4]. In that case the symbols

{a(k)} are independent, equally likely, and drawn from a constellation of the form
a(k) e {R-&¥™M — n=0,1,... M -1}

where M is the alphabet size, which is usually a power of 2. The PSK constellation
is illustrated in figure 12.

The channel structure (3.50) leads to the following result:
Lemma 3.2 Consider the generating terms {s;(k)} of the baseband equivalent Volterra
channel, given by (3.50). If the symbols {a(k)} are independent and drawn from an
M-ary PSK constellation, then each {s;(k)} is a white process, and fori # j one has
cov(si(n),sj(k)] =0 for all n, k.

In these conditions, assumptions A4-Ab5 are satisfied, and the source covariance
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matrices are given by
Co(l) = 0 Ity © 05Tty @ -+ ® 0 S,

where 02 2 F[|s;(k)|?], which is the same structure we found in the previous sec-
tion for linear-quadratic channels with real symbols. Thus by choosing again @ =

O1lmyi, ® <+ ® 04lmyi,, the normalized source covariance matrices become again
A gl 1 1
CS(Z) - Jm+ll ® Jm+lz ©---D Jm+lq-

As in section 3.4.1, we conclude that if [; # [, for i # 1, the channel is blindly equal-
izable from Cy(0), Cy(1); and that this ‘length disparity condition’ is also necessary

for blind equalizability from the channel output SOS.
3.4.3 Colored sources

So far we have considered cases for which the symbols {a(k)} are uncorrelated.
In this section we give an example in which the source symbol sequence is colored.

Offset Quadrature Phase-Shift Keying (OQPSK) is a modulation technique ob-
tained by delaying the quadrature digits by 7} seconds relative to the in-phase digits
in a 4-PSK modulator, where T} is the bit interval [4]. This fact constraints the maxi-
mum phase shift between two consecutive symbols to £90° in contrast with standard
QPSK in which 180° phase transitions are possible. Usually the transmitted QPSK
signal is bandpass filtered so as to reduce out-of-band radiation and hence co-channel
interference. The envelope of the filtered QPSK signal approaches zero at the time
instants when the 180° phase jumps occur, an effect that is highly undesirable when
the signal undergoes nonlinear amplification. This is because the out-of-band spectral
sidelobes are enhanced by the nonlinear amplifier, therefore destroying the filtering

action at the transmitter. By eliminating the possibility of 180° phase jumps OQPSK
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reduces the envelope fluctuations after filtering, thus allowing for more efficient am-
plification [23].

OQPSK modulation produces a sequence of symbols that is correlated. Suppose
the constellation {14 j,1—j,—1+j,—1—j} is employed, and let {b;} be the stream
of independent, equiprobable ‘bipolar bits’ (by € {—1,+1}). Assuming that the basic
signaling pulse is rectangular in shape, then due to the offset between the in-phase
and quadrature components the OQPSK symbols can be seen as generated according

to the following rule:

br_1 + jbr for k even,
a(k) _ k—1 T JOk
by, + jbr_1 for k odd.

From this one finds that the covariance of the symbols is given by

2, n=0,
covla(k),a(k —n)] =14 1, n=+1,
0, else.

Now consider a nonlinear channel of the form (3.1) with ¢ = 2, s,(k) = a(k) and
so(k) = a(k)a*(k —1).

One can check that cov[si(k), s2(k —n)] = 0 for all n, so that we are in the conditions

of theorem 3.5. In addition,

3, n=0,
cov[sa(k),sa(k —n)] =14 1, n==+1,
0 else.

?

Therefore {s1(k)}, {s2(k)} are first-order Moving Average (MA(1)) processes, with
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autocovariance coeflicients

o A cov[si(k), s1(k —1)] _1 oy A cov(sa(k), s2(k — 1)] _1
cov[si(k), s1(k)] 2’ cov(sy(k), sa(k)] 3

According to theorem 3.5, a sufficient condition for blind equalizability from C,(0),

C,(1) is that the matrices

Cn 2 ARPBLAL?,  COn 2 A5/Bpay'?

do not share any elementary Jordan block in their Jordan decompositions. Now these

matrices are similar respectively to the matrices
—1 -1

These are companion matrices associated to the FPEFs of orders d; and ds, respec-
tively, for the processes {s;(k)} and {s2(k)}. It turns out that the transfer functions
of the FPEFs of MA(1) processes with covariance coefficients p; = 1/2 and p, = 1/3
are coprime for all values of d; and ds. Therefore the matrices C';; and Cy do not

share eigenvalues, and blind equalizability from C,(0), Cy(1) follows.
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CHAPTER IV

EQUALIZATION ALGORITHMS FOR NONLINEAR CHANNELS
WITH INDEPENDENT SOURCES

In Chapter III we have presented sufficient conditions on the source statistics
and the channel nonlinearities in order to guarantee that the channel output SOS
contain sufficient information about the ZF equalizers. The next logical step is the
development of algorithms to extract these equalizers. In this chapter we consider this
problem focusing on the particular but important case in which the symbols {a(k)}
are independent and identically distributed (iid). In particular we will consider the
cases covered by theorems 3.4 and 3.7. The development in the next section is valid
for both settings; after that, the two particular cases are treated separately.

Once the ZF equalizers have been obtained, their MMSE counterparts can be

computed as shown in section 4.4. Simulation results are presented in section 4.5.

4.1 General considerations
For convenience, the assumptions corresponding to the settings of theorems 3.4
and 3.7 are repeated here. For both settings, it is assumed that A1-A4 hold:
A1: The channel matrix H is tall and has full column rank.
A2: The noise {n(k)} is zero-mean white with covariance ¢21I,,.
A3: The covariance matrix C,(0) is positive definite.
A4: The transmitted symbol sequence {a(k)} is iid with E[|a(k)|*] = o2.

In addition, the setting of theorem 3.4 also requires A5:
A5: cov[Sy(k),a(k —dy)] = 0.
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On the other hand, the setting of theorem 3.7 requires A5’ instead of A5:
A5': The vector Sy(k) can be written as Sa(k) = ¢( a(k), ... ,a(k—dy+2) ),
with ¢(+,...,-) a memoryless mapping.

Observe that A5’ implies A5, but that the converse is not true in general.
Therefore in any of these settings the normalized lag 1 source covariance matrix

C,(1) takes the form shown in (3.46), repeated here for convenience:
Co(1) = Jo @ [A5 P BoA " = Ty @ C,

where C' is defined as
C 2 4,'°ByA, (4.1)

Our development consists of two conceptual steps:

1. The (normalized) channel matrix H can be determined from C,(0) to within a

unitary mixing matrix.

2. The information contained in Cy(l) with { > 1 is then used to resolve the

indeterminacy represented by this mixing matrix.

The first step is achieved as follows. As in [29], perform a singular value decom-

position (SVD) of C,(0):

¥2 0 UH
G0 =11, U,] , (4.2)
0 0 Ux

where X2 > 0 is a (d; + d3) X (d; + d») diagonal matrix of singular values and U; has
dy +dy columns. Recall that, with H the normalized channel matrix defined in (3.13),
one has Cyy(0) = HH*. Since H has full column rank, it follows that H = U; XV for
some unitary (dy + dy) X (dy + dy) matrix V. Thus in order to identify the channel,

it remains to obtain this matrix V.
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However, for equalization purposes it is not necessary to obtain the whole matrix
V. To see this, let us partition V as V = [ v, V, | where each V; has d; columns,

1 =1,2. Let us collect the ZF equalizers g; in the pm X d; matrix

1>

Gzr [go g1 - Gdy—1 ]

Observe that

Gre = [1, 0]H*
= [I1, 0]QH*
= [1, 0]QUEV)#
= o 1, o ViSO

= o VHISIUH, (4.3)

where we have used the fact that

O'aIdl 0
[y 0)@=1[1, o) = > =0d[ I, 0]
AL A
Since X, U, are available from the SVD of C,(0), it follows that for equalization
purposes we just need to estimate V;. The remaining columns of V' are of no interest
to us.
We show now that if either the first or last column of V; were available, then the

remaining columns could be recovered by making use of the lag 1 covariance matrix

C

,(1). To do so, define the matrix

R & 2 'UfCc,)Um N (4.4)

Substituting Cy,(1) = HC,(1)H" = HC,(1)H" in (4.4), and using the fact that



59
UHRU, = I, . 4,, one finds

R = S'WUIHC,(1)H U,S™

= > Ufusv)C,)(VEsUuf)u,

= VC,(1)VH
Jdl 0 VlH
= [Vvi W]
0 C Vi
= ViJo, Vi + VaCVy (4.5)

Note that since V' is unitary, one has
VitVi=1,,  Vi'Ve=1,,  Viz=0. (4.6)

Therefore (4.5) yields

RVy = Vi Jy,, RV, = Vi J]. (4.7)

If we partition Vi columnwise as Vi =[ v;, --. w4 ], then egs. (4.7) read as
Ruvy 4, =0, Ru, 1=v,; i=dy,...,3,2, (4.8)
RHULl = 0, RHUL]' = ?)17]'_1 ] = 2, 3, . dl. <49)

Thus once an estimate of either vy ; or vy 4, is available, the remaining columns vy ;
can be recovered via (4.8)-(4.9).

Therefore the problem reduces to finding v;,; or vi 4, from the channel output
SOS. In the original algorithm of [29] for linear channels, one had C,(1) = J,,, i.e.
the block C'in (4.5) was absent. This allowed for v 1 , v 4, to be taken as the left and
right singular vectors of the matrix R associated to the smallest singular value. This
approach would work in our case provided that C' in (4.5) is nonsingular. However

we would like to allow for singular C' as well since this is usually the case in practice.
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We shall present first the solution for the setting of theorem 3.7, as the resulting

algorithm is considerably simpler than that obtained in the framework of theorem 3.4.

4.2 The setting of theorem 3.7

Consider the matrix
R 2 x'UlC,(d - 1)U 57" (4.10)

Substituting C,(d; — 1) = HC,(d, — 1)H? = HC,(d, — 1)H" in (4.10), and using

again UJ'U, = I, ;4,, one has

R = X 'WWHEHC,(d, —1)HEU, !
= YU USV)C(d, - 1)(VESUF U B

= VC(d —1)VH.

It is shown in the proof of theorem 3.7 that under the conditions of this setting (i.e.

assumptions A1-A4 and A5’) the matrix C,(d; — 1) satisfies
Cy(di — 1) = (eq,ef’) ® Odgyas- (4.11)
Therefore

R = VC(d, —1)V!

eq el 0 v
= [vi vl
0 © Vi
= Vvledle{{‘/lH
= U1,dlvfl- (4.12)

The relation (4.12) shows that R is a rank one matrix, and that its only nonzero
singular value equals 1. The vectors vy 4,, v1,1 can be obtained up to a constant of the

form e/? as the left and right singular vectors, respectively, associated to the largest
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singular value of R. An alternative and computationally cheaper way is to directly
extract vi 4, as a normalized column of R and v1,1 as a normalized row:

R ||

eH

1R -
@fl = H?ﬁ’ With jmax = argmax{||e] R||, 1 < j < di + dy}. (4.14)
e

Jmax

01 4y with i = arg max{||]:1"e,-||, 1<i<dy +dy}, (4.13)

In this way these estimates 0y 4,, 01,1 are related to the true quantities vy 4,, v1,1 by
some complex constants with unit modulus. From these, the remaining columns of V;
can be estimated via either of the Jordan chains (4.8)-(4.9), thus obtaining an estimate
Vi satisfying V, = eV, for some real 6. In view of (4.3), the matrix Gy = o U X1V,
satisfies GzpH = & %14, providing equalization up to an unknown phase rotation. This
is acceptable since the need for a phase reference can be sidestepped by differentially

encoding the data. The algorithm is summarized next.

Algorithm 4.1: Blind equalization under the conditions of theorem 3.7

1. Perform an SVD of C,(0) as in (4.2) to obtain Uy, X.
2. Construct the matrix R as in (4.4).

3. Construct the matrix R as in (4.10).

4. Form the estimates 0y 4,, 1 via (4.13)-(4.14).

5. Fori=2,3,...,dy,let 9, = R0, ; 1. Alternatively, for j =dy, dy -1, ..., 2

~ _ H/\
let U1,j-1 = R U1,5-

6. Construct the ZF equalizers as QZF = aaUlE*I[ D1q - Dra, ]
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4.3 The setting of theorem 3.4
In this framework, conditions A1-A5 are assumed to hold, and in addition it
is assumed that the Jordan decomposition of the matrix C' defined in (4.1) does not
have any elementary Jordan block of size d; associated to the zero eigenvalue.
Observe that assumption A5 is weaker than assumption A5’ and as a conse-
quence it does not guarantee that C,(d; — 1) be of the form (4.11). Nevertheless, we
show in this section how V; can be estimated from the powers of the matrix R. Note

that due to (4.6), one has for all n,
R" =WV J} VT + VOV, (4.15)
Also observe that the powers of the shift matrix J;, satisfy
nglfl =eg el 5, =0 forn>d.

Suppose for the moment that V,C%~1V# has been found. Then we could construct

the matrix R~ — V,C4 =1V H  which in view of (4.15) satisfies
RAT — Va0V = Vieg, el VT = vy g, 0]

Hence (v1,1,v1,4,) could then readily be estimated from this matrix, up to a constant
of the form e/’. Therefore our goal shall be to determine V,C“~1V, 1.

Consider a Jordan decomposition of the matrix C"
C=T(YaY®Z)T™ (4.16)

where Y is a direct sum of shift matrices J; with 7 < di, Y is a direct sum of shift
matrices J; with ¢ > d;, and Z is square nonsingular. Observe that there is no

block Jy, in the Jordan form in (4.16), as this was required by theorem 3.4 for blind
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equalizability. Now let us partition the matrix 7 in (4.16) as
T= [ T1 T T, ]

with Tl, Ty and T, having the same number of columns as }A/, Y and Z respectively.

Then the matrix 7! is given by

T
=1 |,
T
so that
T# T#T, T#T, TFT, I 00
T'T=\|71# |7 T )= |TF¢ TP, TFT, |=]|0 I 0
T TIT, TFT, TT, 00 I
Therefore one can express
VOVE =T+ T+ A, (4.17)

where

I' 2 WOLYTHVY, T 2 Wwnyr#vy, A2 WLZTHVHE (4.18)
Moreover one has for all n
VOV = VLY TV + VoY " TFVE + VT 2" T Vil

= "4+ A"

Since Y is a direct sum of shift matrices of size smaller than d, -1 = 0 so that

the matrix of interest reduces to

‘/QCdlil‘/QH . \UES + Ad—1 (419)



64

Denote J,, as the r-fold direct sum of J,,:

(r times)
Letting ny > ny > -+ > n, > di, the matrix Y can be written without loss of
generality as
Y = Toin, @ Trpny B+ B Trumss (4.20)
for some 7;, n;, u. Likewise partition Tt = [ 7y, Tyy --- Ty, |, with T3; having the

same number of columns as J,,,,. Note that the matrices
A
Ly & VoTud v IV

satisfy ['* = "% | I'¥ for all k, and also

0 if £ > n; —1
k= w10 TEvVHE = (4.21)
o VoTy; (@ enief> TEVH ifk=n;—1
7=1
In view of this and (4.19), it suffices to find the matrices I';, ..., ', and A%~1. We

propose the following ‘peeling’ algorithm for this purpose.
For i =1 to u do:
Step 1: Find A%~ = VT, 2% ' TFV,F.
Step 2: Find T; = VoI, T rn, TV
end for;
Step 3: Find A%~1 = VT, 24 1TFVH.
At the end one obtains the matrix of interest as V,Ch -1V = ¢ T~ 4
A%~ 'We now show how these steps can be accomplished.

Steps 1 and 3: Define the matrix R 2 ViJg, V2. In the ith iteration of Step 1, the
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matrix
R 2ER-ST;=R+T+3I;+A (4.22)
Jj=t

is available (R, 2 R). Similarly, at Step 3 the matrix R,;1 = R—T'=R+T+ A is

available. One has

k __ Dk Mk S k k _ Ak
k> n; — R! _5/+\F/+Z Ih AR = AF, (4.23)
=0 =0 J=i

=0

Now let ¢ be the size of the matrix Z, and let p(\) be the characteristic polynomial
of Z:

p(A) & det[Al, — Z] =M+ p X 4y (4.24)

Note that p(A) is known to us and that since Z is nonsingular, p; # 0 must hold. By

the Cayley-Hamilton theorem [19], p(Z) = 0 and therefore Z"~'p(Z) = 0:
Zni—|—t—1 + plzni+t—2 e ptZ’ni—l — 0,

which gives
1
Zn,'—l — __(Zni‘f't—l + plzni—f—t—Z RS Pt—lZni)-
Pt

In view of (4.23), this implies

| 1 | »
AN _p_<A"’+t_1 + AT 4 AT
]
1, . "
- _p_(R,mH P o RPTTE 4 R, (4.25)
T

-1

which shows how to obtain A™~" at iteration ¢ of Step 1. Similarly, at Step 3 one

computes A1 as per

_ 1 _ _
AT = —— (RA + o ROAT? 4+ -+ RIL ).

Pt
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Step 2: Observe that R™' = I'""' 4 A"~1_ Therefore at the ith iteration, I/~ =

R~ — A"~ i available. For notational convenience, let
A A
d = V1, U2 TrEyH

so that
Note that U#® = I, that is, ¥¥ = ®#. We shall also make use of the pseudoinverse

of the matrix R. Since in view of (4.5) R satisfies R = V (J, ®C)V ¥ with V unitary,

it follows that R¥ is given by R* =V (JjI & C#)VH  that is,

Ja
- H
Rt — v v fa v
T YH T-1
Zfl
= VPV + (W)Y (TFV)
+ (VHT)Y TV + (W) 27N T V). (4.26)

Note that R# is available to us, since R is. Also note that

ViAo =0 (Ve =0, (TEVHO =1, (TEVS)®=0 forj#i.
(4.27)
Therefore from (4.26) and (4.27),

RFO =07/, . (4.28)
In the same way one finds that

(R =07, (4.29)
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For convenience let » = r; and n = n;. Partition

¢ = [(Dl (I’r]:[¢11 P | | e e ¢Tn]’ (4.30)

v o= [‘1’1 ‘I’r]:[ﬂjn R N ST wm], (4.31)

and note from (4.28)-(4.29) the following Jordan chain relations for each j = 1,...,r:
R*¢j= s, (RO i=vu,  1=2,...s (4.32)
In view of (4.32), the matrix ['; = ®7,.,,, ¥ can be written as

L, = Y 0,J,0/

=1

= Zl[ bjo o b L j 0 Yjaa 17

r s—1

= X S (RA G ()

j=1lk=1

n—1

- Sy (z » H) (R#y
_ E(R#)n—k—lp?—l(}g#)k—l_ (4.33)

k=1

The last line follows because in view of (4.21), one has
F?_l = Z ¢]n¢ﬁ
j=1

Eq. (4.33) shows how to find T; from I'"~* and R¥.
The algorithm is summarized next. The quantities p; and the integer ¢ are

defined in (4.24), while the integers n;, u are defined in (4.20).
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1. Perform an SVD of C,(0) as in (4.2) to obtain Uj, X.
2. Construct the matrix R as in (4.4).

3. Set Ry = R.

4. Fori=1,2, ..., u:

o Let Am~1 = —i 22—210 ka?iH_k_l with pg =N
o Let [l = Ry~ _ Am—1,
o Let I = S0 (RF) 0710 (RA)A,

o Let Riy =R, — T
End for.
5. Let A4~1 = —i Sl peRATERL
6. Let R= Rh—1 — w [ht_ AD-L

7. Form the estimates 0y 4,, 011 via (4.13)-(4.14).

8. For i = 2, 3, ceey dl, let ’17171' = Rﬁl,i—l- Alternatively, for j = dl, dl - 1, Cee

~ _ pHa»
let U1,-1 = R U1,5-

9. Construct the ZF equalizers as QZF = aaUlE_l[ D1y e Drg ]

’27
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4.4 Computing the MMSE equalizers
The algorithms of the previous sections determine the ZF equalizers under the
right conditions. In this section it is shown how the MMSE equalizers can be obtained
from the ZF ones. The approach is similar to that in [22] where the linear channel
case was considered.
As before we denote by g, the ZF equalizer vector with associated delay d. The

MMSE equalizer vector for the delay d, denoted by f,, is defined as
fi & arg min | FAY (k) — a(k — d)|?. (4.34)

The following lemma establishes the desired connection.
Lemma 4.1 Assume that H is full column rank and that C,(0), C,(0) = HC,(0)H"+
C,.(0) are positive definite. Then the delay-d MMSE equalizer fq is related to the

delay-d ZF equalizer g4 by
fa=1 —C;1(0)Cn(0)]ga- (4.35)

Observe that in general the noise covariance matrix C,(0) is positive definite and
therefore so is the undenoised matrix C,(0). If the noise is white, then (4.35) reduces

to
fa= 1[I —02C,H(0)]ga- (4.36)
If the matrix H is tall, then the noise variance o2 can be estimated as the smallest
eigenvalue of C,(0) = HC,(0)H" + 621,,. In that case, all the information needed
in order to obtain f; from g4 is available in the channel output SOS.
4.5 Simulation results

In this section we present the results obtained by the proposed algorithms with

several numerical examples. For illustration purposes, the phase ambiguity inherent to
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the method was removed before computing the error rates. Averages were computed

based on 100 independent runs. The Signal to Noise Ratio (SNR) is defined as

trace cov[H 151 (k), H1S1(k)]
tracecov[N(k), N(k)]

SNR = 10log;,

which in the case of iid symbols {a(k)} and white noise {n(k)} equals

o2 o | R |2

SNR =101
0g10 pUTQL

The Linear to Nonlinear Distortion Ratio (LNDR) is defined as

trace cov[H1S1(k), H151 (k)]
trace cov[HySa(k), HuS2 (k)]

where H, 2 [ Hy - H, ]

4.5.1 Example 1

First we consider the real nonlinear channel from Example 1 in [12], whose

expression is

y(k) = ﬁ: hija(k — j) + 21: hajsa(k — j) + n(k),

=0
where s5(k) £ a(k)a(k—1). Thus ¢ = 2,1 = 2, [, = 1. The input {a(k)} is iid taking
the values +1 with equal probabilities. The number of subchannels is p = 3. The
noise {n(k)} is zero-mean white Gaussian with variance o2. The channel coefficients

are
ho=1[1 05 21", hu=[-25 3 0], ha=[15 2],

ho=[2 03 —07]", ha=[07 12 3],
resulting in an LNDR of 5.13 dB. Observe that the memory of the linear part of this
channel is not strictly larger than that of the nonlinear part, and consequently the

conditions of theorem 3.7 do not hold. However, the requirements of theorem 3.4 are
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satisfied since cov[Ss(k),a(k —m — I1)] = 0 for all equalizer lengths m. In addition,
the normalized lag-1 source covariance matrix for this channel is C,(1) = Jy, @® Jy,,
with d; = m + 2, dy = m + 1. This is already in Jordan form, and it is seen from
theorem 3.4 that the channel is blindly equalizable from C,(0, Cy(1).

In the first experiment we considered an equalizer length m = 4, which yields a

channel matrix H of size 12 x 11. The procedure is as follows:

1. Collect K samples of the received signal {y(k)} and from these, estimate the

matrices Cy(0), Cy(1).
2. Use Algorithm 4.1 to estimate the ZF equalizers.
3. Use (4.35) to obtain the MMSE equalizers.

Figure 13(a) shows the Symbol Error Rate (SER) versus SNR obtained with
the MMSE equalizers with associated delay d, 0 < d < m 41, —1 = 5. It is seen
that the zero delay yields the poorest performance. The best results are obtained for
intermediate values of the delays (d = 2,3,4). Also shown in figure 13(b) is the SER
as a function of the number of snapshots K used to estimate the covariance matrices
for SNR = 0, 5 and 10 dB, for the MMSE equalizer with associated delay d = 3. As
could be expected, the performance improves as K is increased until eventually the
curves flatten out due to the noise floor effect.

In the second experiment for this channel we compared the performance of our
proposed algorithm with that of Giannakis and Serpedin [12]. Since the deterministic
algorithm of [12] requires a square channel matrix, we set the equalizer length m = 3;
in this way, H has size 9x9. With a full-rank square H the matrix %C,(0)H" becomes
nonsingular; thus it is not feasible to estimate the noise variance o2 as the smallest

eigenvalue of C,(0). Because of this, the effect of noise was ignored in the algorithm
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Figure 13: Performance of the new algorithm for the nonlinear channel in Example
1, equalizer order m = 4. (a) SER vs. SNR, K = 500 symbols. (b) SER vs. sample

size K, equalization delay d = 3.

and the ZF equalizers were used instead of the MMSE ones. The algorithm of [12] also
neglects the effect of noise, and it also presents the additional drawback of providing
only ZF equalizers with minimal and maximal delays (i.e. d =0 and d = d; — 1).
However, in general the best performance is attained for some intermediate delay.
Figure 14 shows the SER as a function of the SNR using K = 500 snapshots. It
is seen that the performance of the two algorithms is very close for d = 0. For d = 4,
however, the new algorithm clearly outperforms the method from [12]. We must also
keep in mind that, although for comparison purposes only the performance of the ZF
equalizers with minimal and maximal delay is shown in figure 14, the new algorithm

provides the equalizers with intermediate delay as well.
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Figure 14: Performance of the ZF equalizers for the nonlinear channel in Example 1.

K = 500 symbols, equalizer order m = 3.

4.5.2 Example 2
The second channel that we consider is the complex channel from Example 3 in

[12], whose expression is

3 1
y(k) = jgohlja(k —-j+ jgohzjsg(k —Jj) +n(k),

where now the nonlinear term is given by sy(k) = a(k)a(k—1)a*(k—2). Thus ¢ = 2,
l1 = 3, 1y = 1. The symbols {a(k)} are i.i.d., drawn from the Quadrature Phase Shift
Keying (QPSK) constellation {1+ j,1 — j,—1 + j,—1 — j} with equal probabilities,
so that 02 = 2. The number of subchannels is p = 3, and the coefficients are given by
hio=[1+7 05+04fj —1+51, hu=[-25+2; 3+2j 1-25]"

bl

he=[1+j -1+ 2+13j " hs=[4403j 5+j —3+135]

I
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hoo=[2 03402 —07+071 ha=[07-08 12+j 3+0.15],
resulting in an LNDR of 1.3 dB. Again, the memory of the linear part of this channel is
not strictly larger than that of the nonlinear part, so that the conditions of theorem 3.7
do not hold. However, those of theorem 3.4 do hold since cov[Ss(k),a(k—m—1;)] =0
for any m. For this channel, one has C,(1) = Jy, ® Jg,, with d; = m+3, dy = m +1,
which again is already in Jordan form. Using theorem 3.4, the channel is blindly

equalizable from Cy(0, Cy(1).

—&— New algorithm, d=0
—+— Giannakis & Serpedin, d=0
—=— New algorithm, d=6
—%— Giannakis & Serpedin, d=6
107° T T i i i
o 5 10 15 20 25 30
SNR, dB

Figure 15: Performance of the ZF equalizers for the nonlinear channel in Example 2.

K = 500 symbols, equalizer length m = 4.

We compared again the new algorithm and the deterministic method of Gian-
nakis and Serpedin [12]. In order to obtain a square channel matrix, an equalizer

length m = 4 was chosen. Figure 15 shows the performance of the ZF equalizers
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Figure 16: Scatter plots for the nonlinear channel in Example 2. 500 symbols, equal-

izer length m = 4, delay d = 6, SNR = 25 dB.

of minimal and maximal delays obtained with both methods using K = 500 data
samples for covariance estimation. As was the case for the channel in Example 1, for
d = 0 both algorithms show similar performance, while for the maximum delay d = 6
the proposed method presents a clear advantage.

Figure 16 shows typical scatter plots of the subchannel outputs and the output
of the length m = 4 ZF equalizer of delay d = 6 obtained with the proposed algorithm,

using K = 500 data samples and with SNR = 25 dB.
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4.5.3 Example 3

The third channel that we consider is given by

y(n) =D hija(n —j) + D hojsa(n — j) + z(n),

J=0 Jj=0

where the nonlinear term is s»(n) = a2(n)a?(n — 1). There are p = 3 subchannels,

given by
1 —0.5 0.15 —0.2
hio=102|,hi=| =03 | ,hoo=| 0.15 | ,ho1 = | —0.4
0.4 1 0.5 0.2

Thus ¢ = 2,1; =1, I, = 1. The input symbols are i.i.d., drawn from a four-level pulse

amplitude modulation (4-PAM) constellation {—1,—3, 5,1} with probabilities
1 1
Pla(n) = _§] = Pla(n) = g] = 0.1, Pla(n) = —1] = Pla(n) = 1] = 0.4.

The value of the LNDR for this channel is 13.1 dB. We considered an equalizer length
m = 2, for which the normalized source covariance matrix C(1) turns out to be

similar to J3 & C' with C given by

0 0 0.1643
C=11 0 -0.3593

0 1 0.6216

Observe that in this case the linear and nonlinear kernels have the same length (l; =
l; = 1). This fact makes the deterministic algorithm of Giannakis and Serpedin [12]
unable to find the equalizers. However, since all the eigenvalues of C' are nonzero, the
conditions of theorem 3.7 still hold and the proposed algorithm can still be used to
compute the equalizers. Figure 17(a) shows the SER obtained with the ZF equalizers

vs. SNR using K = 5000 symbols for covariance estimation; while figure 17(a) shows



7

the SER as a function of K for SNR = 25 dB. In this case the best performance is

obtained by the equalizer with zero delay.
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Figure 17: Performance of the new algorithm for the nonlinear channel in Example
3. Equalizer order m = 2. (a) SER vs. SNR, K = 5000 symbols. (b) SER vs. sample
size, SNR = 25 dB.

It can be observed that in order to obtain acceptable performance, the algorithm
requires considerably more symbols for covariance estimation and higher SNR than
in the previous examples. The reason for this is as follows. The singular values of
the matrix C,(1) are {1,1,1,1,0.1643,0}; since the blocks associated to the linear
and nonlinear kernels have the same size (d; = dy = 3), the algorithm relies in
the separation between the two smallest singular values of C,(1), namely zero (the

‘linear’ singular value) and 0.1643 (the ‘nonlinear’ singular value). The closer these
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two numbers are, the more sensitive the algorithm becomes to the effects of noise and

finite sample size, as observed in the simulation results.

4.5.4 Example 4
To close this section we present an example of a complex baseband equivalent
channel with PSK modulation that fits the description presented in section 3.4.2.

There are 2 nonlinear terms (i.e.¢ = 3) given by
so(k) £ a*(k)alk — Dalk —2),  ss(k) £ a(k)a*(k — 1)a(k — 2).

The lengths of the kernels are [; = 2, [, = 1,l3 = 3 and the number of subchannels is
p = 4. The symbols {a(k)} are iid, drawn from an 8-PSK constellation with o2 = 1
and equal probabilities. Since [; # [; for ¢ # 1, the blind equalizability conditions are
satisfied and therefore Algorithm 4.1 can be employed to obtain the equalizers. The

channel coeflicients are as follows:

hio = [044+06) 05+045 —0.5+00j —0.2+0.55]",
hii = [ —05+02j 06+08; 04—09j 08—0351",
his = [1.04+05] —1.0+08j 0.6+03j 0.1—0.75 ],
hao = [0140.0j 03+02 —01+01j 0.1+0.15]",
hot = [02-02f —01+40.1j 01401 —0.1+0.05]1",
hap = [ —014+00j 01-01j 03401 —01+0.1;5]",
hst = [ —01-0.1j 034015 —0.1+0.1j —0.2+0.15 ],
hyy = [014+02f 0.0+0.0j 02-02j —0140.25]"
hss = [ —0.14+02j 01405 0.1—045 02+0.15],

yielding an LNDR of 8.35 dB. An equalizer length m = 7 was chosen.
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Figure 18: Performance of the new algorithm for the nonlinear channel in Example
4. Equalizer order m = 7, SNR = 24 dB. (a) SER vs. sample size, delay d = 0. (b)

SER vs. sample size, delay d = 8.

We compared the performance of both the ZF equalizers obtained by Algorithm
4.1 without denoising the covariance matrices, and the MMSE equalizers obtained
with denoising via (4.35). It turned out that the best performance was obtained by
the equalizers with maximal delay (d = 8) and the worst by those of zero delay.
Figure 18 shows the SER as a function of the number of snapshots K for an SNR
of 24 dB, while figure 19 shows the SER as a function of the SNR with K = 1000
samples. Quite surprisingly, the MMSE equalizers perform worse than the ZF ones
for low SNR. This is due to the fact that in noisy environments accurate estimation
of the noise variance requires a larger sample size K .

Figure 20 shows typical scatter plots of the output of one of the subchannels
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Figure 19: Performance of the new algorithm for the nonlinear channel in Example
4. Equalizer order m = 7, K = 1000 samples. (a) SER vs. SNR, delay d = 0. (b)
SER vs. SNR, delay d = 8.

and the output of the length m = 7 ZF equalizer of delay d = 8 obtained with the

proposed algorithm, using K = 1000 data samples and with SNR = 25 dB.
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Figure 20: Scatter plots for the nonlinear channel in Example 4. K = 1000 symbols,

equalizer order m = 7, delay d = 8, SNR = 25 dB.
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CHAPTER V

EQUALIZATION OF NONLINEAR CHANNELS UNDER A
RELAXED RANK CONDITION

In Chapters III and IV the blind equalizability problem was investigated under
the assumption that the channel matrix H has full column rank. Under that condition,
H#*H = Id, + dy so that the first d; rows of the pseudoinverse H#* provide the ZF
equalizers. However, this also shows the existence of vectors (the last dy rows of
H*) that recover all the nonlinear terms s;(k) and their delays. This is clearly not
necessary since these terms are of no interest to the receiver.

In this chapter we investigate the possibility of relaxing this full rank require-
ment. Specifically, a necessary and sufficient condition on the matrix H for the
existence of ZF equalizers is given. Then the feasibility of extracting these equalizers

from the received signal SOS is analyzed.

5.1 A necessary and sufficient condition

It is convenient to introduce the following partition of the channel matrix:

H=[H, Hal with HuaZ=[H, - #, I (5.1)

That is, H, comprises the ‘nonlinear part’ of the channel matrix. Recall that H; and
‘H.1 have sizes pm x d; and pm X d respectively.

In this chapter, Assumption A1 (cf. H is tall and full column rank) will be
replaced by the following:
Assumption A1’: The matrix H; has full column rank, and with r 2 rank (),

T 2 rank(?,), the channel matrix H satisfies rank(H) = r; + o < pm.
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Observe that if H has full column rank, then Assumption A1’ is satisfied but
not conversely. The significance of this condition is reflected in the following result.

Theorem 5.1 There exists a pm X di matriz G such that

G'H =] I, Ogyxa, | (5.2)

if and only if Assumption A1' holds.

We shall refer to Assumption A1’ as the ‘relaxed rank condition’. Its geometrical
interpretation is as follows.
Lemma 5.1 The condition rank(| #, H, |) = rank(H)+ rank(Hn) s equivalent

to

range(#H1) (| range(Hu) = {0},
where range(A) denotes the subspace spanned by the columns of the matriz A.
Recall that the normalized channel matrix H was defined as H = H( where Q) is

a square root of the zero lag source covariance matrix C,(0). Assuming @ nonsingular,
‘H full column rank implies H full column rank. Similarly, the next result shows the
effect of the relaxed rank condition A1’ on H.
Lemma 5.2 Assume that H = [ H, H, | satisfies the relazed rank condition A1'.
Let

Qu 0

Qan Q2

be nonsingular, with Q;; of size d; x d;, and let

Q=

H:%Q:[Hl H2]

where Hy = H1Q11 + HuQ21 and Hy = HyQee. Then Hy has full column rank and
rank(H) = rank(H;) + rank(Hs).
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5.2 Obtaining the equalizers
The previous section has given a necessary and sufficient condition on the chan-
nel matrix for the existence of the ZF equalizers. We turn our attention now to
the problem of extracting these equalizers form the SOS of the received signal. The
following result relates them to the normalized channel matrix H = HQ.
Lemma 5.3 Assume that H satisfies the relaxed rank condition A1’ and that Q is

nonsingular and block lower triangular:

0
Q= @n . Qi dixd; (5.3)
QQl QZQ

Then the matriz G such that GHH = | Ii, 04 xa, | (ZF equalizers) is given by
G" =Qul I, 044, 1H* (5.4)

where H = HQ).
Thus if H = U;XV is an SVD of H, with

Up: pm x (ry+12), Y (ri4re) x (1 + 1), Vi (r+m) X (d + da),
then the equalizers are given by
G" = Qu I, 0O VESTU.
Alternatively, if we partition V as
V=[v, W%l V; of size (11 + 12) X d;, (5.5)

then one has

" =Quv'suf (5.6)
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Observe that Q11 is known to us from the source statistics, and that X, U; can be

obtained from an SVD of Cy(0) since
Cy(0) = HC,(0)H" = HH" = U, X*UE.

Therefore if V; could be somehow estimated, the ZF equalizers could be computed.

Observe that the rows of V' are orthonormal, i.e.
VV = ViV 4 VoV = I,

An additional property is shown by the next result.
Lemma 5.4 Assume that H satisfies the relaxed rank condition A1' and that Q is
nonsingular and block lower triangular as in (5.3). Let H = HQ have a singular

value decomposition H = U1 XV, and partition V as in (5.5). Then one has
‘/le‘/l - Id17 ‘/le‘/Q - Odl ng' (57)

Therefore under the relaxed rank condition the d; columns of V; still constitute an
orthonormal set, and they are orthogonal to the ds columns of V5. As in chapter IV,
consider the matrix

R & > 'Ufc,()U,x, (5.8)

which satisfies R = VO, (1)V# as shown in (4.5). Because of (5.7), this gives

_ I ] I
RV, =vC,1)| " |, Rfwvi=vem"| " | (5.9)
Odl X do Odl xd2

Therefore if one can find conditions under which C,(1) = Jg, & C for some dy X dy

matrix C, the familiar Jordan chains of (4.7) are recovered:

RVi = Vi Jy,, RV =wiJ], (5.10)



86

which provide a means to obtain V; once its first or last column is available.

In particular, consider the conditions of theorem 3.7, but substituting the full
rank requirement of A by the relaxed rank condition A1’. That is, assume that the
symbols are iid and that the memory of the nonlinear part of the channel is strictly
less than that of the linear part. Then the normalized lag d; — 1 source covariance
matrix C,(d, — 1) still satisfies Cy(d; — 1) = eq4, e ® 04,14, as shown in the proof of
theorem 3.7 (this property is completely independent of H). Therefore the matrix
R & S WHC,(dy — 1)U, S still satisfies

R=VC,(d — )V = (Vie,)(Vier)",

from which the first and last columns of V; can be estimated. Hence Algorithm 4.1
from Chapter IV still provides the desired ZF equalizers.

Consider now the setting of theorem 3.4, in which the symbols {a(k)} are iid and
satisfy cov[Ss(k), a(k—d;)] = 0. In this framework, it is still true that Cy(1) = Jg4, ®C.
Algorithm 4.2 was derived in section 4.3 where it was assumed that H was full rank.
When this requirement is replaced by the relaxed rank condition A1’, some of the
steps in the derivation of the algorithm cease to be valid. Specifically, eq. (4.15) does

not hold in this case since in general
(VaCVS)" # V.oV

unless the columns of V, are orthonormal, which is not the case under assumption

A1'. Nevertheless one has the following result:
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Lemma 5.5 Assume that conditions A1" and A2-Ab5 are satisfied. Then the matrix
R defined in (5.8) admits a Jordan decomposition of the form
Ja, %4
R=[Vi T, T)] Yo T | (5.11)
Z || 17
where Z is nonsingular and Yy s a direct sum of shift matrices J;.

The structure of the Jordan decomposition of R is the same as that found in
the case in which H has full column rank. However, while in that case this Jordan
structure was completely determined by the source statistics, now it also depends
on the channel coefficients. That is, the matrices Yy, Z, Ty, Ty in (5.11) cannot be
determined a priori, although they can be obtained by the receiver once the matrix
R has been computed. In that case, assuming that the matrix Y, does not contain
any diagonal block of the form J;,, Algorithm 4.2 from section 4.3 can be employed
to determine the ZF equalizers. Thus the price to pay in order to replace the full
rank requirement on # by the relaxed rank condition A1’ is (i) whether the channel
is blindly equalizable from Cy,(0) and Cy(1) cannot be determined beforehand, and
(ii) the receiver must perform a Jordan decomposition of the estimate of the matrix
R, which is expected to be very sensitive to effects due to the finite nature of the
sample size. The next section provides several examples.

Finally, in the noisy case it is still possible to obtain the MMSE equalizers from
the ZF ones even in the case that H is not full rank but satisfies assumption A1’
Lemma 5.6 Assume that H satisfies the relaxed rank condition and A1' and that
C,(0), C,(0) = HC,(0)H" + C,(0) are positive definite. Then the delay-d MMSE

equalizer fq is related to the delay-d ZF equalizer gq by

fa=[I = C;(0)Ca(0)]ga. (5.12)
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5.3 Simulation examples
We present now the results obtained by the algorithms derived in the preceding
section for several numerical examples. For illustration purposes, the phase ambiguity
inherent to the method was removed before computing the error rates. Averages were

computed based on 100 independent runs.
5.3.1 Example 5
We consider here a complex channel with ¢ =2, [; =2, [, = 1:

y(k) = i hija(k — j) + i hajsa(k — j) +n(k),

7=0
where the symbols {a(k)} are i.i.d., drawn from the QPSK constellation {1 + j,1 —
J,—1+j,—1 — j} with equal probabilities (thus 02 = 2), and the nonlinear term is

so(k) 2 a*(k)a(k — 1)a(k — 2). The channel coefficients are given by

1+ 2 —0.55 1—j
hio = 1 shu=| 14085 |, ha=|1—-3 |,
1+40.4j 0.2 1
0.1 —0.2§ 0.1+0.25
hao=102-045 |, hoa=1]024+04j
0.1 —0.2§ 0.1+0.25

This yields an LNDR of 8 dB. We chose an equalizer length of m = 4. The

resulting channel matrix A has size 12 x 11 and satisfies
10 = rank(H) = rank(H;) + rank(Hs2) = 6 + 4,

so that although H is not full column rank, the relaxed rank condition A1’ holds. The
symbols satisfy the condition cov[Ss(k), a(k—m—1;)] = 0, so that one can attempt to

use algorithm 4.2 to find the equalizers. The covariance matrices were estimated and



89

denoised, and once the ZF equalizers were obtained, the MMSE ones were computed
using (5.12). The values r; = 6 and r, = 4 are assumed known.
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Figure 21: MMSE equalizer performance: Algorithm 4.2, nonlinear channel in Ex-
ample 5, equalizer length m = 4. (a) SER vs. SNR, K = 1000 symbols. (b) SER vs.

sample size K, SNR = 25 dB.

Figure 21(a) shows the symbol error rate vs. SNR using K = 1000 samples
for covariance estimation, while figure 21(b) shows the variation of the SER with K
when the SNR is fixed at 25 dB, for all possible values of the equalization delay. It is
seen that for small values of the SNR, the SER performance is limited by the effect of
noise. As the SNR increases, the SER decreases but eventually it flattens out. This
indicates that for high SNR the algorithm performance is limited by the accuracy in

the estimation of the covariance matrices.
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5.3.2 Example 6
Now we consider a real channel with ¢ = 3, [; =4, [, = I3 = 1 and iid symbols

taking the values +1 with equal probabilities. The number of subchannels is p = 4:

hio=1[1 01 —02 03], hu=[05 06 06 1), ho=[04 1 06 07]"

his=[02 —04 01 —-05]", hu=[-02 02 —03 02],
hoo=102 01 02 01], ha=1[05 025 05 025],

hso=[01 02 02 011", ha=[-01 —02 -02 —0.1]"
The nonlinear terms are so(k) 2 a(k)a(k — 1), s3(k) 2 a(k)a(k — 2). The resulting
LNDR is 8 dB. The equalizer length that we consider is m = 6. Again the corre-
sponding channel matrix H (which has size 24 x 24) is not full column rank but it

satisfies the relaxed rank condition:
23 = rank(#) = rank(H,) + rank([ H, H, ]) =10+ 13.

In this case the memory of the nonlinear part is strictly less than that of the linear
part, so that both Algorithms 4.1 and 4.2 can be used. The covariance matrices were
estimated and denoised, and once the ZF equalizers were obtained, the MMSE ones
were computed using (5.12). Observe that the noise power can still be estimated as
the smallest eigenvalue of Cy(0) even though the channel matrix # is square, since
H is rank deficient. The values r; = 10 and r5 = 13 are assumed known.

First we tested Algorithm 4.1, which exploits the memory dominance of the
linear part. Figure 22(a) shows the symbol error rate vs. SNR using K = 2000
samples for covariance estimation, while figure 21(b) shows the variation of the SER
with K for SNR = 24 dB, for the equalization delays 0, 3, 8 and 9. In this case

the equalizer with maximal delay (d = 9) provides the poorest performance of all.

bl
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Figure 22: MMSE equalizer performance: Algorithm 4.1, nonlinear channel in Ex-
ample 6, equalizer length m = 6. (a) SER vs. SNR, K = 2000 symbols. (b) SER vs.
sample size K, SNR = 24 dB.

However the results do not show a limitation due to estimation accuracy for high
SNR, in contrast with the behavior of Algorithm 4.2 in the previous example.

The results obtained with Algorithm 4.2 are shown in figure 23. It can be seen
how the performance of this approach is much worse than that of Algorithm 4.1. This
is due to the high sensitivity of the Jordan decomposition of the matrix R with the
number of samples used for estimation of the covariance matrices, as pointed out in
section 5.2. This problem is not present in Algorithm 4.1 which makes use of the
information contained in Cy(d; — 1), information which is not exploited by Algorithm

4.2.
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Figure 23: MMSE equalizer performance: Algorithm 4.2, nonlinear channel in Ex-

ample 6, equalizer length m = 6, sample size K = 2000 symbols.



93

CHAPTER VI

EQUALIZATION OF LINEAR CHANNELS WITH CORRELATED
SOURCES

In Chapters IV and V we have focused on the development of blind equalization
algorithms for nonlinear channels when the input symbols {a(k)} are independent.
However, the results obtained in Chapter III show that under certain conditions
these channels still are blindly equalizable even if the symbols become correlated.
Although the problem of developing equalization algorithms for nonlinear channels
with correlated inputs remains open, in this chapter we provide a step in this direction
by generalizing the original algorithm of Tong, Xu and Kailath [29] (which deals with
linear channels and independent sources) in order to accommodate correlated sources.
Therefore in the remainder of this chapter it will be assumed that the channel is linear,

i.e. we have ¢ = 1 in the model (3.1):

y(k) = 2h1ja(k—j) (k). (6.1)

It is assumed that the number of available subchannels is still p. Correspondingly,

the channel matrix #H reduces to H = H; (see (3.7)) and the regressor vector is just
Sk)=51(k)=[a(k) alk—1) -+ a(k—dy +1) 1",

with d; = m+1; and m the equalizer length. In this way the matrix-vector formulation
(3.3) is still valid:
Y (k) = HS(k) + N(k), (6.2)

with Y(k) and N(k) defined as in (3.2) and (3.4) respectively.
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The algorithm from [29] recovers the channel matrix H from the covariance

terms
C,(0) £ cov[Y(k),Y(K)],  C,(1) & cov[V(k),Y(k—1)] (6.3)

up to an unitary scaling constant, assuming that H is full column rank and that the

symbols are white:

Cy(l) 2 cov[S(k),S(k—1)] = 02T, (6.4)
This whiteness assumption on {a(k)} is crucial for the algorithm from [29]. This
was noted in [17] where a modification was proposed in order to deal with weakly
correlated sources with unknown correlation (which must then be estimated). Direct
extension of [29] to arbitrary colored inputs is currently unavailable. Accordingly, we
extend the algorithm from [29] to the case of arbitrary colored sources with known
correlation. As will be evident in this chapter such an extension, particularly the
proof that the resulting channel estimate is to within a scaling constant of the ‘true’
channel, is highly nontrivial. To this end we make extensive use of the rich literature
on linear prediction theory. En route to our main result we derive a singular value
decomposition of the normalized lag-1 source covariance matrix which we regard as

a contribution of independent significance to linear prediction theory.
A recent attempt to extend the method of [29] to the colored source case can be
found in [1], where an algorithm that uses the information contained in Cy(0), C,(1),
cey Cy(l_) for some [ > 1 is presented. Besides its greater computational complexity,
the method from [1] implicitly relies on the fact that the smallest singular value of
certain matrices has multiplicity one; conditions under which this holds were not
given. By contrast, the algorithm developed in this section is theoretically sound

and makes use of only C,(0) and C,(1), so that the computational complexity is
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comparable to that of the original algorithm from [29].
6.1 Preliminaries

We assume that the source correlation matrices need not satisfy (6.4), and that

C,(0), Cy4(1) are known. Let 02 = E[|a,|?] and define also the autocorrelation vector

(1>

w = Cs(1)"e; = cov[S(k — 1),a(k)]. (6.5)

The assumptions of this chapter are as follows:
A1: The channel matrix H is tall and has full column rank.
A2: The noise {n(k)} is zero-mean white with covariance o21I,.

A3: The (dy + 1) x (dy + 1) lag-0 source covariance matrix is positive definite:

> 0.
w  Cy(0)

In the sequel we will assume that the noise is absent, as the noise component can
be subtracted from the output autocorrelation matrices using the approach discussed
in section 3.1. In this case one has Cy (1) = HC,(1)H" for all I > 0. Thus our goal is
to find an estimate of H from Cy(0) and C,(1) and from the knowledge of C(0) and
Cs(1).

As before, it will be useful to consider a square root @ of C,(0). For this case,
we take ) to be the unique square root that is lower triangular with positive diagonal

elements; that is,

Cs(0) = QQ" (6.6)
is the Cholesky factorization of the positive definite matrix C,(0) [19]. With this, the

normalized channel and source covariance matrices are defined as before:

HE2HQ, (1) 2Qrcme™. (6.7)



96
Then as usual we find that
c,(0)=HH",  C,1)=HC,(1)H". (6.8)

Since @ is known, the problem amounts to identifying H from (6.8).

Here is where the key point of departure from [29] lies. Under the assumption
of white {a(k)} underlying [29], Q reduces to 0,14, and C,(1) reduces to Jy,. These
two facts are critically exploited in [29] to obtain the algorithm that estimates H,
and also to show that the class of all matrices H that obey (6.8) are scaled versions
of each other.

To treat the colored case, we must exploit the structure of C,(1) and its relation
to ). To this end, we now proceed to establish certain connections between these
matrices and the optimum forward prediction error filter (FPEF) of order d; for the
process {a(k)}. These connections are crucial in resolving the colored problem.

Consider the standard linear prediction problem of finding coefficients 6; such

that the following quantity is minimized:

2

E

a(k) + leﬁja(k )

Let 6; = o; be the minimizing parameters. Then 1+ Y% oz is the transfer
function of the FPEF of order d; for the process {a(k)}. With w as in (6.5), it is well

known [14] that the coefficients of the d;-th order predictor, a;, are given by

a=la - ag|"=-C0)w. (6.9)

S

Now, since the last (respectively first) d; — 1 rows (resp. columns) of C,(1) are the

first (resp. last) d; — 1 rows (resp. columns) of C,(0), we have that

Cy(1) = Jg, C5(0) + exw™ = C5(0)Jy, + Xg,w*el], (6.10)
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which is a simply a reformulation of (3.24)-(3.25). (Recall that X, is the d; x d;
exchange matrix with ones in the antidiagonal and zeros elsewhere). Therefore the

normalized matrix C,(1) becomes

c,(1) = Q'e,(me™"
= Q'(JaQQ" +ew™)Q
= Q' (JuQ+ e Q™)
= Q'(Ja +ewQ7QTHQ

= Q'(Jy —erd)Q. (6.11)
This is the connection between C,(1) and the FPEF of order d;. Observe that
A H
F = Jj, —eq (6.12)

is a companion matrix whose eigenvalues coincide with the zeros of the FPEF transfer
function.

Let now the last row of Q! be

BU=1fur - B Bo) 2 ellQL (6.13)

It is known from linear prediction theory [14] that 3}/, are the coefficients of the
FPEF of order d; — 1, with (3, real positive. In view of the order-update property of

prediction filters [14], the vectors a, ( are related via

1 1 Xdlﬂ 0
= — + Otd1 . (614)
« /60 0 ﬁ*
The following fact about the order d; FPEF is well known [14] and is very

important to the subsequent development.



98

Theorem 6.1 Under Assumption A3, all the zeros of 1 + Z?;l alz7t, the order d;

FPEF for the process {a(k)}, lie strictly inside the unit circle, whence
lag, | < 1. (6.15)

Another basic property is that 1/87 is the variance of the forward (or backward)
prediction error of order d; — 1. On the other hand, the variance of the prediction

errors of order d; is given by [14]

1

A

7= 1= lag ). (6.16)
0

Finally, it can be shown [3] that C(0) and the companion matrix F' defined in (6.12)

satisfy the following Lyapunov equation:
C(0) — FC,(0)F" = yeref. (6.17)

6.2 Some intermediate results

As in [29], consider an SVD of C,(0):

w2 o || oK
W0 =[v v - (615)
0o o||UH

Here X is d; X d; diagonal. Since H has full column rank (Assumption A1), one has

¥ > 0, and it follows from (6.8) that
H=U3V, (6.19)

for some d; x d; unitary V which has to be estimated. For this purpose, consider as

usual the matrix

R &2 > 'Ufc,)U,n (6.20)
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By direct verification using (6.8) and (6.19), one finds that R = VC,(1)V¥# | similarly
to what was found in (4.5) for the general nonlinear case. Thus, in view of (6.11),

one has

R=VC,MVE = vQ (Js —ead®)QVH

= V(Jg —ea® v, 6.21
1

where we have introduced the matrices

(>

VAVl V2 vQH (6.22)

Note that V#V = I,,. Thus, (6.21) implies

RV =V (Jy, —e1a'), REV =V (Jy, — era™)?

Therefore, partitioning

V=15 - Ta, 1, (6.23)
vV = [@1 cee g I, (6.24)
columnwise, one has

R@Z‘Z@i+1—a;@1, Z'Zl,...,dl—l; (625)
Rig, = —o ¥y; (6.26)
RH’Z_)Z' = 171'_1, 1= 2, ceey dl, (627)

di
R0y = =" ayu. (6.28)

=1

Note that since Q is known, it suffices to estimate either V or V. In particular, we
shall show how to estimate the vector ©;; the remaining columns of V can then be
recovered using (6.25). An additional property of this vector which will be exploited

in the proof of lemma 6.2 below is as follows.
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Lemma 6.1 With R, v; and ag, as above, there holds:
R = —aug, 0y, - (6.29)

Now we expose the structure of the singular values of the matrix R, which are
the same as those of C,(1) since R = VC,(1)VH# with V unitary. Therefore these
singular values are independent of the channel coefficients, being determined by the
source statistics alone.

Theorem 6.2 There exists a di X di unitary matriz P such that C_’s(l) = PD, where

D 1s dy x dy diagonal given by

D=diag(1 --- 1 |ag|)- (6.30)

The significance of Theorem 6.2 resides in the fact that the smallest singular
value of Cy(1) (and therefore of R) is given by |ag,|, and it is unique because of
Theorem 6.1. This uniqueness allows us to extract the matrix V from R, up to a
unitary scaling constant. The fact that, under the nonsingularity assumption on the
(dy +1) x (d; + 1) lag-0 source covariance matrix, the smallest singular value of the
normalized lag-1 covariance matrix has multiplicity one, is in our opinion a result of
independent interest. The final result that we need is as follows.

Lemma 6.2 The vector 3y '9; is a unit-norm left singular vector of the matriz R

associated with its smallest singular value (under Assumption A3) |aq,|.

6.3 The modified algorithm
In view of the results of the previous section it is possible to estimate the
columns of the matrix V as follows: first extract @; as f, times a left singular vector
of R associated with the smallest singular value; then use the recurrence (6.25) in
order to estimate the remaining columns. For convenience, the algorithm is detailed

next:
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Algorithm 6.1: Blind equalization of linear channels with correlated sources

. Perform an SVD of C,(0) as in (6.18) and construct R = X UHC, (1)U, X7

. Let 91 be a unit-norm left singular vector of R associated to the smallest singular

value.
.Fori=1,2/...,dy — 1, let 0,41 = R0O; + a0;.
. The normalized channel matrix estimate is then

H=3U 5, - iy )@
so that the unnormalized channel matrix estimate H = H Q™! is given by

H=FUiS 6y - g |-
. The columns of the matrix Gzr given by

Gzr = BoUr 7 by oo g, 10s(0)
constitute zero-forcing equalizers: in the absence of noise,
GLY (k) = e 7°S(k) (6.31)

for some real 6.

Then we have:

Theorem 6.3 Consider Algorithm 6.1 with the various quantities in Step 1 defined in

(6.19). Consider any H that simultaneously satisfies Cy(1) = HC,(YH™ for 1 =0,1.

Then under Assumptions A1l and A3, there exists a real 8 such that H obtained in

step 4 obeys

H = "N,
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Further with N(k) =0 in (6.2), the matriz Gzr obtained in step 5 obeys (6.31).

Several comments on the algorithm are in order. First note that since the
space of left singular vectors of R corresponding to the smallest singular value has
dimension 1, 7, is easily determined. The chain of equations in Step 3, also determine
[ G -+ g | efficiently (no matrix inversion). The statistics of {a(k)} provide [,
and @, just as the output statistics provide Cy(1) and Uy, ¥ (via a singular value
decomposition) and hence R. Note also that when {a(k)} is white, i.e. the case
covered in [29], one has o; = 0, By = 0! and Q = 0,1, and the algorithm recovers
as a special case its counterpart in [29].

6.4 Simulation results

A series of simulation experiments has been performed to test the new algorithm.
For comparison purposes, the subspace algorithm (SSA) of Moulines et al. [21] was
also implemented in the same environment. The subspace algorithm does not require

nor exploit any kind of information about the statistics of the symbols {a(k)}.

6.4.1 Example 7

In this example, the channel impulse response corresponds to a two-ray multi-
path environment and was taken from [29]. The number of subchannels is p = 4 and

the corresponding channel order is [; = 5:

—0.0279 0.0414 —-0.0703 0.3874 0.3132 —0.0837
—0.0156 0.0216 —0.0241 0.4931 0.1520 -—-0.0514
[ hio +-+ his ]:
0.0098 —0.0196 0.0843 0.5167 0.0138 —0.0013

0.0343 —0.0604 0.2351 0.4494 —-0.0675 0.0368
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The input symbols {a(k)} are drawn from a QPSK constellation according to the

following rule. Let {bz} be the input stream of iid bits, i.e. by € {0,1}. Then

;

1+ if (b bes) = (00)
()= 144 if (b bys) = (01)
“1—j if (b bps) = (10)
| +1— i (bes)=(11)

This scheme generates a colored symbol sequence: the autocovariance of the symbols

{a(k)} is given by

2, 1=0,
covla(k),a(k —=1)] =91 +j, [ ==+2,
0, else.

We consider an equalizer of order m = 4, which yields d; = m +1; = 9. The vector

« is then given by

a=[0 08 0 —06 0 —045 0 02 0]

Additive white Gaussian noise was added to the channel output, so that the model

becomes Y (k) = HS(k) + N(k). The Signal-to-Noise Ratio (SNR) is defined as

trace E[(HS(k))(HS(k))¥]
trace E[N (k)N (k)H]

The noise variance estimate 52 was taken as the smallest eigenvalue of the matrix
C,(0) and then subtracted to provide the algorithms with denoised autocorrelation
estimates. Knowledge of the channel length /; was assumed.

Once the channel matrix has been estimated by the subspace algorithm, the
zero-forcing equalizers are obtained as the rows of the pseudoinverse: HE = G,

For both algorithms the minimum mean-squared error (MMSE) equalizers Gyysr are
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Figure 24: SER vs. SNR, MMSE equalizers from Algorithm 6.1 (solid) and from SSA

(dashed), channel from Example 7, K = 2000 samples for covariance estimation.

computed via (4.35). The different rows of Gypysg correspond to different equalization
delays and therefore they present different MSE values at their outputs. Figure 24
shows the symbol error rate (SER), averaged over 200 independent runs, for delays
0, 3, 5 and 8. For the estimation of the covariance matrices, K = 2000 symbols were
employed. It is seen that for intermediate delays, where the equalizer performance
is the best for either approach, Algorithm 6.1 provides an advantage of about 2 dB
compared to the subspace algorithm.

In figure 25 the normalized root-mean-square error (NRMSE) of the channel
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1.4

NRMSE
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Figure 25: NRMSE versus SNR for Algorithm 6.1 (solid) and SSA (dashed); K = 2000

data samples.

estimate as a function of the SNR is depicted. The NRMSE is defined as

1 1T .
NRMSE = — | = S™ 1) — A2,
HhNTE

where h is the vector of channel coefficients and T is the number of runs (200 for our
experiment). K = 2000 symbols were used. The subspace method seems to present
a smaller error for low values of the SNR, although for intermediate values the new
estimate is more accurate.

Figure 26 shows the variation of the NRMSE with the number of samples K
for a fixed value of SNR = 25 dB. At this noise level, the new algorithm clearly
outperforms the subspace approach. This is as expected since the subspace method
does not exploit knowledge about the symbol statistics.

It could seem paradoxical at first that even though the new algorithm presents
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Figure 26: NRMSE versus number of samples K for Algorithm 6.1 (solid) and SSA
(dashed); SNR = 25 dB.

a higher NRMSE for low SNR, it still yields a SER lower than that of the subspace
method. However, we must recall that the subspace approach computes the zero-
forcing equalizers by obtaining the pseudoinverse of the channel matrix. If this channel
matrix is ill-conditioned, the obtained equalizers need not be close to the true ones,
even if the channel estimation NRMSE is not too high. On the other hand, the new
algorithm explicitly uses the statistical information about the symbols (in the form of
the matrix C,(0)) when computing Gzr, which is the reason for its greater accuracy.
This can be seen in figure 27, which shows the normalized root-mean-squared error
between the “true” zero-forcing equalizer and those computed by the new algorithm

and the subspace approach, for a delay of 3.
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Figure 27: Equalizer (delay 3) NRMSE versus SNR for Algorithm 6.1 (solid) and SSA
(dashed); K = 2000 data samples.

6.4.2 Example 8

We consider now a linear channel with p = 2 subchannels and order [; = 5. The

channel coefficients are given by

0.3 =02 04 0.1 0.2 0.3
[hlo <o+ his ]:
0.5 04 -0.7 0.2 —-0.5 -—-0.2

The modulation type is Offset QPSK (OQPSK) with rectangular pulses, so that the

symbols can be considered to be generated via

by_1 + jbr for k even,
a(k) =
by + jbr_1 for k odd,

where now {b;} is a stream of independent random variables taking the values 41

with equal probabilities. The resulting symbol sequence is correlated, its covariance
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being given by

2, n=0,
covla(k),a(k —n)] = 1, n==l,
0, else.

We consider an equalizer of length m = 6, which yields d; = m +[; = 11. The

corresponding vector « for this process {a(k)} is given by

o -11 10 -9 8 -7 6 =5 4 -3 2 -1

T 12
Figure 28 shows the symbol error rate obtained by using the MMSE equalizers with
associated delays 0, 2, 4, 6, 8 and 10, using K = 1000 symbols for covariance estima-
tion for both Algorithm 6.1 and the subspace method. It is seen how the equalizers
with high values of the delay perform worse than those with lower values. The two
algorithms yield very similar results for those ‘poor’ delay values, while for the ‘better’

delays the new approach clearly outperforms the subspace method.
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Figure 28: SER vs. SNR, MMSE equalizers from Algorithm 6.1 (solid) and SSA

(dashed), channel from Example 8, K = 1000 data samples.
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CHAPTER VII

CONCLUSIONS AND OPEN PROBLEMS

It is a fact that in most engineering fields a wide gap between linear and non-
linear problems exists. Sophisticated mathematical tools and comprehensive theories
are often available in the linear case, but only very special kinds of problems can
be analyzed in nonlinear situations. This is also the case in the field of digital com-
munications, where no well established procedure exists for the design of a digital
transmission system over a nonlinear channel.

In this thesis we have considered the following question. Given a nonlinear
digital communication system, is it possible to exploit channel diversity in order to
eliminate the distortion (linear and nonlinear intersymbol interference) introduced by
the channel?

Channel diversity can be obtained by sampling the continuous-time received
signal at a rate faster than the symbol rate and/or from the use of an array of
sensors at the receiver. In that case the channel can be regarded as a single-input
multiple-output (SIMO) system. A major breakthrough in this context was achieved
by [29], where it was shown that under the so-called zero and length conditions, linear
finite impulse response SIMO channels can be identified/equalized using the second-
order statistics (SOS) of the observed signal, that is, blindly. This result has spawned
intensive research in the area of blind system identification and equalization, although

most of this effort has focused on the linear channel case.



111

Recently, it has been pointed out [12] that at least certain classes of nonlinear
SIMO channels (namely, channels that are linear in the parameters; for example,
truncated Volterra series approximations) can be perfectly equalized by means of a
bank of linear filters, as in the linear channel case. Further, although identification of
the channel parameters may not be feasible, at least the equalizers can be computed
blindly (under certain conditions) without aid from the transmitter end. The ap-
proach used in [12] was deterministic in nature and presented several drawbacks, but
it opened the door to the nonlinear channel case for blind equalization techniques.

We have investigated the applicability of SOS based methods to this problem.
Specifically, a systematic search for sufficient conditions on the channel and on the
input statistics for blind equalizability has been conducted. The results obtained cover
a wide class of symbol sources, and they allow to check a priori whether the channel
is blindly equalizable or not, since the conditions do not depend on the unknown
channel parameters.

We have also developed blind algorithms for the computation of the equalizers
for the particular but important case in which the transmitted symbols are statisti-
cally independent. These algorithms exploit the knowledge of the symbol statistics
and therefore are expected to perform better than previous deterministic approaches,
which neither require nor exploit such information. This was confirmed via simula-
tions. Computation of both zero-forcing and minimum mean-squared error equalizers
was considered. An additional advantage of the new algorithms is that they are able
to provide the equalizers for all possible associated delays, while the deterministic
method of [12] only yields those of minimal and maximal delays. This issue is of
importance since the performance of equalizers with different associated delay can

vary considerably in the presence of noise. Also, the new approach does not require
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that the linear kernel of the channel be the longest, as was the case for the algorithm
in [12].

Both the deterministic and SOS-based approaches hinge on the assumption that
certain matrix constructed from the channel coefficients (the channel matriz) has full
column rank, as this is a sufficient condition for the existence of linear equalizers.
However, this requirement is not necessary: We have given an alternative relaxed rank
condition on the channel matrix, which was shown to be necessary and sufficient. The
blind algorithms can be extended to cover the class of nonlinear channels satisfying
this condition; however, SOS-based equalizability becomes dependent on the channel
parameters and consequently cannot be checked a prior: as in the full rank case.
In addition the computation of the equalizers becomes very sensitive to the channel
output SOS estimation accuracy. An exception is found for those channels in which
the memory of the linear part exceeds that of the nonlinear part, for which the
algorithms remain more robust to this sensitivity problem.

The problem of developing blind equalization algorithms for nonlinear channels
with correlated sources still remains open. We have provided a step in this direction
by generalizing the original approach of [29], which applies to linear channels with un-
correlated sources, to the case of linear channels and colored symbols. The extension
is fairly natural and the complexity of the resulting algorithm is comparable to that
of [29]. The algorithm handles all kinds of correlation in the transmitted symbols as
long as knowledge of this correlation is available at the receiver. The new method
compares favorably to other approaches capable of dealing with colored symbols, such
as the subspace approach of [21], but which do not exploit the information about the

symbol statistics.
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One drawback of the approaches considered in this thesis for the equalization of
nonlinear SIMO channels is that the required number of subchannels has to exceed
the number of kernels in the channel. In the linear case only one kernel is present,
and therefore 2 subchannels generally suffice. When the number of kernels needed to
accurately describe the channel input-output behavior increases, the corresponding
number of subchannels required could become prohibitively large. Here we have
considered polynomial approximations of nonlinear channels as our basic model, which
are widely used in practice. It is conceivable, however, that by selecting other types
of basis functions (rather than monomials) for the model, the number of kernels
required in order to model the channel with the same accuracy could be smaller.
Another drawback of the method is that the kernel lengths are assumed known. If
this condition is not met, the algorithms may fail to provide the adequate equalizers.
This lack of robustness to channel undermodeling or overmodeling is inherited from
the original algorithm in [29] for which this problem is well known. Although some
techniques are available in order to determine the order of a linear channel blindly
[20], to the author’s knowledge the problem of blind kernel length determination for

nonlinear channels is still open.
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APPENDIX

PROOFS

A.1 Proof of Lemma 2.1
Since H is time invariant, Hz~' = z7'H. Then
D,HU,"' = D,H:*U,
— D, 7HU,
= 2z 'D,HU,,
where use has been made of the noble identities (2.10)-(2.11). |

A.2 Proof of Lemma 2.2
Let the operators F' and G be given by
Fu(k) = fl--,u(k+2),u(k+1),u(k),- -,

Gu(k) = g[--,u(k+2),u(k+1),u(k),- -]
Let z(k) = Gu(k). Then Hu(k) = FGu(k) = Fx(k) so that

Hu(k) = f[-_--,a:(k—i—Q),:v(k-i—1),:U(k),---]

gl u(k+4),ulk+3),u(k+2),--]
= [ gl ulk+3),u(k+2),ulk+1),--
gl ulk+2),u(k +1),u(k),- ]
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Therefore the sequence HPlu(k) becomes

gl -+, u(k + 4p), u(k + 3p), u(k + 2p), - - |
HPw(k) = f| gl ulk+3p),ulk +2p), u(k +p), -]

g[' : '7u(k + 2p),u<k +p),u(/€), o ]

= F[P]G[P}u(k),

as was to be proved. [ ]

A.3 Proof of Lemma 2.3

Let H be defined via Hu(k) = f[---,u(k + 2),u(k + 1),u(k),---]. Then
HDyu(k) = Hu(kp) = f[- -+, u(kp + 2p), u(kp + p), u(kp), - - -]. (A1)
On the other hand,
D,HPlu(k) = D,f[---,u(k+2),u(k +1),u(k),- -]

= Sl ulkp +2p), u(kp + p), u(kp),- -]

= HD,u(k)
in view of (A.1), proving the first noble identity. To prove the second one, note that

UpHu(k) = Upfl---,ulk + 2p),u(k +p), u(k),- ]

0, otherwise.

On the other hand, if we let (k) = U,u(k), we have

HPIU,u(k) = HPz(k)
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= [l aw(k+2p), x(k +p), x(k), -]

fl-++,0,0,0,--], otherwise.
Since f[--+,0,0,0,--:] = 0 by assumption, comparing (A.2) and (A.3) the second
noble identity is proven. [ |

A.4 Proof of Lemma 2.4

Since by assumption the p-input 1-output operator 7T is linear, we can write
T=[17O® 70 ... T@-1 | where each TU) is linear. Then H = Z H[p]

so that for 0 <7 < p — 1 the p-fold polyphase components of H become

p—1
D,2'HU, = . D,2TYH"U,

5=0
p_l . .
= Y D,/TYU,H;
§=0
p—1
= S 19H,, (A.4)
§=0
where we have used the second noble identity and the definition of the polyphase
components of 7). Now since each TU) is linear, one has 70 = S¥~! »~(T, (7))[?’].
Using this,
SO SRR i)\l ]
SromP - T3 )]
§=0 §=0i=0
p—1 p—1 :
= ZZ_ZZ i Hj)[p]
7=0
p—1

— Z Z—zH[P

where the second line follows from lemma (2.2) and the third line follows from (A.4).

This shows that there is no loss of generality in setting 70) = z~7. ]
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A.5 Proof of Lemma 2.5

Let us define the operator

Before proving lemma 2.5, we present several properties of the operators L,, B,, R,:

B,>"' = R,B, (A.5)
'L, = L,R, (A.6)
(zRy)ByL, = I, (A7)
ByLy(zRy) = Iy, (A.8)
L,(:R,)B, = I. (A.9)

To show (A.5), note that

P pZLp
= [ D,z? D,zP*1 D,z7P I
= [ D,z? D,z7tt 71D, I
= R D, Dyz' --- DzP |7
= R,By,

where we have used the noble identity D,z™? = z7'D,. Eq. (A.6) is proven in the

same way. To show (A.7),

(ZRP)BPLP = (ZRp)DprZpTUpo
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1 0 0
0 O 271
= (sz) Xp
0 2! 0
0 2zl 0 1
1 0 z ', 0
= ij

where the second line follows from property (2.14). Eq. (A.8) is proven analogously.

Finally, to show (A.9), observe that

LP(ZRP)BP = ZEUPXP(ZRP)DPZP

1 0

= Z,U, D,Z,
0 ZXp_l
DP
2D,z7P !
= U, z7'U, --- z7PT,
szz*1
DP
D,z
= |U, z7'U, --- z7?P*,
Dpzp*1

where the fourth line follows from the noble identity zD, = D,zP and the last line

follows from (2.13). Now using (2.12), we can write the expression of the filterbank
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(2.22) as
p—1 ) T
¢ = (Y:U,p,: | FU,D, [ HO ... He-D ]
i=0
p—1 T
= Y U,ED, [ HO HO ... g ]
i=0
. T
~ L,FD, [ HO HO ... g ]
. T
with F' = [ F, F, F, ] , and F; the p-fold i-th polyphase components of F'.
Note that every F; = D,z'FU, is a p-input l-output operator. Further, if we let
. T
=D, [ HO ... e ] L,%R,,
. T
then in view of (A.9) one has HB, = D, [ HO ... ge-1 ] , and thus,
G =L, FHB,,

which proves the first part of the lemma. Now assume that the analysis filters H©)

are linearly p-separable: HU) = Y*~ ! [H, () JPlz=%. Then

) 5O BO .. g 1"
H
HY HY ... HY
= Zp,
H(-1)
_Hépfl) prfl) HISZ:EI)_
2 Kl
so that H becomes
H = D,KWZ,L,:R,
= KD,Z,L,zR,

= K(D,Z,Z'U,)X,zR,
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as was to be proven. [ ]

A.6 Proof of Lemma 2.6

By properties (A.5) and (A.6), one has

Gz ' = L,(FH)R,B

P

27'G = L,R,(FH)B,.

Now note that properties (A.7) and (A.8) show that L, is left-invertible while B, is

right-invertible. Thus

which proves the lemma. [ ]

A.7 Proof of Lemma 2.7

—d  In view of

G has the perfect reconstruction property iff Lp(ﬁ’ H )B, = cz
properties (A.7) and (A.8) which show the left and right invertibility of L, and B,
respectively, this implies

FH = (2R,)Bycz=%L,(2R,)

which is a lznear operator. Then the condition of lemma 2.7 for perfect reconstruction

follows from [31, p. 253]. [
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A.8 Proof of Lemma 2.8

By using property (2.13), one can write the overall system as

p—1 .
DpGHUp = (DpG) Zz‘jUprzJ> (HUp)

Jj=0

p—1
= (D,G) ZzijUp(DijHUp)

=0

p—1
= (D,G) ZZjUij)
j=0

T
_ DpGZpTUp[HO Hp_l]

I

= G[HO e Hyy
which proves the result. [ ]

A.9 Proof of Theorem 3.1
Assume that W and C,(I) commute; then W* and C,(I) also commute for all

k. Since any function of a matrix can be expressed as a polynomial in that matrix

[19], one has
P=e" =y g WHTE™ oo W+ 9Ly, 10,

for some constants 7;. Thus

_ di+da—1 _ di1+ds—1 _ _
PC()= Y, wW'C.)= Y wCOW"=C,0)P.
k=0 k=0
Now assume that P = /" and C,(l) commute. Let \;, ..., A, be the distinct
eigenvalues of W with respective multiplicities mq, ..., m,. As W is Hermitian, it is

diagonalizable, so let W = TAT~! with A = A\ I,,, ® -+ ® A\ I,,,. Then

VC() = Cu()e! & TTC,(1) = C,()Te’ T

& JNTIC,()T) = (T7'C,()T)e’™. (A.10)
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Thus e/* and T 'C,(1)T commute. Partition T 1C,(I)T = [Djt)1<ir<, With each Dy
m; X my. Since e’ = M @ - @ eI, (A.10) reads as e/ Dy, = Dje’** for
1 < i,k < r, giving Dy, = 0 for i # k since \; # A\, implies e/ # e/*. Thus
T—*C,()T is block diagonal and therefore it commutes with A, as can be readily
checked. Then

(T'C,()T)A = A(T'C()T) = C,()TAT™" = TAT'C,(1)

= C_’S(Z)W = WC(1),
as was to be shown. [}

A.10 Proof of Theorem 3.2
Let Cj1 = SMS !, Oy = TNT ! be Jordan decompositions of Cjq, Ca. As-

sume that these have no common eigenvalues. Then the matrix equation CyTL —

TLCy; = Cy has a solution L [19, p. 414], so that

_ S oM o|]|st o
Cy(1) = (A.11)
1S T||o N|| L T

constitutes a Jordan decomposition of C,(1). Let now

Wi Wi .
W = , VVij of size dz X dj, (A12)
W Way
be a Hermitian matrix commuting with C,(1). Then W must be of the form [19, pp.
417-418]
S 0 x G St 0

W= (A.13)
~TLS T || HY x || L T

where the blocks marked ‘x’ are of no concern. Note that Wi, = SGT~!. But since
C11, Coy have no common eigenvalues, it follows from [19, pp. 417-418] that G = 0

and hence Wi, = 0, which proves the first part of the theorem.
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Before proving the second part, let us introduce the following definition:
Definition A.1 (Set U) An n x m matriz is said to belong to the set U if it is of
the form [ U 0] whenn <m, [0 UH |* whenn > m, or U when n = m, with U
any square upper triangular matriz and U any square upper triangular matriz with
zeros on the diagonal.

The following fact is readily verified:
Lemma A.1 The set U is closed under addition and multiplication.

Now assume Cy; = 0 and that Cy, Cs do not have common Jordan blocks.
Then (A.11) with L = 0 is a Jordan decomposition of C,(1). Let W as in (A.12) be
a Hermitian matrix commuting with C,(1). Then W satisfies (A.13) with L = 0. Let
M=M®&---&M, N=N&---& N, with M; = osI,, + JF, N; = N +J§;’
elementary Jordan blocks, and partition G = [G; }éfg . H = [H,; }22 accordingly,
where each Gj;, H;; have size r; X s;. By assumption, if a; = A; then r; # s;.
Therefore, from [19, pp. 417-418] it follows that all G;;, H/J are in U.

Observe that Wi, = SGT~! and Wl = THHS!, Then GH? = S7'W;,W[iS
is similar to the Hermitian positive semidefinite matrix meg . If one shows that
GHH is nilpotent then all the eigenvalues of ngWg will be zero and thus Wi, = 0.
This we proceed to show.

Write D 2 GHH = [Djjli<ij<t, with each D;; r; X r;. Then from lemma A.1,
each D;; isin Y. Without loss of generality, assume r; > ;1. We prove the nilpotence
of D by induction on t.

Clearly when ¢t = 1, Dy; being square and in U is zero diagonal upper triangular;

hence all its eigenvalues are zero so that D is nilpotent. Now suppose nilpotence holds
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for t =7 — 1. Then for t = 7, write

D, D,
D= B
D2 DTT
where D; 2 [ DE ... D71'_I—1,T 7 and D, 2 [ D, --- Drry ]. Then

det(A — D) = det(AM — D,,)det[(\ — Dy) — Dy(M — D,,)"' D]

= A\ det{/\I — [DO + Dl(/\l — DTT)_lDQ]}.

As Al — D, is r; x r; upper triangular, and each D,;, 1 <i < 7,is r, X r; and in U,
it follows that (A\[ — D,,)™* Dy is r, X r; and in Y. Thus D;(A\ — D,,)~* D, and hence
also Dy + Dy (M — D,,)™' Dy can be partitioned into r; x r; blocks, 1 <1i,j < 7, all

in Y. Thus by the induction hypothesis,
det{)\I - [DO + Dl()\l — DTT)_IDZ]} = )\r1_|_...+7-1_71‘
Hence the result. |

A.11 Proof of Theorem 3.3
If {a(k)} is generated via (3.43), then the forward prediction error is just f(k) =
w(k), which by assumption is an iid process. Since Sy(k—1) is a function of {f(7), ¢ <
k}, this means that the random variables Sy(k — 1) and f(k) are independent and
therefore cov[Sy(k — 1), f(k)] = 0. Thus with Q as in (3.29), C,(1) is lower triangular
as in (3.42). We can apply the result of theorem 3.2 to conclude that if the diagonal
blocks of C(1), which are similar to Jy, — e;a” and Ay'(By — vell A7 A1s), do not

share any eigenvalues, then any Hermitian W commuting with C,(1) is block diagonal

as in (3.20). Hence QW Q™" is block lower triangular, being given by

A1/2W A—1/2 0
Qwot=| M . (A.14)
X X
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Hence for QW Q~! to be admissible it only remains to be shown that A1{2W11A1_11/2

is diagonal. Observe that because W commutes with C,(1), Wi; must commute with
A2 (J4 — e1af)Al?. Lemma A.2 below provides this final step. m

Lemma A.2 Any Hermitian matrix Wi commuting with A;11/2(Jd1 — elaH)A}{Q is

of the form Wiy = 01, for some real 6, provided (3.44) is satisfied.

Proof: Let Aj, ..., A, be the distinct eigenvalues of J;, + e;a® with multiplicities
mi, ..., ms (my + -+ mg = dp). Note that these are the zeros of the transfer
function of the FPEF of order d;. Since T > 0 from (3.44), the FPEF is minimum
phase [15] i.e. |\;| <1 for 1 <i < s. Because Jy, + e;a” is a companion matrix, it

has a Jordan decomposition of the form
Jo +ea? = KNK ' =K(N, @ ---@® N,)K*

such that N; = AL, + JJ | i.e. there is only one Jordan block per distinct eigenvalue

[19, p. 69]. In addition, K is a generalized Vandermonde matrix given by K =

[Kl Ks]whereK,-Z[Kl-’l Ki,mi]and

1 dk:—l -
K, = B {dzkl[ -1 oy 1] } N (A.15)

(see, e.g. [19, pp. 69-70]). Now since Wi, and AP KNK-AY? commute, one must

have

Wiy =APKYV, @@ Y,)K 1A (A.16)
with each Y; m; X m; upper triangular Toeplitz [19, pp. 416-418]. Since W7y, is
Hermitian, it is diagonalizable with real eigenvalues; in view of (A.16), this must be
true also for Yy, ..., Y,. Because Y; is upper triangular Toeplitz, it only has a distinct

eigenvalue, say 6; (the elements of its diagonal). Thus diagonalizability of Y; means

that for some T, Y; = T(0;1,,.)T! = 6;,TT~* = 6;I,,,. This holds fori =1, ..., s.
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We shall show that all the 6; are equal: ¢, = --- = 6, e 6, yielding Wy, = 01, as
desired.

Let © 2 011, ® - ®06,1,,. Since Wi; = Wi one has
APKOK AN = AP K-HQRH A o (KTALK)® = O(K A K)

which reads as (6; — 6;)(KZA7'K;) = 0 for 1 < i,j < s. It suffices to show that
KH A7 K; has at least one nonzero element for every 7, j. In particular, from (A.15)
the (1,1) element of K7 A}" K is given by K/ A K, = P();, A;) where the bivariate

polynomial P(z,w) is defined as
P(z,w) £ [ ()41 oo 2 1A wdt w1 T

Using the Christoffel-Darboux formula [18], the polynomial P(z,w) can also be writ-

ten as

a(l/z%)a*(1/w*) — a(l/2*)a* (1 /w*)
Plz,w) = v2(1 — z*w)

where 7 is a real constant, a(z) 2 ;- det[zI—(J—e )] and a(z) 2 z=har(1/2%).
(Specifically, «(z) and @(z) are the transfer functions of the FPEF and BPEF of
order d; for the process {a(k)}, and 72 is the variance of the corresponding prediction
errors).

Since both \;, A; are roots of a(z), one has a(1/A}) = a*(1/A}) = 0 so that

a(1/2)a*(1/X)

PO M) =
(i dy) Y21 = AFA)

(A.17)

Now all roots of a(z) lie strictly inside the unit circle, while both 1/Af and 1/A% lie
strictly outside the unit circle. Therefore in view of (A.17), P(A;, A;) cannot be zero.

This concludes the proof. [ ]
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A.12 Proof of Theorem 3.4
Since C,(1) is as in (3.46), and noting that Ay 2 ByAg ™7 is similar to Ay By,
by theorem 3.2 any Hermitian W commuting with C,(1) is as in (3.20). As the
characteristic polynomial of Jy, is just A% which is minimum phase, the result follows

from lemma A.2 above. [ |

A.13 Proof of Theorem 3.5
Since the linear and nonlinear terms are uncorrelated, the source covariance
matrices C,(l) are block diagonal: referring to (3.22), one has A;5 = 0, By = 0,
By = 0. Hence Aj in (3.28) reduces to Ay = Agy, while By in (3.31) reduces to

By = By, so that from (3.30),

Co(1) = (AL BuAL"?) ® (A% By A3™?).

According to theorem 3.2, if the matrices Afll/ 2B11AIIH/ ? and A;;/ 2322A;2H/ ? which
are respectively similar to A7! By and Ay By, do not share any elementary Jordan
blocks in their Jordan decompositions then any Hermitian W commuting with C,(1)
is as in (3.20): W = Wi, & Way,. In addition, because W commutes with C,(1), Wy,
must commute with Afll/ 2(Jg —eral! )A}{z, and admissibility of QW Q™! follows from

lemma A.2. [ |

A.14 Proof of Theorem 3.6
By the orthogonality principle, cov[S;(k — 1), f(k)] = 0 and cov[S;(k), b(k)] =
0, so that (S;(k — 1), f(k)) are uncorrelated random variables and so are (S;(k),
b(k)). Since the process {a(k)} is Gaussian, so are the processes {S;(k)}, {f(k)},
{b(k)}. Therefore the random variables (¢(S1(k—1)), f(k)) and (¢(S1(k)), b(k)), are
independent, so that cov[Sy(k — 1), f(k)] = cov[Sa(k),b(k)] = 0, i.e. v = 0. Thus

with @ as in (3.29), C,(1) is block diagonal as in (3.45) with (2,2) block equal to
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A51/2B0A5/2, which is similar to Ay*By. Since the Jordan forms of J,, + ega’’ and
Ay'By do not share any elementary Jordan blocks, by theorem 3.2 any Hermitian
W commuting with C,(1) is block diagonal. Then QW Q™" has the form shown in

(A.14), and its admissibility follows from lemma A.2. |

A.15 Proof of Theorem 3.7
In view of the equalizability test of section 3.2, we shall look at the structure of

any Hermitian W commuting with C;(d; — 1). The iid assumption and stationarity

yield
cov[Si(k),Si(k —dy +1)] = o2eqel, (A.18)
cov[Si(k), Sa(k — di +1)] = eqef Ar, (A.19)
COV[SQ(k), Sl<k - d1 + 1)] = 0, (AQO)
cov[Sy(k), Se(k —dy +1)] = 0, (A.21)

with A;, defined in (3.21) and 02 £ E[|a(n)|?]. Therefore

oleq el eqel A
Cy(dy — 1) = ' P (A.22)
0 0

Take @ as in (3.29) with Al = 0414, Noting that eff A1y = cov[a(k—d1+1), S2(k)] =

0 from (A.20), it follows from (A.22) that C(d; — 1) has only one nonzero element:

és<d1 - 1) - Q_le(dl - 1)Q_H

_ al_aldl 0 greq el eqel An u
| -4y PAl AT 0 0

B Taay € e et A »
i _UaAalﬂAgedle{{ _éAal/zA{{Qe(he{{AlZ
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1 1 —-H/2 4+ H
_Idl _EAHAO A12

H 1 H
Oa€dy €1 7-€d; €7 Ao ~

0 0 0 AFH?

H (1 H —H/2 1 H —H/2
eser  (5eaer Apdy " — s-eq ey AipAy )

0 0
= (eaer’) © Odyxas- (A.23)

Now let W = [W,;]; j=1.2 be a Hermitian matrix commuting with C,(d; — 1), with

each W;; d; x d;. From (A.23), we must then have
Wiieq el = eq e Wy, eq, Wiy =0, WHeq el = 0.
These imply that, with 6 a scalar,
Wi =60 Wy, o6, W{;’:[o wH 0], (A.24)

where Wiy is (dy — 2) x (d; — 2) Hermitian and Wy, is (d; — 2) x do. The matrix
OWQis
W11 — %ngAo_l/QAg O'anAal/Q

QWQ™ = , (A.25)
X X

with ‘x’ indicating irrelevant values. Therefore, in view of (A.24), the rows 1 and d;
of QWQ™! are just fef! and Qeﬁz respectively. Thus, the rows 1 and d; of e 7@W@™
are e %efl and e™%efl. Now recall from (3.16) that any H that is compatible must

satisfy H = He79WQ™" Thus for d = 0 and d = d; — 1, (3.12) holds. |

A.16 Proof of Lemma 3.1
Observe that in the noiseless case the ZF equalizers of delays 0 and d satisfy

'Y (k) = a(k) and gZY (k) = a(k — d), so that g} Y (k) = ¢gfY (k — d). Therefore

cov[Y (), g Y (k)] = cov[Y(k), g5'Y (k — d)]
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= cov[Y(k),Y(K)gs = cov[Y(k),Y(k—d)|go

= Cy(0)ga = Cy(d)go- (A.26)

Now C,(0) = HC,(0)H", Cy(d) = HC.(d)H"; observe that C,(0) is singular. Since
H has full column rank, H#H = I so that the equalizer g4 is given by g4 = (H7)#e4y1.
Thus (A.26) reads as

HC,(0)H g, = HC(d)H" go
= C,(OHP gy = Ci(d)H" g0
= Hgs = C7H0)Ci(d)H" gy

E]

= (HNY 1 g, = (HTYFCTH0)C(d)H" go. (A.27)

Now since H (H")# = I, one has
(H)#H  ga = (HT)FHT(HT ) Feans = (H)Pearr = ga. (A.28)
In addition, observe that
Cy(0)*Cy(d) = [HO(O)H"F[HC(d)H"]
= (H"*CTHOHFHC(d)HY
= (H"*C;7H0)C,(d)H . (A.29)
Substituting (A.28) and (A.29) in (A.27), the result follows. |

A.17 Proof of Lemma 3.2
Given two terms s;(k), s;(k) of the form (3.50), they can be written as
sik) = a"(k)a" (k —1)---a¥ (k = t)[a* (k)] [a" (k = 1)]* -+ [a" (k = )],

si(k) = a®(k)a®(k—1)---a®(k — t)[a®(k)]"[a% (k — )] - [a% (k - 1)]",
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for some integers t and p;, p., ¢i, ¢; such that

(po—pp) + -+ e —py) =1, (@o—q)+ -+ (@—q)=1 (A.30)

(Some p;, pl, ¢i, ¢, may be zero). We shall show that if cov[s;(k), s;j(k — d)] # 0 for
some d, then s;(k) must be a scaled version of s;(k — d). To do so, note that for all
integers [ > 0, the circular symmetry of the M-ary PSK constellation gives

Rl M-1 P Rl 1 — ei2nl 0, [lmodM #0,
=~ = M1 -

Ela(h)] = 57 3 ¢

n=0

R', I mod M =0.

But if / mod M = 0 then a'(k) = R’ reduces to a constant. Thus without loss of
generality we can assume that none of the p;, pl, ¢;, ¢} are multiples of M, since any
multiplicative constants in the terms s;(k), s;(k) can be absorbed in the corresponding

channel coefficients. As a consequence, since
RYE{a="(k)}, 1>1
E{d(k)a"(k)]} =1 B2, =1 (A.31)
RUE{[a"'(k)]"}, 1<,

we have that for all /, I’ with [,/ mod M # 0,
E{d(k)a"(k)]"} £0  onlyifl=1, (A.32)
in which case the term a'(k)[a'(k)]* is constant:
d'(k)[a'(k)]* = R%. (A.33)

Now observe that due to the independence and stationarity of the symbols {a(k)},

t

Elsi(k)] = T E {a" (k)[a*(k)]"}

n=0
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which is zero in view of (A.32) since (A.30) precludes having p; = p’ for all 0 < j < ¢;

similarly, E[s;(k)] = 0. Hence the nonlinear terms have zero mean, so that
cov(s;(k), s;(k — d)] = E[si(k)s}(k — d)].

Suppose that Els;(k)s}(k—d)] # 0. Then we must have 0 < d < ¢, or otherwise s;(k),
s;(k — d) are independent and their covariance becomes zero automatically. Due to

the independence of the symbols, one has

Elsi(k)s;(k — d)] =
E{am (k) a?t(k — d + 1)[a” (k)]" - - [aP-1 (k — d +1)]"}
xE {aP(k — d) -+ a?*(k — t)[a"2(k — d)]" - - [P (k — 1)]"
a%(k —d) - -a%-a(k = t)[a®(k = d)]" - - [a%* (k — )]}
XE {a%-en(k—t—1)---a%(k —t - d)
[a%=a+1 (k —t — 1)]* -+ - [a% (k — t — d)]*}. (A.34)

If (A.34) is nonzero, then the three factors in the right hand side must be nonzero.

Using the stationarity of the symbol sequence, the first factor can be rewritten as
d—1 ,
[ E{a"®)aE]}#0 = p.=p, 0<n<d—1,  (A35)
n=0

in view of (A.32). Similarly, for the third factor,

f[ E{a®k)a™k)]'} #0 =  gqu=q, t-d+1<n<t (A.36)

n=t—d-+1

From (A.33), it follows that we must have

sik) = RPTIRadgri(k —d) - af (k — t)[a4 (k — d)]* - [ (k= 8]

s;(k) = Rz(‘h—d+1+"'+q1§)aq0(k) coeatd(k—t + d)[aqﬁ(k)]* ... [aq;_d(l{ —t+d)]*.
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In addition, the second factor in the right hand side of (A.34) must be nonzero.

Therefore
t ! ’ /
[T E {a* (k)a®-a(k)[a? (k)] [a™<(k)]"} # 0
n=d
= G~y =Pnd—Ppgy d<n<t (A.37)
Now observe that
P (k)[aPn (k)]* = R¥[b, (k)]
where
a(k), P> Dy,
a*(k), pn <D,
Then we can write
si(k) = RQ(PO—l—m—I—Pdf1+13d+-..+13t)[bd<k _ d)]lpd—pgl oo [by(k — t)]\pt—pﬂ
Sj(k) _ R2(60+...+Qt—d+¢h—d+1—|—...+Qt)[Co(k)]‘%—qm e [Ct—d<k —t+ d)]|4t—d—q;,d\’
where
a(k)’ q'n Z (LI'“

calk) 2

min{g,, ¢, },
a*(k), qn < dq,.

A
gn =

But since for d < n <t we have p, — pl, = ¢, — ¢, in view of (A.37), it follows that

bo(k) = ca(k), bi(k) = canr(k), ..., bia(k) = co(k).
|

Therefore s;(k) = ¢- sj(k — d) where ¢ is a constant, as was to be proven.

A.18 Proof of Lemma 4.1

The delay-d ZF equalizer, g4, is given by
(A.38)

ga= (H") eqp1 = (HN)Feqpr.
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On the other hand, the delay-d MMSE equalizer, f4, is the minimizer of the quadratic

cost (4.34), given by

fa = C;N(0)-cov[Y(k),a(k — d)]
= C;(0)H cov[S(k),a(k — d)]
= C; Y (0)HC,(0)eqs1, (A.39)
where now C,(0) is the undenoised covariance matrix of the received signal, i.e.

Cy(0) = HC(0)H + 021. Let us define the matrix 2 and the vector n, as
Q 2 HC,(0)HT =C,(0) - C,(0), g 2 HC,(0)eqss.
Recall that since A has full column rank, #*# = I. Therefore one has

Qfng = [HC,(0)H¥]FHC,(0)eqs

= (HHHCHOYHTHC,(0)eqr

= (H")eas, (A.40)

so that we can write
ga = QFn, (A.41)
fd = Cy_l(())?]d (A42)

Also note that, in view of (A.40),

QO ng = HC,(0)HT (M) eqp
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Therefore, from (A.41)-(A.42),

fo = G0

= C,(0)[Cy(0) — Cu(0)]ga

= [I—C;(0)Ca(0)]ga,
which proves the result. [ |

A.19 Proof of Theorem 5.1
Suppose a matrix G satisfying (5.2) exists. Then G¥H; = I, which shows that
#H, has full column rank. Also (5.2) shows that the rows of the matrix [ 7, 04,4, |

are linear combinations of the rows of H. Hence

Hl 7-[nl
rank(?) = rank : (A.43)

Idl Od1 X d2

On the other hand, the columns of the matrix [ T 1, ]" arenot linear combinations

of the columns of [ #,” 07, |". Therefore

7‘[1 7‘[111 7‘[1 /Hnl
rank = rank + rank
Idl 0d1 ng Id1 Od1 Xd2
= dy +rank(Hy). (A.44)

Thus from (A.43) and (A.44), and since rank(H;) = dj,
rank(H) = rank(H;) + rank(Hm) = r1 + 2.
Now assume that the relaxed rank condition A1’ holds. Consider SVDs of H1, Hu:

Hi =P FE, Ho = P50 Fy,
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where for ¢ = 1,2, the matrices P;, ¥;, F; have sizes pm X r;, r; X r; and d; X r;

respectively. Then one has

H = [P FE PY,FH |
SWFHE 0

=[P P : (A.45)
0 SR

Observe that the pm x (r1 4+ r2) matrix [ P, P, | must be full column rank in view
of (A.45) and Sylvester’s inequality [19] since rank(H) = r; + rp. Therefore its
pseudoinverse satisfies

[P1 P, ]#[ PP ]:IT1+T2'

Then the matrix G defined by

g = [F1Ef1 0][P1 P, ]#

satisfies
Y FH 0
G'"H = [AYt ol P Py Il P Pl
0 Yo Ff
S FH 0
=[x 0]
0 Yo FH

= [ Idl 0d1><d2 ]

as desired. The last line follows from the fact that F} is d; X d; unitary. [

A.20 Proof of Lemma 5.1
Let rank(#H;) = r; and rank(#,) = r». Consider the SVDs H; = P,S, FH,

Hy = P222F2H, where for ¢ = 1,2, the matrices P;, ¥;, F; have sizes pm X r;, r; X r;
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and d; X r; respectively. Then

S FE 0
H=[pP P : (A.46)
0 S,Ff

Assume that rank(#) = rank(#;) + rank(Hn) = r1 + r9; then rank([ P, P, ]) =

r1 + 19 as well. Now let x1, x9 be two vectors such that H,z; = Huze. Then
PllelH.fL'l = PQEQFZH.TQ

or equivalently

ElFlHiCl
[ Pl P2 ] = 0’
—22F2H£L'2

or, since [ P, P, | is full column rank,

Bl o S Flg =0, SoFHz, =0,
—YyFflx,
which gives Hir; = PS1FHzy = 0 and Hyry = PoYoFfzy, = 0. Therefore
range(H,) (range(Ha) = {0}.
Now assume that rank(#) < rank(#;) + rank(#y) = 71 + re. In that case
rank([ P, P, ]) < 1+ 12 as well, ie. [ P, P, ] does not have full column rank.

Therefore there exists a nonzero vector y = [ 47 —yT " such that [ p, P, Jy =0,

l.e. P1y1 = ngg. Now let Tr1 = Flzflyl and To = FZZ;lyQ. Then
Hizy = P1E1F1Hﬂ?1 = Py,

Huze = P222F2H$2 = Py,

so that Hix; = Huxs # 0 since both Py, P, have full column rank and %, ¥» cannot

both be zero. This shows that range(?;) Nrange(Hy) has a nonzero element. [ |
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A.21 Proof of Lemma 5.2

Let x be a vector such that Hyz = 0. Then

HiQuzx = Hnl(—Qzlﬂf)-

Since by assumption rank(#) = rank(#,;) + rank(#,), or, in view of lemma 5.1,

range(#,) Nrange(Hn) = {0}, we must have

H1Quz = Hu(—Qax) =0.

In particular, since H; has full column rank, and @Q1; is invertible, it follows that
x = 0. In other words, Hix = 0 implies x = 0; which means that H; has full column
rank.

Now let x1, x5 be two vectors satisfying Hixy = Hsxo. Then

(H1Q11 + HuQ2 )21 = HuQ22,

that is,
HiQur1 = Hu(Qrs — Qu11).
Again, since range(#1) Nrange(H,) = {0}, this gives
H1Q1z1 =0 = z1 =0.
Thus Hyxy = Hyz; = 0 which implies range(H;) Nrange(H>) = {0} or equivalently
rank(H) = rank(H;) + rank(Hs). [ ]

A.22 Proof of Lemma 5.3
Let rank(#;) = r; and rank(#Hy,) = ro. Consider the SVDs H; = P,S FF,

Hu = P,YoFF ) where for @ = 1,2, the matrices P;, ¥;, F; have sizes pm X 1y, r; X 7
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and d; xr; respectively. It was shown in the proof of theorem 5.1 that the ZF equalizers
are given by

QH=[F12;1 ollp »l"
Now let H = U;3V be an SVD of H, with Uy, 3, V having sizes pm x (r; + r3),

(r1 +72) X (r1 +7r2) and (dy + da) % (r1 + 72) respectively. Since H = H(Q, we have

SWFE0
UIEV = [ P1 P2 ] Q
0 S,Ef
or, since VVH# =],
vi=1p BT (A7)
where
H
Y Qv
0 S,EA

Observe that since both U; and [ P, P, | have full column rank, in view of (A.47)

T is invertible. Thus
[P R]I=ULITY = [P RIF=TU,
since U#U, = I,,,,,. Therefore the equalizers are given by

¢" = [Fxt ollp B I*
= [ Ryt o TUY
ElFH 0
= [FY 0] ' QviEs-lyH
0 S,FH
= [ I, 0 JQH?

= Qu] Iy, O ]H#;
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as was to be shown. [ |

A.23 Proof of Lemma 5.4
Observe that under the conditions of the lemma, the equalizers G are given by

(5.6) and satisfy G"H = [ I, 04,4, |- Therefore,

gHH — gHHQ—l
= Quviix'ufuxzvQ!

= QuVfvQ™,

since UU, = I,,.,. Thus,

QuVivVQ ! = Iy, Odyxdy |

that is,
VlHV = Ql_ll[ lq, 04y xd, ]Q
= Qi'l Qu Ody xdy |
= [ Idl 0d1 X do ]7
which proves the result. [ ]

A.24 Proof of Lemma 5.5
Let A £ V,CVi. Observe that AV; = 0 in view of (5.7), so that A has at least
d; = ry eigenvalues equal to zero. In addition, for any nonzero d; x 1 vector x, there

is no vector y such that Ay = Vix since
Ay = Vix

= VWCVy = Vix

= VEV,OVHEy = ViEVa
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= 0 = =,

where the last line follows from (5.7); this contradicts the assumption = # 0. There-
fore there is no Jordan chain for the zero eigenvalue of A starting with a vector in
the range space of V; and with length greater than 1. As a consequence, A admits a

Jordan decomposition of the form
Odl Xdl ‘/lH
A=] i T T3 ] Yo TS‘# ’ (A.48)
Z || 17
with Yy, Z as in the statement of the lemma. Since R = ViJ;, Vi + A, we have in

view of (A.48) that

Ja Vi
R=[vi ) 7] Yo ¥ |
Z ||
which constitutes a Jordan decomposition of R. [ ]

A.25 Proof of Lemma 5.6
We can always choose the square root matrix @ to be lower triangular as in (5.3).
It was shown in the proof of lemma 4.1 that the MMSE equalizer with associated delay
d is given by
fa = C;H0)HC,(0)eqs
= CH0)HQ"eqrs

= CHO)U,ZVQTeqys (A.49)
(see (A.39)). On the other hand, in view of (5.6), the corresponding ZF equalizer is

gi = Gedq



= U,x7'V

H
11

€d+1
0d2 ><d1

= U,S7'VQYeqq.

Premultiplying this by U; 32U one gets

UrX2U gy = U SVQY e g,

and since U; 22U = C,(0) — C,,(0), (A.49) and (A.50) yield

[Cy<0) — Cn(0)]ga = Cy<0)fda

as was to be proven.

A.26 Proof of Lemma 6.1

Observe that (6.28) yields

RAV

a7

gy —1

= —adlﬂd.

In view of (6.13) and (6.14), the vector in brackets in (A.51) is

1

a1

Bo

adl —1

Substituting (A.52) into (A.51) yields

1 1
= — (Xg, B+ g, Ja, ") = E (Xde_T + g, Jde_H) €d; -

RHV<Xd1 QiT + g, Jd1 QiH)edl = —Qyq, 60®d1
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(A.50)

(A.51)

(A.52)
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from which
RHVQHXdIQ_Ted = —Qyq, (ﬁo’l_}dl + RHVJde_HedI), (A53)

where we have substituted V = VQ¥ in the left hand side. Now since C,(0) is

Hermitian Toeplitz, it satisfies Xy, C,(0) = C*(0)X,,. Because of (6.6), this yields
QXy Q™" = Q7 X0 Q" (A.54)

Further, from (6.13), and the fact that the diagonal elements of the lower triangular

matrix @, the Cholesky factor of C(0), are positive real,

[0 -+ 0 5, 1@ "eq, = [0 -+ 0 vy 15

= [olq, - (A.55)
Also, (6.27) shows that
Ry =[5 - 041 0]
Thus because of (A.54) and (A.55), (A.53) reads as

RHVQile1Q*€d1 = —Qq (ﬁo,vdl +[ U1 -+ Ugy-1 0 ]QHedl)
= —0q, VQiHedl. (A56)

Observe from (6.13), and the fact that @ is lower triangular with positive real diagonal

elements that
X4,Q%eq, = By tey and Boea, = Q teq,. (A.57)
Thus from (A.57) and the definitions of V and V, one has
REVQ™ X4 Q%q, = By RIVQ e

= By R Ve, (A.58)
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and

_O‘dva_HGCh = _ﬁ()_IO‘dva_HCx?_1

= —fB;lag Vey,. (A.59)
In view of (A.56), (A.58) equals (A.59):
By 'R¥ Ve = B, aa, Vea,,
i.e. REG; = —ay, U4,, which proves the lemma. |

A.27 Proof of Theorem 6.2

1>

Suppose first that oy, # 0. In that case it suffices to show that P ,(1)D~!

is unitary. One has
PP" = C,(1)D2C,(1)", (A.60)
and, because of (6.16), D2 can be written as

2
D_2 = Idl - (1 - |ad1|_ )ed1ed1 Id1 + | 5‘026111 z
dy

Recall from (6.12) that F £ J; — e;a; then from (6.11), C,(1) = Q~'FQ. One
has from (6.6) and (A.57)
2ﬁ0

|y |2

2
— Q—l (FQQHFH ‘ ﬂrQF(Qedl)(Qedl)HFH> Q—H

PPY = Q7'FQ (Id1+ L0 e, ed1> QU FHQ—H

= Q! (FCS(O)FH + FedleleH) QH. (A.61)

‘0“711'2
Now from (6.17) one has FC,(0)F" = C,(0) — 7?eref’. Also, Feq, = —aj €.

Substituting these in (A.61), from (6.6),

2
PP = Q! <C’S(0) — ”erlef + MJ—P‘%IPGIG{{) QH
dy



= Q7'C(0Q™"
Id17

so that P is unitary.
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Now suppose a4, = 0. In that case we shall show that with u the vector given

by

A _
u = ny 1617

(A.62)

the matrix P = C,(1) 4+ uel satisfies the requirements of the lemma. First, note that

the last column of Cy(1) is the zero vector: Indeed, from (A.57),
_ 1
Cs(l)edl = Q_IFQGdI = /B—Q_lFedl = 0,
0
since Feq = —aj ey = 0. Then
PD = (Ci(1)+uef)(ls, — eqell)
= C,(1) = Cs(Vegyell +uell —u(eleq)el
= Cy(1) — 0+ uel]l —uell

= C,(1).

(A.63)

Thus it remains to show that P is unitary. To do so, observe that in view of (6.17)

and (6.6),
C.(HCMT = Q'FC,(0)FTQ "
= Q7 (C(0) = ere! Q"
= I, — 7 (Q'e))(Qer)”
= I —uul
Therefore,

PP" = (Cy(1) +uel)(

(1) +equ)
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= C,(1)C(1)" + Cs(1)equ” + uel Co(1) + u(el eq )u™

= C,(1)C,(1)" + uul

= lq,
since, from (A.63), one has C(1)eq, = 0. Thus P is unitary. [ ]

A.28 Proof of Lemma 6.2
First, observe that since o, = VQ 'e; with V unitary, the norm of #; is the
same as that of Q@ 'e;. One has (Q7'e;)?(Qtey) = e C1(0)er, which is the (1, 1)
element of C, !(0). Since C,(0) is Toeplitz, its inverse C, '(0) is symmetric about the
antidiagonal, so that its (1, 1) and (d;, d;) elements coincide. But it is easily seen that
as @ is lower triangular, because of (6.13) one has e/ C;1(0)ey, = #Z. Thus Sy '3, has
unit norm. Similarly, the (squared) norm of o4, is 9504, = (Q 'eq, )" (Q 'es,) = f3.
From (6.26), one has Ry, = —aj; 1. Premultiply this by R and use the result

from lemma 6.1 to obtain
RHRﬁdl = |ad1|21~)d1, (A64)
which shows that (3, '@, is a right singular vector of R associated to the smallest

singular value. But then, using (6.26),

R(By ' 0ay) = —ay, (B 1)

which must equal |ag,|v with v a unit-norm left singular vector. This shows that
By ' is a unit-norm left singular vector of R associated to its smallest singular value.

A.29 Proof of Theorem 6.3
Because of Theorem 6.1, |y, | < 1. Thus, from Theorem 6.2 the smallest singu-

lar value of R has multiplicity one. Hence, the left singular vectors of R corresponding
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to this singular value span a space of dimension one. Because of Lemma 6.2, the vec-
tor By ‘9 is one such unit-norm left singular vector of R. Since by construction, o1
is also a unit-norm left singular vector of R corresponding to this singular value, it

follows that there exists a real € such that
By = B ey
Because of Step 3 and (6.25)
Vi=[4 - by |=08"eV.
Thus, because of (6.7), (6.19), (6.22) and Step 4,
Ho= BUS (6eV)
= U TVQ!
= ¢'HQ™!
= &'H.
Further, the matrix Gzr obtained in Step 5 satisfies
Gze = BoCa(0)f e VIS
= e C(0)Q VIS TIUH
= e 'QVITTUf.
Therefore if N(k) =0 in (6.2), from (6.6), (6.7), (6.19), and (6.22) one obtains

GrY (k) = GyHS(k)
= (e7PQVISTUN(UBVQTS (k)

= e S5(k).

This concludes the proof. [ ]
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