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ESCOLA TÉCNICA SUPERIOR
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Abstract

Whenever a researcher faces the design of a data hiding method, probably
the two basic requirements that he/she will always take into account (besides
perceptual imperceptibility) will be the robustness and security of that method.
The core of this thesis is devoted to the analysis of these requirements for those
data hiding methods with side information available at the embedder, i.e., where
the embedder takes advantage of deterministically knowing the document to be
watermarked. These methods, which currently constitute the state of the art of
data hiding methods, have been extensively studied in the literature; there are
however several important aspects which deserve attention and which have been
analyzed in this thesis.

Concerning robustness, in this work we have studied the performance un-
der additive noise of arguably the most extended side-informed method, i.e.
Distortion-Compensated Dither Modulation (DC-DM), when uniform scalar
quantizers and repetition coding are used; even though several theoretical re-
sults are available in the literature, they are only partial. In this thesis we have
obtained for the first time the exact results, as well as some approximations
and bounds which are shown to be useful for developing improved versions of
DC-DM. A novel topic introduced in this thesis is the analysis of the decoding
error probability of DC-DM with uniform scalar quantizers and repetition coding
when the watermarked documents undergo a coarse quantization. Other side-
informed method often used in the literature is the so-called Spread-Transform
Dither Modulation (STDM), which is usually assumed to outperform DC-DM.
Nevertheless, in this thesis we show that DC-DM with uniform scalar quantizers
and repetition coding could be more robust against the cropping attacks, which
have been studied for the first time for side-informed methods. Probably one
of the most significant contributions of this work is the design of a novel sensi-
tivity attack, named the Blind Newton Sensitivity Attack (BNSA), which was
shown to be effective against a wide range of state-of-the-art data hiding meth-
ods. The robustness chapter ends with a game theoretic approach, where some
optimized strategies are proposed for additive spread spectrum (Add-SS), DC-
DM and STDM, and the exposition of some empirical results about the worst
case (from an achievable rate point of view) additive attack for scalar DC-DM.
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On the other hand, the security part is mainly focused on the security anal-
ysis of Add-SS data hiding methods and Costa’s construction. Furthermore, the
security of Add-SS and Costa’s construction is compared with some existing re-
sults about the security of DC-DM. Our results have been obtained by following
a novel approach.

Besides robustness and security of side-informed data hiding techniques, some
results are introduced concerning the need of combining channel-coding and
source-coding in order to achieve dirty paper channel capacity, and the adap-
tation of one of those schemes to hide data in real images. Finally, an application
of a data hiding scheme to a video surveillance authentication system is discussed.



Resumen

Cuando un investigador afronta el diseño de un método de ocultación de
datos, probablemente los dos requisitos básicos que siempre tendrá en cuenta
(aparte de la imperceptibilidad) serán la robustez y la seguridad del método. El
núcleo de esta tesis está dedicado al análisis de estos requisitos para los métodos
de ocultación de datos con información lateral disponible en el codificador, es
decir, donde el codificador aprovecha el hecho de conocer de forma determinista
el documento a marcar. Estos métodos, que actualmente constituyen el estado
del arte en ocultación de datos, han sido ampliamente estudiados en la literatura;
de todos modos hay importantes aspectos que merecen atención y que han sido
analizados en esta tesis.

En cuanto a la robustez se refiere, en este trabajo hemos estudiado las presta-
ciones del que probablemente es el método con información lateral más exten-
dido, el Distortion-Compensated Dither Modulation (DC-DM), ante ruido adi-
tivo, cuando se emplean cuantificadores escalares y codificación por repetición;
aun cuando en la literatura hay varios resultados teóricos, éstos son únicamente
parciales. En esta tesis hemos obtenido por primera vez los resultado exactos, aśı
como algunas aproximaciones y cotas que demuestran ser útiles para desarrollar
versiones mejoradas de DC-DM. Un novedoso tema presentado en esta tesis es
el análisis de la probabilidad de error de decodificación de DC-DM con cuantifi-
cadores escalares uniformes y codificación por repetición cuando los documentos
marcados sufren una cuantificación gruesa. Otro método con información lateral
que se emplea frecuentemente en la literatura es el Spread-Transform Dither Mod-
ulation (STDM), que ha menudo se ha dado por hecho que mejoraba a DC-DM.
Sin embargo, en esta tesis demostramos que DC-DM con cuantificadores escalares
uniformes y codificación por repetición podŕıa ser más robusto contra ataques de
recortado, que aqúı se han estudiado por primera vez para métodos con infor-
mación lateral. Probablemente una de las contribuciones más significativas de
este trabajo es el diseño de un novedoso ataque de sensibilidad, al que llamamos
Blind Newton Sensitivity Attack (BNSA), y que ha mostrado su efectividad con-
tra un amplio abanico de métodos dentro de los que pueden ser considerados
como estado del arte en ocultación de datos. El caṕıtulo de robustez termina
con una aproximación a la teoŕıa de juegos donde se proponen algunas estrate-
gias optimizadas para additive spread spectrum (Add-SS), DC-DM y STDM, y
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la exposición de algunos resultados emṕıricos acerca del ataque aditivo caso peor
(desde un punto de vista de tasa alcanzable) para DC-DM escalar.

Por otro lado, la parte de seguridad se centra principalmente en el análisis
de seguridad de los métodos de ocultación de información basados en Add-SS y
la construcción de Costa. Además, se compara la seguridad de Add-SS con la
de la construcción de Costa, y ambas con algunos resultados existentes sobre la
seguridad de DC-DM. Nuestros resultados se han obtenido siguiendo un novedoso
enfoque.

Además de la robustez y seguridad de las ténicas de ocultación de datos con
información lateral, se presentan algunos resultados relacionados con la necesidad
de combinar codificación de canal con codificación de fuente para alcanzar la
capacidad de canal en el escenario de dirty paper, y uno de estos esquemas ha
sido adaptado para ocultar datos en imágenes reales. Finalmente, se discute la
aplicación de un esquema de ocultación de datos a un sistema de autenticación
de imágenes de videovigilancia.
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Chapter 1

Introduction

The mere nature of humankind makes us prone to hide information. For
example, in our childhood we try to hide those behaviors that could be susceptible
of being condemned by our parents, and we like to share secrets with that bunch
of children that we consider to be our best friends. These basic structures of
secrecy and trust get more complex, or at least we usually think so, as we get
older. Nevertheless, even when we are adult these behaviors persist in several
aspects of our lives. For example in Spanish it is typical to say that somebody
is playing poker when he/she tries to hide his/her final intentions; in the same
way, it is also usually said that if you meet a Galician person at the stairs, you
will not be able to decide whether he/she is going up or down. We will not try
to prove here the good genetic predisposition of Galician people for data hiding,
since, of course, it is not true (or is it?).1 In fact, the target of this first paragraph
is just to show that data hiding can be considered as a natural human attitude,
although sometimes we are encouraged to hide it.

Due to this natural tendency to hide information, data hiding has been used
from the ancients to our days for different purposes (covert communications,
intellectual property rights, traitor back tracing, etc.) as it is widely described
in the literature (see, for example [95] and [136]). Therefore, it is not rare that
with the growth of digital technologies in the last years, data hiding has been
used to convey information in digital multimedia contents, such as still images,
video, audio or electronic text, attracting a lot of attention from academia and
industry. As a result of that interest, a huge number of digital data hiding
methods have been proposed; before proceeding with the exposition of our results,
we will introduce some of the applications of those methods, to get a general idea
of what is under the wide term of digital data hiding.

1Dear reader, please take this just as a sample of Galician sense of humor. Of course we do
not believe on any kind of genetic predisposition, and even less if it is mixed with geographical

circumstances.

1
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1.1. Applications

In this section some applications of data hiding in digital contents will be
briefly described, comparing its choice with other alternative techniques:

Copyright protection: in this application a signal, named watermark, is
added to the original host signal, enabling the claim of ownership of the
content. This gives rise to the term (invisible) watermarking, which is
frequently used to replace data hiding, even when it is not applied to copy-
right protection; in fact, watermark is widely used to denote the signal
added to the original host for all data hiding applications. In any case, one
should be also aware that watermarking also encompasses the so-called visi-
ble/perceptible watermarking, where a signal is superimposed to the content
to be protected, in such a way that the superimposed signal is perfectly
identifiable; when the content is an image, that perceptible watermark is
usually a logo. Since the superimposed image can be identified, we can not
consider visible watermarking as part of data hiding.

Copyright protection was one of the first digital data hiding applications,
and it is also one of the most challenging, since the watermark should re-
sist attacks of opponents aware of its existence; these attacks can range
from typical signal processing (filtering, noise addition, lossy compression)
to more sophisticated ones (e.g. geometrical and desynchronization attacks,
private parameters leakage, etc.). Due to this, the task of designing a good
watermarking technique seems to be a cumbersome problem, and in the last
years copyright protection has no longer been the major data hiding appli-
cation, being somehow relegated by some of the applications introduced
below.

Since it is just a piece of the architecture trying to preserve the rights of the
actual holder and avoid the claim of the ownership by an impostor, data
hiding for copyright protection should take into account the existing legal
framework, as it could be considered as an evidence in a trial.

Sometimes, a cryptographic approach has been proposed to avoid the access
of bad-intentioned parties to the content, thus preventing the ownership
claim. Nevertheless, this is not a complete solution, since a legal user should
always be able to properly decode the content, and once he/she has access
to the signal, a misuse is possible. Therefore, a second level of security
should be established to enforce copyright protection. This second level
should rely on information somehow inseparable from the content itself, in
such a way that the proper use of the signal by a legal user does not limit
the validity of the technique; this is the role to be played by data hiding.
Then, data hiding and cryptography should not be regarded as rival, not
even as alternative technologies, but as complementary and not mutually
excluding solutions [10, 147, 90, 136, 59, 135, 56, 55, 64, 16, 120, 1].
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Fingerprinting: a serial number, which identifies the customer, is hidden in
the host signal. In this way, if unauthorized copies were found, the owner
of the copyright could trace back the identity of the customer that supplied
the content to third parties and prosecute him/her. This application has
been paid increasing attention in the last years, and the fact of identifying
the traitor/s seems to be also really challenging; nevertheless, in some sce-
narios where the number of possible users is limited, even when a different
watermark is associated with each of them, the complexity of the problem
is reduced.

A special attack to this application is the so-called collusion attack, where
a number of users combine their respective watermarked versions to yield
another content, assuming that this combination will make more difficult
the estimation of the identity of any of them. On the other hand, the
detector will try to identify as many colluders as possible, or, at least, to
identify one of them, in such a way that this could prevent the users from
colluding; on the other hand, the detector has to deal also with the danger
of wrongly identify an innocent user. Recent references in the literature can
be found about this attack [104, 61].

Alternatives to this application could be the attachment of user identifica-
tion files, or the usage of metadata fields conveying information about the
user in some storage formats, e.g. JPEG-2000 or MPEG-4; nevertheless,
these mechanisms can be easily removed, so a content embedded technique,
as data hiding, is required [10, 90, 136, 59, 135, 56, 64, 14, 16, 120, 2, 1].

Steganography (Covert communications): in this case the embedder does
not just want to hide the conveyed information, but he/she tries to hide
the process of communication itself, in such a way that an observer of the
watermarked signal should not be able to state whether a watermark was
hidden or not. Steganography can be used in military communications to
avoid that the enemy knows that the communication is taking place. In
that sense, steganography resembles the use of low-powered communica-
tion techniques, such as spread spectrum, since an observer unaware of the
spreading sequence (equivalently, a secret parameter for steganography) will
not be able to decide whether a communication is being performed.

In [27] a steganography scheme is called perfect when the Kullback-Leibler
distance between the probability distribution of the original host signal and
its watermarked version is zero, i.e. when both signals are statistically
undistinguishable.

Alternative techniques to digital data hiding could be the broadcast of
the aforementioned low-powered modulations, since they are usually un-
noticed due to the their noise-like appearance; in fact, when the communi-
cation channel is constrained to be a multimedia content these modulations
are frequently used as data hiding techniques. Further information about
steganography can be found in [10, 147, 90, 136, 59, 120].
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Data authentication, integrity control or tamper proofing: due to the fast
evolution of digital multimedia editing tools, the modification of original
contents is nowadays easy and cheap. In order to realize the danger of this
editing easiness, we can think of tampering a video surveillance system,
replacing the identity of a person in a picture, or the modification of a text
document.

Data authentication, and similarly the related terms integrity control and
tamper proofing, deals with this problem by changing the watermark de-
tector output when the watermarked signal is modified, even after small
changes, so those modifications on the watermarked content can be de-
tected. Due to their sensitivity, these schemes are said to use fragile wa-
termarks; they are employed, for example, in automatic video surveillance
and authentication of drivers licenses.

Cryptographic functions could be also used in this problem: a content
provider could compute the hash of the sold signal, and then encrypt this
hash with his/her private key, sending both the original host signal and the
encrypted hash to the buyers. In this way the buyer will decrypt the hash
using the public key of the provider, and compare it with the result of com-
puting the hash of the received signal, so if both of them coincide, he/she
can be sure that the received signal was not modified in the middleway.
The validity of this scheme, which is usually termed digital signature, lies
on the one-way nature of hash and encryption functions, meaning that it is
computationally unfeasible to find another image which yield the same hash
or to invert the encryption algorithm. Nevertheless, one must be aware that
this alternative implies an increase in the payload, and that some typical
signal processing, such as quantization for lossy compression, that are not
intended for tampering with the signal, will be probably not allowed; these
problems could be avoided by using data hiding, given that the watermark
is conveyed by the host signal, so in general it does not increase the payload,
and it could be robust against some kind of attacks, as lossy compression
or other unintentional attacks [90, 136, 59, 135, 56, 55, 64, 16, 120, 1].

Media Forensics: it goes a step further than authentication and tries to
determine how the content was modified. For example, it could inform
about which part of an image was modified [120], providing information
about the attacker’s intention to modify it.

Reversible data-hiding: the target is not only to recover the embedded
data, but also the restoration of the original host signal, just from its wa-
termarked version [74, 98]. In this way, an allowed user could simultaneously
extract the information from the received signal and improve the quality
of the received content (compared with the original); on the other hand, a
user without permission could not properly restore the received signal and
his/her version would be poorer.
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Standards migration: Data hiding could help in the transition from one
standard to another. Since the replacement of the complete infrastructure
related to a given standard is extremely expensive, and this transit is not
instantaneous, data hiding could be useful in the meantime to convey the
information which makes possible the compatibility of the former and new
standards; an example of this could be the MPEG transition [13] or the
transmission of a digital signal within existing analog (Amplitude Modu-
lation and/or Frequency Modulation) broadcast radio without interfering
with conventional analog reception [32].

Data tracking: a web-crawler tries to find copies of contents watermarked
with a given watermark on the Internet or on the local network; the target
is to find misuses of materials of a rights holder. A typical scenario is the
search of copyrighted images in the websites of users who do not have the
corresponding permissions, allowing their prosecution.

One could think again in the use of metadata fields to convey information
about the rights holder, making easier the detection of copyrighted signals;
unfortunately, as it was previouly said, these fields are easily modifiable, so
any bad-intentioned user could remove them [147, 90, 136, 135, 55, 2, 1].

Data monitoring: the detector tries to verify the presence of a given water-
mark in the received signal. This is typically used for counting the times
that a watermarked signal, e.g. an advertisement or a song, is played in a
broadcasting media; in this way the advertiser or the owner of the rights of
the song can get valuable information for billing. In the first case the radio
station will not be interested in removing the watermark, but it could be
interested in doing so in the second one, so data hiding is more reliable than
metadata; furthermore, metadata fields could not be available, depending
on the radio standard, e.g. amplitude modulation (AM), so data hiding
seems to be a good choice [10, 147, 90, 59, 135, 56, 55, 64, 14, 120, 1].

Embedded transmission of added-value services within multimedia data, as
multilingual soundtracks or extra scenes: data hiding allows the sending
of additional information without noticeably modifying the quality of the
original content, neither increasing the bandwidth [147, 90, 14, 120].

Communication of meta information within digital multimedia data [14, 2]:
in some medical image formats, e.g. DICOM [4], some information, as the
patient’s name, goes in a separate file; with data hiding applications the
medical safety could be improved by embedding such information in the
image [10], as well as simplifying the file system and reducing the overhead.

Tracking content creation, manipulation, and modification history: data
hiding allows to track content creation, manipulation, and modification
history without the overhead associated with creating a separate header or
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history file. Data hiding could provide a useful way of storing the afore-
mentioned information within the content itself. The embedding algorithm
could be completely open, since this application does not seem to be sus-
ceptible of being attacked [147, 120].

Providing different access levels to the data: for example, the amount of
detail that can be seen in a given image can be controlled, in such a way
that a user with a high access level can see details that another user with a
lower access level would not see. This somehow resembles the hierarchical
modulation used in Digital Video Broadcasting-Terrestrial (DVB-T), in the
sense that the same signal can provide different quality levels, but whereas
in DVB-T this is due to the available Signal to Noise Ratio (SNR), in data
hiding it depends on the permissions the user has been granted. A possible
partial alternative could be the use of hierarchical encryption [147, 59].

Preventing unauthorized copying: related to the previous one. Data hiding
was proposed to be implemented by the DVD (Digital Versatile Disc) video
standard. Nevertheless, its success has been limited, since it increases the
cost of the DVD recorder while reducing its value, meaning that users are
usually interested in copying DVDs, even illegally, so hardly they are going
pay in order to loose this feature.

One could think of a cryptographic approach as a possible solution, but it
is straightforward to see that it will not solve the problem, since, as it was
said previously, as far as a legal user is able to decode the signal, he/she will
be able to misuse it. Therefore, a signal embedded in the content, such as
the watermark introduced by the data hiding algorithm, seems to be a good
choice, since it can not be easily removed [25, 136, 135, 56, 64, 14, 16, 1].

Labeling for user awareness: a warning encouraging the customer to buy
the watermarked content could appear when he/she tries to save it [135].
It could be seen as an example of the old sentence: “Keep Honest People
Honest”, since somebody really trying to break the copyrights is not going
to get discouraged by this kind of measure.

Annotation and linking content to a web or database: the commercials in-
cluding a typed web address where more information can be found are usual.
The novelty of this application is that such information is embedded in the
image/sound of the commercial itself, enabling to link the printed material
or audio with their corresponding resources in the Internet or databases;
this allows to complete the initial information, the sight of the advertise-
ment of some product, or its purchase [10, 147, 136, 59, 55, 16, 120, 1].

Device control: examples of this kind of application are available already
for analog signals, allowing receivers to remove advertisments, or even syn-
chronization of children’s toys with live-broadcast or recorded video. The
former function can be seen as similar to some headers in modern digital
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standards, such as MPEG-4, where some events, e.g. the beginning or end
of a film, the commercials, etc., are announced, enabling the recording and
stopping of a digital video recorder. Using this application, the same could
be done for analog video [147, 56, 55, 120, 2, 1].

Estimate of the quality of multimedia communication links: digital fragile
watermarking has been also used to blindly estimate the quality of multime-
dia communication links. This quality assessment system does not increase
the bit rate and is based on the evaluation of the mean-squared-error be-
tween the estimated and the actual watermarks. The estimated quality of
the received signal can be used by the service provider as a feedback infor-
mation for billing purposes, to control feedback to the sending user, or by
the operator to diagnose the effective status of the link [29].

We would like to remark again that in the last years the interest of research-
ing data hiding community has moved from the initial copyright protection ap-
plication to other, somehow less challenging, problems such as fingerprinting,
steganography or authentication; this tendency can be noticed just by looking at
the technical program of major data hiding conferences.

As a final comment, we emphasize that this overview does not try to be
exhaustive, and that some of the former applications could be, and in fact are,
overlapping.

1.2. Content types and formats

Digital data hiding is applicable to any kind of digital content such that a
given instance is suitable for being represented in two (or more) different ways
without noticeable differences; by choosing which of these representations is trans-
mitted, the embedder is sending additional information which could be recovered
at the decoder when an a priori protocol is established between them. This con-
cept seems to be colliding with the source-coding principle, where the number
of representations of the possible contents (codewords) is tried to be reduced as
much as possible,2 maintaining a given perceptual distortion. In this way, the
size of the source-coded content is reduced compared with the original one, but
another different instance of the source-coded content can be distinguished from
the original signal (in other case, some redundancy is still available).

As it is well known, typical multimedia contents, as still images, audio or video,
as far as they are not the outcome of perfect source coding, have some redundancy,
so information can be hidden within them without perceptual distortion; in fact, a

2Strictly speaking, the encoder tries to minimize the entropy of the source-coded content,
i.e. the entropy of the chosen codeword.
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vast literature has been written about data hiding in those contents (an overview
can be found in [147] or [90]). However, some other contents have been proposed
for being watermarked, with special features and requirements:

Watermarking of electronic text documents: usually this is a fingerprint-
ing appplication, where the watermark is embedded by slightly increasing
or decreasing the spaces between words or the distance between any two
adjacent lines, according to the value of the corresponding watermark bit
[7]. The noise sources are related with the irregular spacing between words
before watermarking (zero for unjustified text), and printing and scanning
noise. This technique is said to have been used by Margaret Thatcher to
trace disloyal ministers who were leaking cabinet documents to the press
[10].

Semagrams: related with the previous one, in this case the information
is hidden by very slight physical differences in appearance such as special
fonts, punctuation marks, or very fine dots [147].

Watermarking of software: the presence of the watermark must not change
the functionality of the software. It is usually based on the order in which
registers are pushed and popped, the automatic random replacement of
code fragments with equivalent ones [10], the memory trace of an executing
Java program [105], the topology of a dynamically built graph structure
[35], or a program’s control flow graph [153]. These techniques could be
combined with obfuscation [36], where the program is transformed into an
equivalent one, in order to hamper reverse engineering.

Watermarking for digital cinema: since the number of cinemas where a film
is exhibited is limited, a different watermark could be introduced in each
copy (i.e. fingerprinting), in such a way that an illegal copy could be traced
back to find the traitor. The system does not need to be unbreakable,
but the attacker should spend a couple of months in breaking it, since in
this period the value of the movie will have declined drastically. Further
considerations about this subject are made in [102].

Watermarking of natural language: it exploits the fact that the same idea
can be expressed in different ways. For example, a sentence could be
changed to its passive form without modifying its meaning, the order of
some words could be changed, a word could be replaced by a synonymous,
etc.. This topic was extensively studied in [149].

Watermarking of 3D objects: some works proposed in the literature (e.g.,
see [9], [8] or [101]) are based on the slight modification of the mesh defining
the 3D object.
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Watermarking based on automatic translation: due to the redundancy exis-
tent in natural language, there is a lot of choices for an automatic translator.
Furthermore, the authors of [84] defend that the automatic translators have
so many errors, that the inaccuracies due to their use to embed information
would be somehow masked.

Watermarking TCP/IP protocols: in [123] a method is proposed that em-
beds information in the IP identification and TCP initial sequence number
headers.

Watermarking of maps: an interesting utility of watermarking was intro-
duced in [83], where the contour lines of maps are parametrized in order to
hide information which enables a fingerprinting application.

1.3. Requirements

Once some of the applications of data hiding and the contents suitable for
being watermarked have been explored, one can wonder which characteristics
should be fulfilled by a good data hiding scheme. Fortunately, there seems to
be some consensus in the literature [147, 90, 136, 135, 32, 56, 64, 11, 16], and
following are the most representative of them:

Payload: the number of bits to be hidden is lower-bounded for each appli-
cation.

Computational cost: the complexity of the algorithms should be limited, in
order to be implementable. Depending on the application, this requirement
will be more pressing in the embedder or in the decoder. Furthermore, some
applications could have to be run in real-time.

Imperceptibility: this is probably one of the most obvious and yet impor-
tant. From the begining of digital data hiding, it was clear that the wa-
termarked signal should be perceptually indistinguishable from the original
one. In this way, the embedding process would not undermine the value of
the watermarked product. This constraint is sometimes deliberately bro-
ken, e.g. when the watermark is inserted in thumbnail images, since it tries
to allow the user to see the image before buying it, but not to provide a
good enough quality, thus forcing the purchase [147].

Robustness: it is usually understood as the ability of a data hiding scheme
to survive attacks such as noise addition, compression, filtering, cropping,
rotation, rescaling, amplitude modifications, etc.
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Security: it is usually related with the ability of a data hiding scheme to
protect some secret parameter (sometimes the information-hiding code), in
such a way that an attacker can not use it to modify the watermark or
create falsely watermarked contents (forgeries).

Detectability: in some applications, such as steganography, the presence
of the watermark should not be detectable, so the watermarked signal is
required to be statistically indistinguishable from the original [135, 120].

We would like to remark that these requirements are usually colliding [16, 120].
For example, if the payload is increased, the perceptibility of the watermark will
be also increased or the robustness will decrease; similarly, for a given payload
and imperceptibility constraints, the most robust schemes will be those using
complex (so computationally expensive) channel-codes. Nevertheless, this is not
always the case: if the attacker does not know the sent message and the payload
is increased, the system will be generally more secure (see Chapter 4 for a further
discussion about it).

Therefore, as a conclusion to this section we can say that the characteristics of
the application will determine the balance among the general requirements which
best suit our problem.

1.4. Data hiding terminology

In this section we will introduce some basic data hiding concepts which will
help us to introduce the state-of-the-art schemes studied in this work.

1.4.1. Blind vs. Non-Blind Data Hiding

Some of the firstly proposed methods for digital data hiding were based on
the availability of the original signal at the receiver; due to this characteristic,
they are named non-blind algorithms. Obviously, they needed an extra storage
capability which is not generally available, and implied a scalability and security
problem (the database of original signals should be secure against attackers trying
to access it).

Therefore, methods which did not required the original content, i.e. blind
methods, are widely favored and studied in the literature, even when their per-
formance is generally worse, since the original host signal is usually considered
as an unknown interference by the decoder (although known by the embedder).
Furthermore, the presence of the original signal could help in the design of coun-
termeasures against geometric attacks.
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1.4.2. Detection vs. Decoding

In most data hiding applications the output of the receiver is an estimate of
the hidden message. Nevertheless, this is not always the case. For example, in
ownership claim or authentication scenarios the output should be a measure of the
certainty about the presence of the watermark, not an estimate of it. Therefore,
this is a binary hypothesis problem (is the watermark present, or not?) usually
named detection problem, as opposed to the aforementioned multiple hypothesis
problem, i.e. when the hidden message has to be estimated, which is termed
decoding problem. Following this nomenclature, the receiver is typically named
detector or decoder, respectively. Due to their different nature, the measures used
to quantify the goodness of data hiding schemes also differ for both scenarios.

In the detection problem, the figures of merit are the probability of false alarm
Pfa and the probability of missed detection Pm, defined as the probability of
deciding that the watermark is present when it is actually not, and the probability
of deciding that the watermark is not present, when in fact it is, respectively; the
joint representation of both quantities is the Receiver Operating Characteristic
(ROC). Another figure of merit could be the Kullback-Leibler distance between
the unwatermarked contents and the watermarked ones.

In the decoding problem the goodness of a scheme is measured by the proba-
bility of error, i.e. the probability of mistaking the sent symbol when estimating
it at the decoder; when the symbols are binary the Bit Error Rate (BER) is
defined. Some works in the literature, such as [115], focus on the probability of
mistaking the sent message, defining the Message Error Rate (MER).

1.4.3. Spread-Spectrum vs. Side-Informed Data Hiding

The first attempts to consider the data hiding problem as a communications
problem were based on the Spread-Spectrum principle, meaning the addition of a
low-powered signal, termed spreading sequence, modulated by the information to
be sent, in a number of features of the original content. Spread-Spectrum com-
munication techniques cover a wide range of methods which are typically used in
noisy channels; nevertheless, when talking about Spread-Spectrum in data hiding
it is usually understood that the watermark does not try to cancel the interfer-
ence due to the original host signal, but just survives it. Even when both additive
and multiplicative Spread-Spectrum data hiding schemes were proposed in the
literature (see for example [56] and [17]), in this work we will focus only on the
additive ones (Add-SS). For Add-SS the decoder is usually based on the compar-
ison of the correlation between the received signal and the spreading sequence
with a threshold, although this strategy is optimal only in the Gaussian case (see
[93] for a generalized version, based on the Generalized Gaussian distribution).
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As it was previously explained, in state-of-the-art data hiding schemes, the
receiver does not access the original non-watermarked content. If this lack of
knowledge of the original is considered as noise, as it is the case for Spread-
Spectrum methods, and given that the power of the watermark is significantly
reduced compared with that of the original host, a huge host interference is
produced, which leads to a very small capacity of the system, so spreading is
necessary to tackle this interference.

Nevertheless, the complete original signal is known by the embedder before
encoding the information and it knows how the decoding is going to be performed,
so, is it possible to take advantage of this knowledge by the encoder to improve the
trasmission?. This question was positively answered by Chen and Wornell [31, 32]
and Cox et al. [57], stating that the data hiding problem can be interpreted as
a communication with side information at the encoder; this paradigm is usually
termed side-informed data hiding.

Chen and Wornell rescued an old result by Costa [50], who showed that for
the case of i.i.d. Gaussian state channel (host signal) non-causally known by
the encoder and unknown by the decoder, and i.i.d. Gaussian noise channel
independent of the state channel, the capacity coincides with that obtained for
the i.i.d. Gaussian noise channel without state channel (or equivalently, when
this state channel is known by the decoder).

Despite of its evident importance, the main problem of Costa’s scheme is that
it is based on random coding, so its complexity makes its implementation infea-
sible; in fact, Chen and Wornell also proposed in their paper [32] the Distortion-
Compensated Quantization Index Modulation (DC-QIM) method for canceling
the host interference. The basic procedure of DC-QIM involves the quantization
of a given host signal using a multidimensional quantizer selected from a finite set
by the message to be embedded. A fundamental feature is that the watermarked
signal is obtained by adding back to the quantized host signal the quantization er-
ror scaled depending on an optimizable parameter. This distortion compensation
is what makes DC-QIM equivalent to Costa’s scheme, as a proper choice of the
parameter is known to yield the non-blind achievable rate under additive white
Gaussian distortion independent of the host [32, 50]. Chen and Wornell also gave
the first proposal to put DC-QIM into practice with Distortion-Compensated
Dither Modulation (DC-DM), a particular case in which the set of quantizers
are dithered (shifted) versions of a basic one. Due to the implementation and
design issues associated to multidimensional quantizers, this basic quantizer usu-
ally relies on a lattice, which most of the times for practical implementations is
the Cartesian product of scalar uniform quantizers. DC-DM based on uniform
scalar quantization is straightforward to implement and more easily amenable
to analysis than other more complex settings. A number of additional works
have also aimed at building practical methods based on Costa’s result. Among
them we have the Scalar Costa Scheme (SCS) [64] and the Scaled Bin Encoding
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(SBE) [106] —which are completely equivalent to DC-DM with uniform scalar
quantizers—, the continuous periodic functions for self-noise suppression (CP-
SNS) [139], and others. Due to their nature, these methods are also known as
quantization-based and host-rejecting data hiding methods.

Finally, we would like to remark that in a recent paper Erez et al. [70] showed
that the capacity of Additive White Gaussian Noise (AWGN) channels can be
achieved using lattices and lattice encoding and decoding (as a less computa-
tionally demanding alternative to maximum likelihood decoding; read 2.5 for a
further discussion on this topic) when the number of dimensions goes to infinity,
independently of the distribution of the state channel, as far as the lattices verify
some asymptotical conditions.

1.4.3.1. Intuitive insight

In this section we will try to provide an intuitive insight of the advantages of
side-informed methods over those based on spread spectrum. Figure 1.1 plots the
codewords related to different messages in the space of original and watermarked
signals;3 it shows one of the main differences between both of them: whereas
spread spectrum just defines a codeword for each symbol, for side-informed meth-
ods a set of codewords is related to each symbol, in such a way that the embedder
has more freedom to choose the codeword, equivalently the watermark, that bet-
ter fits to the host signal.

X

(a)

X

(b)

Figure 1.1: a) Spread-Spectrum data hiding codewords. There is just one code-
word for each transmitted symbol (represented by different shapes). b) Side-
Informed data hiding codewords. The embedder can choose the codeword used
to convey a given symbol from a set of possible codewords (figures with the same
shape). In both cases, the number of possible symbols is 4.

3Although the space of original host signals and the space of watermarked signals could differ,
we will assume that they are the same. This assumption does imply any loss of generality, since
a more general case including both spaces could be considered.
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The advantages of side-informed methods are easily understood if one thinks
of watermarking the original host signal X in Figure 1.1. For Spread-Spectrum
the codewords (especially those represented by the circle and the hexagon) are
really distant from the host signal. Given that the embedder pushes the host
signal towards the desired codeword, and taking into account that the length
of this push is upper-bounded due to the imperceptibility constraint, the water-
marked signal will be still far from the codeword we want to transmit. In fact, it
could happen that the watermarked signal were closer to another codeword than
to that we wanted to transmit, yielding a decoding error even when the water-
marked signal were not attacked; this effect is usually termed host interference.
On the other hand, for side-informed methods the embedder can choose from the
set of codewords related to the desired message that which is closer to the original
host signal, so the imperceptibility constraint will not be typically a problem and
the watermarked signal could be one of those codewords related to the desired
message, i.e. a figure with any shape can be reached verifying imperceptibility
constraint in Figure 1.1.4 In this way the interference due to the original host
signal, also known as host interference, is reduced. Summarizing, the host inter-
ference experienced by side-informed methods is lower than that corresponding
to spread spectrum based ones, in such a way that the former techniques improve
the performance of the latter.

Following the previous reasoning, one could think that the probability of mis-
taking the sent symbol of side-informed methods could be even larger than that
of the spread-spectrum based ones for a certain level of channel noise, since the
number of neighbors is increased. In this way, it was an old belief that scalar
DC-DM with uniform quantizers (equivalent to SCS) could be outperformed by
Add-SS when high levels of channel noise are considered [65]; nevertheless, it was
recently showed by Pérez-Freire et al. that this is not the case when the DC-DM
Maximum Likelihood decoder is taken into account [129].

1.4.4. Private vs. Public Key Data Hiding

Most data hiding schemes use a key to encode and decode the hidden infor-
mation; usually this key is private,5 i.e. only the embedder and decoder shares it,
since its knowledge could make easier the design of attacks attempting to remove
the watermark. Even when this problem could be avoided by the design of public

4As it will be discussed later, this strategy is not the optimal one in general, and the attacker
could prefer to stay in the midway from the original host signal to the codeword in order to
reduce the embedding distortion.

5Sometimes in the literature, private data hiding is more generally defined as those data
hiding schemes where “a mechanism is envisaged that makes it impossible for unauthorized

people to extract the information hidden within the host signals”, including non-blind techniques
(extracted from [16]); nevertheless, in this case we preferred to follow the definition given in
[89], to clearly distinguish private data hiding from non-blind data hiding.
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data hiding schemes, where the decoding key is publicly available, these seem to
be a utopia, and only some pioneering and simple works have been published in
this field (see for example [89]).

1.4.5. Symmetric vs. Asymmetric Data Hiding

Most data hiding methods belong to the so-called category of symmetric
schemes, i.e. those algorithms whose embedding and detection keys are the same;
this means that disclosure of the detection key implies a total break of the system,
allowing pirates to forge contents at their will. Moreover, the estimation of the
detection key is possible by means of oracle-like attacks if a detector is available
to the attacker, as it occurs in a great variety of data hiding applications. This is
one of the reasons why researchers put their efforts on the design of asymmetric
schemes, i.e. those schemes in which the embedding and detection keys do not
need to be necessarily the same, in such a way that the impact of attacks reveal-
ing the detection key is reduced at a great extent. This and other advantages of
asymmetric data hiding schemes are discussed in [78]: in this paper, four asym-
metric watermarking methods are analyzed and unified in such a way that the
detection function may always be written as a quadratic form. The main con-
clusion is that, although its robustness is worse than that of symmetric schemes,
the security level can be improved because we are passing from linear detection
functions to quadratic ones, thus increasing the complexity of oracle-like attacks
(see [75] for a further discussion); this complexity may be progressively increased
by the use of n-th order detection functions [77].

1.5. Outline

After presenting the data hiding problem, in the next chapter we will introduce
the framework and state-of-the-art methods.

Robustness is the main topic of Chapter 3. There, the robustness of DC-DM
against several kind of attacks is analyzed. A new version of the well-known sen-
sitivy attack is introduced, showing its effectiveness not just for spread-spectrum
methods, but also for a wide range of existing methods. Finally, a game-theoretic
approach is proposed to analyze the performance of several methods when both
the attacker and the decoder follow a smarter strategy than additive white Gaus-
sian noise together with a minimum distance decoder; also related to this game-
theoretic approach is the optimization of the worst case additive attack for scalar
DC-DM, which concludes Chapter 3. The materials presented in this chapter can
be found in [133], [46], [43], [40], [41], [42], [45], [44] and [130].
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The other major subject of this thesis is security; to its analysis is com-
pletely devoted Chapter 4. After a brief overview of the historical evolution of
watermarking security, some definitions and an information-theoretic measure of
security are proposed. Using this measure, the security of spread spectrum and
Costa’s scheme is analyzed, and compared with that of DC-DM (which is not
part of this thesis). The bulk of this chapter has been already published in [161],
[39], [38] and [127].

A minor, but also interesting, part of this thesis is that exposed in Chapter 5.
There, we delve in the way of achieving capacity in dirty paper schemes: it
is not enough to just consider channel coding, but source coding must be also
performed. A practical method (previously introduced in the literature) where
this statement was considered in the design stage, was adapted in this thesis to
a data hiding scenario, showing its gain over just channel-coding-based methods.
The materials presented in this chapter are based on those in [47].

Although the previous chapters are mainly focused on theoretical questions,
we have also paid attention to practical problems, and in Chapter 6 a water-
marking application oriented to checking the integrity of the images of a video
surveillance system is proposed.

Finally, in Chapter 7 we present the conclusions and future research lines of
this thesis.



Chapter 2

Notation and Methods
Description

2.1. Notation

We will denote scalar random variables with capital letters (e.g., X), and their
outcomes with lowercase letters (e.g., x). The same notation criterion applies to
random vectors and their outcomes, denoted in this case by bold letters (e.g.,
X, x). We assume without loss of generality that the host signal is modeled by
a zero-mean random vector Xo = (Xo

1 , · · · , Xo
L1

)T . If necessary, these particu-
lars can always be achieved by subtracting any non-zero mean from the host,
and by using an arbitrary bijective transformation from the original arrangement
of the host signal samples to a unidimensional one. Before embedding we ap-
ply a pseudorandom permutation Π(·) to Xo; this permutation depends on a
secret key Θ.1 The permuted host X , Π(Xo) is partitioned into Lb subvectors
Xj , (XL2·(j−1)+1, · · · , XL2·(j−1)+L2)

T , for j = 1, · · · , Lb, and assuming for nota-

tional simplicity that L2 , L1/Lb is integer. Apart from the security increase due
to the uncertainty that this permutation procedure causes to an attacker unaware
of the key, an important side advantage is that of facilitating the analysis. This
is due to the fact that the pseudorandom selection of the elements in each sub-
vector Xj approximately grants their statistical independence. This hypothesis
of approximate independence usually holds true for natural signals, as long as L2

is not of the same order as L1.

The watermarked signal Y will be obtained from the host signal X, the infor-
mation message b to be conveyed and the secret key Θ. We will assume, without

1As it was previously explained in Section 1.4.5 the embedding and detection keys could be
different, namely Θe and Θd, for the asymmetric methods; nevertheless, given that most of the
data hiding methods considered in this work are symmetric, and due to notational simplicity, we
have decided to drop the secret key subindex. It will be explicitly written only if it is necessary.
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Figure 2.1: Data hiding scheme.

loss of generality, that b = (b1, · · · , bLb
)T is a P -ary vector, with bj taking values

uniformly in {0, · · · , P − 1} for j = 1, · · · , Lb. A particular symbol bj will be
embedded using the subvector Xj to get Yj, i.e. Yj = Xj + Wj, where Wj is
the watermark.

The imperceptibility of the differences between X and Y has to be guaranteed
by means of a perceptual analysis of the host signal previous to the embedding
operation. This procedure is intrinsically dependent on the type of host signal in
question. Due to this fact, we will consider henceforth that the host is a multi-
media signal given in a certain domain of interest. The only requirement is that
the domain chosen is suited to compute a perceptual mask γ(X), taking into ac-
count human perceptual features. We assume in the following that the maximum
energy for an unnoticeable modification of the corresponding host signal sample
Xi is proportional to γ2

i .

Decoding is accomplished by the receiver after the watermarked signal Y has
undergone an attack channel, denoted by the addition of the vector N, so the
received signal will be given by Z = Y + N. The attack channel is sometimes
modeled by the transition probabilites A(z|y) [122]. Since the watermark depends
on the perceptual mask, the decoding operation will typically need such mask.
Nevertheless, in most cases the original host signal is not available at the decoder,
so an estimate of γ(X) has to be performed, based on the received signal Z, i.e.
γ(Z) ≈ γ(X). Generally, this estimate is quite good, since the received signal
should be perceptually indistinguishable from the original one.

2.2. Distortion measures

Even when the perceptual mask is used, a distortion measure must be defined
between the instance of the original host signal x and the corresponding water-
marked signal y, i.e., dist(x,y), to compare the distortion introduced by different
schemes; this measure should be based on perceptual criteria (as those proposed
in [160]), but most of times more manageable, although less perceptually suited,
functions are used, such as the Mean Square Error (MSE). Furthermore, as all
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subvectors are obtained in the same way, notice that we will only need to focus
our attention on one arbitrary subvector for analytical purposes. In particular,
note that the average host signal power in each partition will tend to be ap-
proximately constant as L2 increases. Denoting this value as Dh, and using the
intra-partition independence assumption, we can write

Dh ≈ D
(j)
h =

1

L2

j·L2
∑

i=(j−1)·L2+1

σ2
Xi

, j = 1, · · · , Lb, (2.1)

where σ2
Xi

, Var{Xi} and D
(j)
h denotes the average host signal power in the j-th

partition; similarly, for the watermark signal power

Dw ≈ D(j)
w =

1

L2

j·L2
∑

i=(j−1)·L2+1

σ2
Wi

, j = 1, · · · , Lb. (2.2)

In order to quantify the distortion introduced by the channel a distortion
measure must be defined between y and z, i.e., dist(y, z). Following the afore-
mentioned reasons a perceptual measure should be used, but most times MSE is
preferred for the sake of simplicity. In this way, recalling that the elements of the
L2-length subvectors are pseudorandomly chosen through the permutation Π(·),
we may also assume that the samples in Nj are mutually independent, with diag-
onal covariance matrix Γj = diag(σ2

N(j−1)·L2+1
, · · · , σ2

N(j−1)·L2+L2
), j = 1, · · · , Lb,

so the channel distortion Dc can be then defined in a similar fashion as the em-
bedding distortion, i.e.,

Dc ≈ D(j)
c =

1

L2

j·L2
∑

i=(j−1)·L2+1

σ2
Ni

, j = 1, · · · , Lb. (2.3)

Although the previous distortion measure quantifies the differences between
y and x, in the literature there are also examples of measures computing the
distortion between x and z (see, for instance [64, 118]). The former approach was
chosen for trying to distinguish more clearly the embedding distortion from that
due to the attack; furthermore, the attacker does not know the original signal, so
he/she is limited to use this kind of measures (between y and z) when computing
the distortion due to his/her attack.

Other MSE-based measure frequently used for images is the Peak Signal to
Noise Ratio (PSNR), which compares signals x and y through

PSNR(x,y) , 10 log10

(

L1 · Lum2
max

∑L1

i=1(xi − yi)2

)

, (2.4)

where both x and y are given in the spatial domain, and Lummax is the maximum
value achievable by xi for 1 ≤ i ≤ L1, corresponding to white (in an 8-bit
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representation, Lummax = 255). The PSNR could also be applied to measure the
differences between y and z (PSNR(y, z)), or x and z (PSNR(x, z)). PSNR(x,y)
is frequently used in image watermarking applications, and for large values of L2

it can be straightforwardly translated to Dw (and PSNR(y, z) to Dc).

Last, we will find it useful to introduce the watermark-to-noise ratio as
WNR , Dw

Dc
, that relates the power of the embedding and channel distortion,

establishing a working point similar to the signal-to-noise ratio (SNR) in commu-
nications, and similarly the document-to-watermark ratio as DWR , Dh

Dw
.

2.2.1. On the MSE measures and perceptual masks

The distortion measures based on the mean square error (MSE) have some
criticizable points; for example, this kind of measurement would in principle allow
to either concentrate all the attacking distortion on a single sample of Y or spread
it all over the vector. In fact, many authors advocate the use of more realistic,
perceptual-based measures, for instance [80, 26, 162, 159].

In this section we will try to illustrate these problems by comparing different
distorted versions of the image Lena, all of them with the same distortion power
but different perceptual effect. In Figure 2.2 we can see the original image, a
version distorted with noise shaped by a mask computed in the Discrete Cosine
Transform (DCT) domain (based on [160] and [6]), another version distorted with
noise shaped by a mask computed in the spatial domain (computed based on the
gradient of the image [107]), and a freehand modified version. Since the last 3

verify 10 log10(
||x||2

||y−x||2 ) = 19.11 dB, if the MSE were a good perceptual distortion

measure, the modification should be similar for all them; nevertheless, their per-
ceptual distortions are completely different, indicating that MSE measures are
not suitable for setting up distortion embedding constraints. On the other hand,
the result of computing the perceptual distortion measure proposed by Watson
in [160] between the original host signal and the distorted ones is quite more
meaningful: when the version distorted with noise shaped by the DCT mask is
taken into account the result is 7.05, but when considering the spatial mask this
increases to 30.46; finally, with the free hand modified version the distortion rises
up to 60.20, showing the perceptual modifications.

In any case, it should be remarked that the Watson perceptual distortion
measure is computed in the DCT domain. In that sense, the first distorted image
(where the noise is shaped by a mask computed also in the DCT domain with
a technique similar to that used by the measure) somehow has an advantage,
as it produces a lower value of this perceptual distortion, over the version with
spatially masked noise. This peculiarity is due to the fact of being based both
Watson measure and the noise of the first distorted image on the same masking
effects, while different masking criteria are being considered in the computation
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(a) (b)

(c) (d)

Figure 2.2: (a) Original image. (b) Image distorted by noise shaped with the
DCT mask. (c) Image distorted by noise shaped with the spatial mask. (d)

Image freehand distorted. In the last 3 cases 10 log10(
||x||2

||y−x||2 ) = 19.11 dB.

of the spatially masked noise. In order to clarify this last point, in Figure 2.3
enhanced versions of the masks are plotted for both cases, showing the differences
between them. Finally, we would like to remark that the perceptual analysis of
multimedia contents is still an open question, and considerable work remains to
be done.

Despite the reasons exposed in this section, we will undertake all subsequent
analyses using MSE, as this criterion has been the most employed in the literature
so far for the sake of tractability and comparisons. In any case, both the embedder
and attacker may try to partially relieve the intrinsic inconveniences of MSE
in order to comply with the usual requirement of minimal perceptual impact.
Assuming the adequacy of the perceptual mask, it is clear that one way to meet
this condition is to perceptually shape the noise signal, such that its variance at
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(a) (b)

Figure 2.3: Perceptual masks of Lena. (a) Computed in the DCT domain.
(b) Computed in the spatial domain.

each dimension is proportional to the corresponding allowable perceptual energy.

2.3. Additive Spread-Spectrum Embedding and

Decoding

In Add-SS the watermark does not try to cancel the interference due to the
host signal, but it is just based on the addition of a pseudorandom spreading
sequence to the original host signal. Most of times, the symbols bj, j = 1, · · · , Lb

belong to a binary alphabet, which is mapped to {−1, +1}, in such a way that

wi = −(−1)bjγisi, for i = L2 · (j − 1) + 1, · · · , L2 · j, and j = 1, · · · , Lb, (2.5)

where s is the spreading sequence, which depends on the secret key Θ, and γ

a non-negative mask. The decoding is usually based on the comparison with a
threshold of the cross-correlation of the received signal Zj and the corresponding
spreading subsequence sj, i.e.

B̂j =

{

0, if sT
j · Zj =

∑L2·j
i=L2·(j−1)+1 si · Zi < 0

1, otherwise
, (2.6)

where sT
j denotes the transpose of sj. Be aware that this decoding strategy, which

is based on the minimum distance criterion, is the optimal one only if both the
host signal and the channel noise are Gaussian and independent and identically
distributed (i.i.d.), |si| = |sk|, and γi = γk, for all i, k ∈ {L2 ·(j−1)+1, · · · , L2 ·j},
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with j = 1, · · · , Lb. Following, the probability of mistaking the j-th bit is given
by

P (B̂j 6= Bj) = Q





∑L2·j
i=L2·(j−1)+1 γi · s2

i
√

∑L2·j
i=L2·(j−1)+1(σ

2
Xi

+ σ2
Ni

)s2
i



 (2.7)

where Q(x) , 1√
2π

∫ ∞
x

e−
τ2

2 dτ .

In order to reduce the loss in performance due to the host signal, a number
of techniques were proposed aimed at reducing the interference due to the host
signal by using linear filtering. For example, in the spatial domain case the
received signal z could undergo a linear filtering operation as a way of reducing
the host-interference power at the decoder. This can be represented by means of
a space-varying, noise-independent filtering. Wiener filtering [92] is included in
this category, since the host signal power usually is much greater than the noise
power (at least if the attacked signal is to remain valuable); therefore, Wiener
filter’s coefficients will not be modified in a significant way by the addition of
noise. We can represent this situation by a L1 × L1 matrix that will be denoted
by H, so that the filtered host image would become xf , Hx.

The performance achieved by the decoder described in (2.6) can be improved
by considering some weights βi, i ∈ {1, · · · , L1}, yielding

b̂j =

{

0, if
∑L2·j

i=L2·(j−1)+1 βi · si · Zi < 0

1, otherwise
. (2.8)

The derivation of the optimal value of β will be given in Section 3.5.3.

On the other hand, for the detection problem the watermarked signal is writ-
ten as

Yi = Xi + γisi, for i = 1, · · · , L1, (2.9)

so the minimum distance based detection function (similarly to that shown in
(2.6)), is now given by

l(Z) =

L1
∑

i=1

si · Zi, (2.10)

in such a way that a detector will determine that the watermark is present when-
ever l(Z) > η, with η a threshold which will be fixed as a function of the false
alarm or missed detection probabilities. Again, the minimum distance criterion
will be the optimal one only if both the host signal and the channel noise are
i.i.d. Gaussian distributed and γi = γk, for all i, k ∈ {1, · · · , L1}.

Nevertheless, some works in the literature modelled the host signals as fol-
lowing a given probability distribution in a certain domain, in such a way that
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the performance of the system can be improved by optimizing the decoder for
that distribution. This is the case of [93] and [17], where the host signal in the
block Discrete Cosine Transform (DCT) domain and full-frame Discrete Fourier
Transform (DFT) domain is modelled by a Generalized Gaussian and Weibull dis-
tribution respectively. The optimal detector in the first case, which was obtained
in [93] and will be used in Section 3.4, is given by

l(Z) =

L1
∑

i=1

βci

i (|zi|ci − |zi − γisi|ci) , (2.11)

where ci is the shape parameter of the Generalized Gaussian distribution cor-
responding to the i-th coefficient, βi = 1

σXi

(Γ(3/ci)/Γ(1/ci))
1/2 (both of them

are estimated following a Maximum Likelihood (ML) criterion), and γi is the
watermark strength for the aforementioned coefficient.

2.4. Basic concepts about lattices

In the next section the embedding and decoding of DC-DM based on lat-
tices [49] will be studied. This calls for some basic concepts about these mathe-
matical structures which are introduced next.

A lattice Λ is a discrete subgroup of the Euclidean space R
n determined by a

set of basis vectors

v1 = (v11, v12, · · · , v1n),

v2 = (v21, v22, · · · , v2n),
...

vn = (vn1, vn2, · · · , vnn),

(2.12)

that can be arrayed in the so-called generating matrix M,2

M =











v11 v12 · · · v1n

v21 v22 · · · v2n
...

...
. . .

...
vn1 vn2 · · · vnn











. (2.13)

2Although in this work we will assume that the number of vectors vi will be n, examples are
available in the literature where the number of composing vectors m is lower than n (see [49]).
Nevertheless, the latter can be just considered as a particular case of our approach, where some
components of n−m vectors are set to infinity, i.e., just a degenerated version of the proposed
approach.
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Using this matrix, the lattice Λ is defined as

Λ , {x ∈ R
n : x = ξTM, for any ξ ∈ Z

n}, (2.14)

and its Gram matrix as A , MMT , where T denotes transpose, verifying
det(Λ) , det(A). At sight of (2.13) and (2.14), one may realize that any lin-
ear code can be thought of as a lattice code.

A coset of Λ in R
n is any translated version of it, i.e., the set x + Λ is a coset

of Λ for any x ∈ R
n [70], where x is called coset representative. The fundamental

Voronoi region of Λ ⊂ R
n, denoted by V(Λ), is a set of minimum Euclidean norm

coset representatives of the cosets of Λ, in such a way that every x ∈ R
n can be

uniquely written as

x = QΛ(x) + (x mod Λ), (2.15)

where

QΛ(x) , arg min
λ∈Λ

||x − λ||, (2.16)

QΛ(·) is the minimum Euclidean distance quantizer, and

x mod Λ , x − QΛ(x) ∈ V(Λ), (2.17)

is the modulo-Λ reduced version of x;3 therefore we can write V(Λ) , R
n mod Λ.

Taking into account the symmetries introduced by (2.14), is straightforward to
see that QΛ(−x) = −QΛ(x) and (−x) mod Λ = −[x mod Λ].

Some figures of merit of lattices are listed below:

The volume V (Λ)

V (Λ) ,

∫

V(Λ)

dx. (2.18)

The second moment per dimension σ2(Λ)

σ2(Λ) ,
1

n

∫

V(Λ)
||x||2dx

V (Λ)
. (2.19)

The normalized second moment G(Λ)

G(Λ) ,
σ2(Λ)

V (Λ)2/n
=

1

n

∫

V(Λ)
||x||2dx

V (Λ)1+2/n
. (2.20)

3Be aware that the quantization region boundaries, which are produced by the ties in (2.16),
must be arbitrarily but systematically broken.
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The normalized second moment G(Λ), which is invariant to scaling and rotation
of the lattice, is always greater than 1

2πe
, the normalized second moment of an

infinite-dimensional sphere. Taking into account that G(Λ) takes value 1/12 when
Λ = Z

n, i.e. when the Voronoi region is a n dimensional hypercube, the shaping
gain is defined as gs(Λ) = 10 log10(1/(12 · G(Λ))), whose maximum value is 1.53
dB.

It was shown in [165] that, as the dimension increases, lattices exist whose
normalized second moment goes to 1

2πe
, i.e. their Voronoi region V(Λ) approaches

a sphere. This result was used in [70] to show that the capacity of the Additive
White Gaussian Noise (AWGN) channel can be achieved by lattice-based schemes,
even for an arbitrarily distributed state channel, which is known to the encoder
but not to the decoder.

2.5. Distortion-Compensated Dither Modula-

tion Embedding and Decoding

We describe next the implementation of DC-DM based on lattices, general-
izing Chen and Wornell’s proposal [32] to account for perceptual constraints as
done in [132]. We restrict our presentation to any of the L2-dimensional subvec-
tors inside which the host signal samples can be assumed independent, dropping
the subindex j in the sequel for notational simplicity. Let us assume that the in-
formation symbol b is hidden using DC-DM inside the host X. Then, we denote
by

E , Qb(X) − X, (2.21)

the quantization error resulting from quantizing X with the quantizer Qb(·) cor-
responding to the b-th symbol, which is based on a minimum Euclidean distance
criterion. The watermarked signal Y is then obtained as

Y = X + αE = Qb(X) − (1 − α)E, (2.22)

The distortion-compensation parameter α, 0 < α ≤ 1, is an optimizable variable
akin to the one in Costa’s paper. The component (1−α)E may be termed as self-
noise, since it is caused by the watermarking process itself due to the distortion
compensation. As we will see in Section 3.1.2.1, performance improvements are
obtained by using α < 1, i.e., allowing a certain degree of self-noise.

Dither modulation means that all the quantizers Qb(·) are just shifted versions
of a basic lattice quantizer QΛ(·). The offset for obtaining each of these quantizers
is a dither vector v(b) that depends on both the secret key Θ and the message
to be sent b. Then, the quantizer Qb(·) can be put as

Qb(X) = QΛ (X − v(b)) + v(b). (2.23)
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When the minimum distance among the shifted versions of the basic lattice is
maximized, the basic lattice can be seen as a shifted sublattice of the union of its
shifted versions, yielding a nested lattices structure.

Without loss of generality, and assuming hereafter that all embedded symbols
are equally likely, we will focus our analysis on any given symbol b. The opti-
mal decoding criterion that minimizes the information symbol error rate is the
Maximum Likelihood (ML) decision given by

b̂ = arg max
b∈{0,··· ,P−1}

fZ|B(z|b), (2.24)

where fZ|B(·|·) denotes the pdf of the received signal Z, when the transmit-
ted symbol is B. The main drawback of this approach is that it requires prior
knowledge about the host signal probability density function (pdf). Also, the
ML approach to DC-DM decoding can be too costly since we have to take into
account fXi

, the sent symbol and the dither in order to compute fYi
. Therefore,

simplifications to it are desirable. One such simplification is lattice decoding.
Lattice decoding rules can be seen as operating over variables that are reduced
modulo-Λ, in such a way that the best lattice decoding strategy, usually termed
ML lattice decoder or also noise-matched lattice decoder [70], can be written as

b̂ = arg max
b∈{0,··· ,P−1}

fZmod|B(zmod|b), (2.25)

where Zmod = Z mod Λ is the modulo-reduced version of the received signal
Z. Nevertheless, in general this strategy still needs knowledge about the channel
noise and host signal distributions, so even more simplified decoding strategies are
used; in fact, probably the most used strategy is the so-called Euclidean Lattice
decoding or Minimum (Euclidean) Distance Lattice Decoding [70], which is given
by

b̂ = arg min
b∈{0,··· ,P−1}

||Z − Qb(Z)|| = arg min
b∈{0,··· ,P−1}

||Zmod − Qb(Zmod)||. (2.26)

We would like to remark that both (2.25) and (2.26), are not optimal in general,
since the modulo reduction operation is obviously information-lossy. Neverthe-
less, Erez and Zamir showed in [70] that (2.25) and even (2.26) can approach
the capacity of a power constrained AWGN channel, as long as Λ verifies some
constraints.

In any case, (2.26) is the strategy extensively used in the literature due to its
simplicity (see for example [32, 64, 132], and [20] for an unidimensional projected
version).
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2.6. DC-DM with Uniform Scalar Quantizers

and Repetition Coding

As mentioned above, the simplest and more widespread implementation of
DC-DM is the one by means of uniform scalar quantizers [32, 137, 19, 64, 33]. In
this case QΛ(·) may be defined as the quantizer whose quantization centroids are
given by the points in the lattice Λ = PΛ′, with Λ′ , (∆1Z, ∆2Z, · · · , ∆L2Z)T .
We will impose the criterion that the dither vectors v(b) are such that the dis-
tance between the closest centroids of the quantizers corresponding to any two
different symbols is maximized. This just means that, for instance, v(b) =
b ·(∆1, · · · , ∆L2)

T +d, where d is a key-dependent vector deterministically known
to both encoder and decoder. This strategy increases the robustness of the em-
bedding by placing the centroids as far away as possible. Also, the resulting
symmetry allows to assume an arbitrary embedded symbol b for the analysis, as
we will see later.

Notice that, for L2 > 1, this particular choice of the dither vectors amounts
to using a repetition code. It is well known that, even though it is useful in many
practical situations (e.g., see [137, 19, 33]), this channel coding strategy is not the
optimal one. It is pertinent to note that an empirical study on the concatenation
of repetition coding for SCS (DC-DM) with near-optimal turbo codes was given
in [64]. From the results in that work, it is possible to conclude that the con-
catenation of turbo codes and repetition is quite close to the capacity limit for
Gaussian channels at low embedding rates. Then, the appeal of this scheme lies
in the fact that it presents evident advantages from the complexity point of view
yet keeping quite a good performance. This result adds an interesting practical
perspective to the analysis of DC-DM with repetition coding.

In order to keep the exposition simple we will only study the case P = 2 (i.e.,
binary), but the approach we will follow can be extended for arbitrary alphabet
sizes. For the binary case, the quantization centroids for Qb(·) will be given by
the shifted lattice Λb = 2Λ′ + b · (∆1, · · · , ∆L2)

T + d, for b ∈ {0, 1}.

The use of scalar lattices inherently introduces an amplitude-limited embed-
ding distortion. Since we can write (2.21) as E = (v(b) − X) mod Λ, it follows
that E will be uniformly distributed over V(Λ) when v(b) is a deterministic vec-
tor if and only if X mod Λ satisfies the same condition (uniform condition). For
typical continuous distributions this will be the case if σXi

≫ ∆i for all i. Due
to perceptual constraints, for most watermarking scenarios the uniform condition
will approximately hold, and hence we will assume hereafter that σXi

≫ ∆i for
all i, and so that Ei ∼ U(−∆i, ∆i].

Noticing that the watermark signal is given by W = Y − X = αE, it is
clear that its energy per dimension will be σ2

Wi
= E{W 2

i } = α2∆2
i /3. According
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to the perceptual mask assumed in Section 2.1, we can achieve the maximum
unnoticeable embedding distortion by choosing ∆i to be proportional to γi.

According to the preceding exposition, the samples in Z can be assumed to
be mutually independent, so we can expand (2.24) as

b̂ = arg max
b∈{0,1}

L2
∏

i=1

fZi|B(zi|b)

= arg max
b∈{0,1}

L2
∏

i=1

∫ ∞

−∞
fYi|B(zi − ri|b)fNi

(ri)dri,

where fYi
(·) and fNi

(·) are the probability density functions (pdf) of the inde-
pendent random variables Yi and Ni, respectively. But, as it was said in the
previous section, lattice decoding strategies are extensively used for the sake of
simplicity. In our case, the decision will be based on the statistics z̃i ,

zi−Q0(zi)
∆i

,
i = 1, · · · , L2, where Q0(zi) is the i-th component of Q0(z). From the way it is
constructed, it is clear that z̃i ∈ (−1, 1]; this leads to considering modulo-2Z

L2

vector reductions, for which the result belongs to (−1, 1]L2 . Also, the normaliza-
tion in the definition of z̃i is reasonable if we assume that the channel noise is
perceptually shaped, as in that case its variance will be roughly proportional to
∆2

i .

Let f ˜Z
(z̃) denote the pdf of Z̃. Then, the ML lattice decoder will choose b̂

according to the rule

b̂ = arg max
b∈{0,1}

f ˜Z|B
(z̃|b). (2.27)

As we shall see in Section 3.1.1 a performance analysis requires to determine
the distribution of the noise in the decision statistics, which we tackle next. Let
us define the total noise (also known as modulo-lattice equivalent noise) random
variable as

Ti ,
−(1 − α)Ei + Ni

∆i

. (2.28)

Recalling that if X,Y are two random variables related by Y = aX, their pdfs
satisfy fY (y) = |a|−1fX(y/a), and that the pdf of the sum of two independent
random variables is the convolution of the respective pdfs, we can write

fTi
(ti) =

∆2
i

(1 − α)
[fNi

(ti∆i) ∗ fEi
(ti∆i/(1 − α))] , (2.29)

where ∗ denotes convolution, and Ei ∼ U(−∆i, ∆i], for all i = 1, · · · , L2.
Now, the modular total noise random variable U is simply defined as U , T
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mod 2Z
L2 .4 Consequently, the support of Ui will be the interval (−1, 1], for all

i = 1, · · · , L2.

Considering (2.28), the pdf of Ui can be written as

fUi
(ui) =

{ ∑∞
l=−∞ fTi

(ui − 2l), if ui ∈ (−1, +1]
0, otherwise

.

(2.30)

Alternatively, fUi
(ui) can be written as

fUi
(ui) =

∆2
i

(1 − α)
[fNi

(ui∆i) ⊛2 fEi
(ui∆i/(1 − α))] , (2.31)

with ⊛2 the circular convolution over (−1, 1], which includes the aliasing effect
evident in (2.30). For any two arbitrary pdfs fB(x) and fC(x) this operation is
defined as

fB(x) ⊛2 fC(x) ,

{ ∑∞
l=−∞

∫ ∞
−∞ fB(y − 2l)fC(x − y)dy, −1 < x ≤ +1,

0, otherwise
,

A similar technique has been used in [64] to show the independence of the quanti-
zation error and the host signal when a uniform dither is used. In [64] the role of
the circular convolution is played by the sampling of the characteristic function
with period π. This sampling has an aliasing effect, since it is equivalent to the
convolution in the time domain with an impulse train with period 2.

When the symbol b is embedded, it is clear from (2.22) that the decision
statistics will take the form

z̃i =
Qb(xi) − (1 − α)ei + ni − Q0(zi)

∆i

mod 2Z = (ui + b) mod 2Z, (2.32)

for all i = 1, · · · , L2, or, in short, z̃ = (u + b1) mod 2Z
L2 , where 1 is a vector of

L2 ones. Equivalently, u = (z̃− b1) mod 2Z
L2 . Then, the decision rule in (2.27)

is equivalent to deciding b̂ = 0 whenever

fU(z̃) > fU
(

(z̃ − 1) mod 2Z
L2

)

, (2.33)

and b̂ = 1 otherwise.

2.6.1. An Approximation to the ML Lattice Decoder

In [72] Forney et al. provided useful approximations to the pdf of a modulo-
reduced —or aliased— Gaussian pdf. The same approach can be followed to

4Note that U is not the same as Z̃, since the latter will depend on the sent bit.
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write an approximation of the pdf of the modular total noise random variable Ui,
defined in (2.30) and needed in (2.33) for ML lattice decoding.

Recall from (2.29) that, for Ni ∼ N (0, σ2
Ni

), the pdf of Ti is just the convo-
lution of a Gaussian with zero-mean and variance σ2

Ni
/∆2

i , and a uniform pdf in
(−(1 − α), +(1 − α)]. Pursuing the sort of approximations proposed in [72], it is
possible to conclude that:

- For σTi
≪ 1, the contributions in the summation in (2.30) for l 6= 0 are

negligible. The most significant part of the pdf of Ti is concentrated in the
interval (−1, +1], so the aliasing effect can be neglected. Therefore fUi

(ui)
can be well approximated by fTi

(ti).

- For σTi
≫ 1, it is possible to consider that Ti follows a Gaussian distribution

with σ2
Ti

= σ2
Ni

/∆2
i + (1 − α)2/3. Now the pdf fUi

(ui) becomes nearly
constant due to the strong aliasing. Observe that since

∑

l fTi
(ui − 2l)

in (2.30) is periodic if we do not restrict ui to lie on (−1, +1], it makes
sense to expand it in terms of its Fourier series and then truncate it to this
interval. Forney et al. suggested approximating this function by keeping
the low-frequency terms of this expansion.

The computation of the Fourier series expansion of a periodic function on a
lattice can be performed by using the dual of that lattice [49]. As in our case Ui

is obtained by means of the lattice 2Z, the corresponding dual lattice is simply
given by Z/2, and so the desired pdf can be expanded as [72]

fUi
(ui) =

1

2

∑

k∈Z

exp (−π2σ2
Ti

k2/2)ej2πkui/2,

−1 < ui ≤ 1. (2.34)

The DC and fundamental frequency terms in this expansion correspond to k = 0
and k = ±1, respectively. Keeping just these two terms in (2.34), we can write

fUi
(ui) ≈ 1

2

(

1 + 2e(−π2σ2
Ti

)/2 cos(πui)
)

, for −1 < ui ≤ 1. The usefulness of this

approximation is illustrated in Section 3.1.3, where a geometrical interpretation
of lattice ML decision regions is provided.

2.6.2. Euclidean and Weighted Euclidean Distance-based
Lattice Decoder

Despite the complexity reduction from ML decoding to ML lattice decoding
and the further diminution brought about by Forney’s approximation, it is desir-
able to seek even simpler decoding strategies. In this section we discuss lattice
decoding based on the Euclidean distance.
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When each dimension is normalized by its quantization step, Euclidean lattice
decoding can be written as

b̂ = arg min
b∈{0,1}

‖∆−1(z − Qb(z))‖2, (2.35)

where ∆ , diag(∆1, · · · , ∆L2). This approximation is tantamount to choosing
the b whose associated shifted lattice Λb yields the minimum normalized quan-
tization error. Minimum distance decoding of DC-DM was in fact part of the
original proposal of DC-DM in [32]. It is also used in [137, 33], and in [64] for
the equivalent Scalar Costa Scheme (SCS).

To see the relationship between this decoding strategy and ML lattice decod-
ing, let S , {±1}L2 . Recalling the definition of z̃, it is clear that for b = 0,
‖∆−1(z − Qb(z))‖ = ‖z̃‖, while for b = 1, ‖∆−1(z − Qb(z))‖ becomes ‖z̃ − s‖,
where s ∈ S is such that ‖z̃ − s‖ is minimum. Putting this together, we can
rephrase the decoding rule in (2.35) as deciding b̂ = 0 if

‖z̃‖2 < min
s∈S

‖z̃ − s‖2, (2.36)

and b̂ = 1 otherwise.

But now, the vector s minimizing the norm in the right hand side of (2.36)
is such that it also satisfies (z̃ − s) = (z̃ − s) mod 2Z

L2 . Thus, the parallelism
between (2.36) and (2.33) is clear if one considers that the modulo-2Z

L2 operation
maps the set S onto vector 1, i.e., for all s ∈ S, (z̃ − s) mod 2Z

L2 = (z̃ − 1)
mod 2Z

L2 .

In fact, the two decoding rules would be equivalent if the modular total noise
U had Gaussian independent and identically distributed (i.i.d.) components. It
is convenient to examine under which conditions this latter property would hold.
First, in order to neglect overlaps of the shifted versions of fTi

in the construction
of fUi

in (2.30), it is required that σTi
≪ 1 for all i. Second, for the Ti to be i.i.d.

Gaussian, a necessary and sufficient condition would be that α = 1 (i.e., there is
no self-noise) and that the noise components Ni are independent Gaussian, with
variances proportional to ∆2

i for all i. Notice that in general these conditions will
not be satisfied, so Euclidean distance decoding will be suboptimal.

When those conditions are not met, it is useful to modify minimum distance
decoding while still retaining a relatively simple decoding approach by compar-
ison with ML lattice decoding. To this end, we introduce a weighted Euclidean
distance, for which the decoding rule becomes

b̂ = arg min
b∈{0,1}

{

(z − Qb(z))
T ∆−1B∆−1 (z − Qb(z))

}

,

(2.37)
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where the weighting matrix B is defined as

B , diag(β1, · · · , βL2).

The purpose of these weights is to introduce additional degrees of freedom to
improve decoding in practice when minimum distance decoding is just too far
away from optimality. We will show in Section 3.1.2.2 how a proper design of
the parameter vector β allows to improve decoding when additional information
about the channel noise is available. Also, it should be taken into account that
the normalization by ∆i in (2.35) does not entail any loss of generalization or loss
in performance, since its effect could be canceled by βi in any case. Whenever no
optimization is attempted, βi = 1 will be set for all i. In this case (2.37) becomes
equivalent to (2.35).

2.7. Spread Transform Dither Modulation Em-

bedding and Decoding

In their seminal paper Chen and Wornell [32] also proposed the Spread-
Transform Dither Modulation (STDM), which is based on the projection of a
number of features of the original host signal x on a scalar domain. The projected
signal xpj

corresponding to the j-th subvector is simply obtained as xpj
= sj

Txj,
with j ∈ {0, · · · , Lb} where sj is the j-th projecting vector, which depends on
the secret key Θ. Then, when the symbol bj is transmitted, the watermarked
signal in the projected domain is given by ypj

= QP∆jZ(xpj
− vj(bj))+ vj(bj) with

j ∈ {0, · · · , Lb}, i.e. the projected coefficient is watermarked using DM (without
distortion compensation). Since an infinite number of vectors yj exist verifying
sT
j yj = ypj

, it is customary to choose yj such that the watermark wj = yj − xj

has minimum Euclidean norm; this results in yj = xj +(ypj
−xpj

) ·sj/||sj||2. Typ-
ically, the projection vector sj is pseudorandomly generated in a key-dependent
fashion; thus, it is no longer imperative to make the base dither d0 pseudoran-
dom. Therefore, in order to minimize the power of the watermark, the dither
d0 is usually restricted to take values in {−∆/2, +∆/2}, since in that case, for
L2 → ∞, Dw → ∆2/(4 · L2 · ||sj||2), while if d0 were uniformly distributed over
(−∆, +∆], Dw = ∆2/(3 ·L2 · ||sj||2) (see [132] and [20] for a further discussion on
this topic). Hereafter we will denote this method as Scalar STDM (SSTDM), in
order to distinguish it from the generalized versions that we will just introduce.

First of all, we can talk about the Spread Transform-Scalar Costa Scheme (ST-
SCS) by Eggers and Girod [64], where the distortion compensation is performed.
Interestingly, as discussed in [132] and [118], if the projection rate L1/Lb is such
that L1/Lb ≫ 1, as it often occurs in robust data hiding, then performing no
distortion compensation is nearly optimal, i.e., the optimal α goes to 1, so ST-SCS
using the optimal distortion compensation parameter would approach SSTDM.
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Furthermore, Pérez-González et al. proposed their Quantized Projection (QP)
method [132], which is based on the projection of the original host signal x
to a lower dimensional domain, not necessarily the unidimensional one, where
it is quantized using DC-DM, including the distortion compensation; a similar
approach is studied in [120]. Therefore, we will define the projected host signal
as xp = STx, where S is a projection matrix of size L1 × L3, L3 ≤ L1; now
the L3-dimensional vector xp plays the same role that x played in DC-DM, i.e.,
it is divided in Lb subvectors of size L4 (defined as L4 , L3/Lb), each of them
conveying the j-th symbol, with j ∈ {1, · · · , Lb}, in such a way that

ypj
= (1 − αj)xpj

+ αj[QΛj
(xpj

− vj(bj)) + vj(bj)], j ∈ {1, · · · , Lb}. (2.38)

Nevertheless, an infinite number of vectors y exists verifying STy = yp, so some
additional criteria should be established to choose one of them; it is customary
to select y such that the watermark w = y − x has minimum Euclidean norm,
so using the Moore-Penrose pseudoinverse we obtain5

y = x + S(STS)−1(yp − xp). (2.39)

Concerning decoding, the optimal strategy is given by

b̂ = arg max
b∈{0,··· ,P−1}Lb

fZ|B(z|b). (2.40)

Nevertheless, as it was previously discussed for DC-DM, some simplifications are
mandatory in order to obtain practical decoding strategies, even if they imply
a loss in performance. The first one is to consider the projected version of the
received signal, so decoding can be implemented as

b̂j = arg max
bj∈{0,··· ,P−1}

fZpj
|Bj

(zpj
|bj), j ∈ {1, · · · , Lb}; (2.41)

we remind that the projection operation could be information lossy, so considering
only the projected received signal is not optimal in general. Nevertheless, in most
cases this simplification is not enough, and a minimum Euclidean distance lattice
decoding is usually followed, i.e.

b̂j = arg min
bj∈{0,P−1}

||Zpj
− Qbj

(Zpj
)|| = arg min

bj∈{0,P−1}
||Zpmodj

− Qbj
(Zpmodj

)||, (2.42)

where Zpmod = Zp mod Λ. As it was discussed in Section 2.5, the modulo
reduction is information lossy as well, and the minimum distance criterium is not
optimum in general, so (2.42) will be far from being the optimal strategy in most
scenarios. Once again, due to its manageability, this strategy is the most used
in practical implementations. In the same way, SSTDM is probably the most

5Making a proper choice of vj(bj) it is also possible to reduce the watermark power by 4/3
(see [132] and [20] for a further discussion on this topic).
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popular of these methods (see [65], [28], [103], and references therein) due to its
simplicity, and despite showing worse performance than the generalized versions;
furthermore, SSTDM can be built upon an existing Add-SS scheme, since the
projection (also referred to as spreading) stage is essentially identical for both.

Finally, be aware that DC-DM could be seen as a particular case of this
generalized approach to STDM (hereafter just STDM), where S = IL1×L1 is the
identity matrix of size L1.

2.7.1. Advantages of STDM

In order to recall some well-known advantages of STDM we will assume that
the columns of S are orthonormal, i.e. STS = IL3×L3 , Wp is i.i.d. with variance
σ2

Wp
, and N is i.i.d. with variance σ2

N ; we will denote by σ2
W the variance of the

watermark in the original domain, and by σ2
Np

the noise variance in the projected

one. Taking into account that σ2
W = 1

L1
Tr(E{WWT}), where Tr(·) is the trace

operator, we can write

σ2
W =

1

L1

Tr(S(STS)−1E{WpW
T
p }(STS)−1ST )

=
σ2

Wp

L1

Tr(SST ) =
σ2

Wp

L1

Tr(STS) =
L3σ

2
Wp

L1

,

and

σ2
Np

=
1

L3

Tr(ST E{NNT}S) =
σ2

N

L3

Tr(STS) = σ2
N ,

in such a way that
σ2

Wp

σ2
Np

= L1

L3

σ2
W

σ2
N

, i.e. the watermark to noise ratio is increased

by a factor L1/L3 (the projection rate) in the projected domain, while keeping a
small number of nearest neighbor codewords [32]. This gain afforded by spreading
is the responsible for the robustness of STDM methods in presence of additive
noise attacks [65], [132] and quantization attacks [20], and it is shared by Add-
SS. Of course, owing to its host interference rejection properties, STDM performs
much better than Add-SS in face of the previous attacks. Furthermore, this gain
implies that the generalized version of STDM is more robust against additive
noise attacks than both unidimensional DC-DM and DC-DM based on uniform
scalar quantizers and repetition coding, as reported in [64] and [132].

However, as shown in [20], unlike Add-SS, SSTDM (and STDM in general)
is very vulnerable to gain (i.e., amplitude scaling) attacks, a weakness that has
sparked recent research in gain-invariant data hiding methods (see for example
[134] and [12]).
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In addition to this increase in the effective WNR, an interesting feature of
STDM is that for large values of L1/L3 and a wide range of additive noise dis-
tributions, performance can be analyzed by considering an equivalent Gaussian
noise with the same first and second order moments. This simplification, which is
a consequence of the Central Limit Theorem (CLT), considerably facilitates the
analysis and enables the optimization of some parameters which improve decod-
ing, as investigated in Section 3.1.2.2. See [20] for an in-depth discussion upon
the validity of the CLT approximation in this context.

A further advantage of STDM-like strategies is that it is more complicated to
design attacks which render the attacked samples close to the decision boundary
for them than for DC-DM. This said, there are other simple attacks which can
be much more detrimental for STDM-like methods than for DC-DM, as it will be
shown in Section 3.3.



Chapter 3

Robustness

In this chapter we will analyze the robustness of DC-DM with uniform scalar
quantizers and repetition coding when the watermarked signal goes through some
typical channels; for data hiding, these channels are, for example, additive noise,
coarse quantization, or the cropping attack. We have chosen to study this simple
version of DC-DM for several reasons:

It is probably the most used side-informed scheme in practical implementa-
tions; nevertheless, despite of its extensive use, most results showed in this
thesis are novel, since little has been said before about the robustness of
that scheme.

It is amenable to analytical expressions, which are not available for other
schemes.

STDM methods using uniform scalar quantizers and repetition coding (as
the original scalar proposal of STDM [32]) can be analyzed by slightly mod-
ifying the proposed methodologies. In fact, when analyzing the cropping
attack in Section 3.3 we will firstly focus on scalar STDM, and then will go
to a more general framework (multidimensional STDM), trying to obtain a
method robust to this attack.

Furthermore, due to the importance of oracle-like attacks, we will also study
the robustness of some state-of-the-art data hiding detection methods against
a novel version of these attacks: the Blind Newton Sensitivity Attack (BNSA).
Among the analyzed methods is the Quantized Projection based Detection (QPD)
[126], proposed by Pérez-Freire et al., which could be considered as the counter-
part of DC-DM with uniform scalar quantizers and repetition coding for the
detection problem. We will also discuss that the BNSA can be also applied to
data hiding decoding schemes, by replacing the multiple hypothesis test by a
binary one.

37



38 3.1. Additive Noise

In order not to just consider static attackers and decoders, but also active and
smart ones, some results showing the strategies that should be followed from a
Game Theoretic point of view are introduced, for the cases of Add-SS, DC-DM
and STDM methods. The performance achieved by following these strategies are
somehow upperbounded by the mutual information between the received signal
and the sent symbol; this justifies the importance of some experimental results
[130] which compute that mutual information for the worst additive attack (from
a Information Theoretic perspective), for the case of scalar DC-DM with uniform
quantizers (equivalent to SCS); these experimental results also allow the com-
putation of the optimal distortion compensation parameter α in that scenario,
which will be compared with those obtained by Costa and Eggers.

3.1. Additive Noise

Although DC-DM with uniform scalar quantizers is a suboptimal side-
informed scheme, it is well known that it has an achievable rate often accept-
ably close to the ideal limit [32, 64]. Nevertheless, performance analyses for the
probability of decoding error of DC-DM are scarce, and usually either incomplete
or inexact. Among previous attempts, we may cite first those ones devoted to
determine the decoding performance of DM, i.e., without distortion compensa-
tion [137, 33, 132]. Also, upperbounding strategies to DC-DM with repetition
coding were studied in [131], whereas an approximation to the bit error rate of
generic DC-QIM methods is also given in [32]. The main objective of this section,
which is mainly based on [46], is to provide a thorough analysis of DC-DM with
uniform scalar quantizers and repetition coding, presenting accurate theoretical
approximations and bounds to the bit error rate at the decoder. Building on our
analysis, we also propose enhancements on this standard scheme, both by means
of optimizable weights on the standard Euclidean-distance lattice decoder, and
by introducing a novel vectorial structure for the distortion-compensation param-
eter.

As it was done in Section 2.5, we restrict our presentation to any of the
L2-dimensional subvectors inside which the host signal samples can be assumed
independent, so the subindex j indicating the subvector will be dropped in the
sequel for notational simplicity.

3.1.1. Performance Analysis

Next, we will analyze the performance of binary repetition DC-DM in terms
of the bit error rate (BER) at the decoder output. In this section we will consider
only the unweighted minimum Euclidean distance approach to DC-DM decoding,
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i.e., B = IL2×L2 , where B was introduced in Section 2.6.2 and IL2×L2 denotes the
identity matrix of size L2, leaving to Section 3.1.2.2 the study of the effect of the
weights β.

Costa’s framework considers i.i.d. channel noise and signal (in our case wa-
termark), which naturally induces the same distortion compensation parameter
α for all dimensions. On the other hand, perceptual considerations motivate that
in our scheme the variances of both the channel noise and the watermark be
in general different for each of the dimensions. Although this setting suggests
a vectorial distortion compensation parameter α —i.e., dimension-dependent—,
for the sake of simplicity we will only deal with a scalar α in this section, and
explore the vectorial possibility in Section 3.1.2.1.

From (2.37) we can see that decoding is equivalent to quantizing z with both
the shifted lattice Λ0 and Λ1 and then assigning the value of the bit that yields the
smallest (in an Euclidean distance sense) normalized quantization error. Obvi-
ously, this is completely equivalent to quantizing (∆−1z) with (∆−1Λ0)∪(∆−1Λ1)
following also a minimum Euclidean distance criterion.

It can be readily seen that the probability of decoding error does not depend
on the actual embedded bit. Let us assume then that b = 0 is sent, so Z̃ = U.
Hence, taking (2.36) into account, an error happens whenever

||u||2 > min
s∈S

||u − s||2. (3.1)

The minimization in (3.1) is equivalent to seeking the closest centroid to u among
the shifted lattice corresponding to b = 1. The decoding region given by (3.1)
is a generalized octahedron [49] whose vertices are those vectors having only one
non-zero component with value ±L2/2.

Therefore, a decoding error will happen if and only if u lies out of this general-
ized octahedron. Due to the symmetry of the octahedron in all the orthants with
respect to the origin, it is reasonable to project the random variable U onto the
positive one, to construct U+

i , |Ui|, 1 ≤ i ≤ L2, and then proceed to determine
the probability of being closer to the vertex s1 , 1 ∈ S, than to the origin. This
probability is thus the probability of bit error, which can be written as

Pe = Pr{‖U+‖2 > ‖U+ − 1‖2} = Pr

{

L2
∑

i=1

U+
i > L2/2

}

.

(3.2)

The evaluation of this expression requires the probability density function (pdf)
of U+

i , 1 ≤ i ≤ L2, which is just

fU+
i
(u+

i ) ,

{ [

fUi
(u+

i ) + fUi
(−u+

i )
]

, if 0 ≤ u+
i ≤ 1

0, otherwise
,

1 ≤ i ≤ L2. (3.3)
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Figure 3.1: Gaussian noise modulo-lattice reduced for the unidimensional case.
a) Histogram when a given centroid is transmitted. All the circles are folded to
the same point after the modulo reduction. b) Noise’s histogram after modulo
reduction (before adding its components). c) Histogram of the noise absolute
value (before adding its components). d) Histogram of the noise absolute value
(after adding its components).

In Figure 3.1 the modulo-lattice reduction, and the projection onto the positive
orthant is illustrated for the unidimensional case.

Therefore, if we define the variable

R ,

L2
∑

i=1

U+
i , (3.4)

then from (3.2), the computation of Pe is equivalent to integrating the tail of the
pdf of R from L2/2 to L2.

Even though formula (3.2) allows us to determine the exact probability of
bit error, its computation is very expensive for large L2. This motivates the
proposal of two numerical approaches for its calculation, which are discussed in
Sections 3.1.1.1 and 3.1.1.2. On the other hand, neither formula (3.2) nor these
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practical methods provide closed-form expressions, making it difficult to extract
conclusions of theoretical value. For this reason, Sections 3.1.1.3 and 3.1.1.4 are
devoted to discussing analytical approximations and bounds respectively.

3.1.1.1. Beaulieu’s Approach

In this section, we adapt a technique proposed by Beaulieu [21] for computing
the tail probability of the summation of L2 i.i.d. random variables, as it occurs
in (3.2). This technique was already used in [132] to upperbound the bit error
probability of DM. Let ωl , 2πl

T
for any positive integer l, with T a large enough

real number, and let FU+
i
(ω) be the characteristic function of U+

i , given by

FU+
i
(ω) =

∫ 1

0

ejωufU+
i
(u)du. (3.5)

Then, the computation of Pe is made, following [21], as

Pe ≈
1

2
+

2

π

∞
∑

l=1
l odd

∏L2

i=1 |FU+
i
(ωl)| sin(

∑L2

i=1 φi(ωl))

l
, (3.6)

where φi(ω) is defined as φi(ω) , arg{FU+
i
(ω)} − ω/2, with arg(·) denoting the

four-quadrant phase. The main drawback of this method is that it is rather
computationally demanding, apart from the fact that it may present numerical
problems due to the large values that could be involved in the summation of a
truncated version of the series in (3.6). In Appendix B the expressions of the
functions required for computing (3.6) for a Gaussian channel noise are derived.

3.1.1.2. DFT Method

Since the U+
i in (3.4) are independent random variables, the pdf of R is just

the convolution of the pdfs of U+
i , 1 ≤ i ≤ L2. This computation can be efficiently

done in the Discrete Fourier Transform (DFT) domain. To that end, let ΦU+
i

,

DFTL2K

(

K · fU+
i
(k/K)

)

be the L2 ×K-point DFT of the sequence obtained by

sampling fU+
i
(τ) at τ = k

K
, with k = 0, · · · , K − 1. Using this definition it is

straightforward to write ΦR[m] =
∏L2

i=1 ΦU+
i
[m], m = 0, · · · , L2K − 1. Finally,

the discretized pdf of R is obtained using the Inverse Discrete Fourier Transform
(IDFT) as fR = IDFTL2K(ΦR), and (3.2) is computed as

Pe ≈
L2K−1
∑

k=
⌈

L2(K−1)+1
2

⌉

fR[k],
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where the limits of this summation stand for R = L2/2 and R = L2 in the
corresponding integral. The accuracy of the computation can be increased by
using a larger value of K, i.e., by sampling more finely the pdfs involved in the
calculation.

This technique resembles Beaulieu’s approach in that both of them work in a
transform domain. Nevertheless, the DFT method presents a much lower com-
putational cost, without any of the numerical problems shown by Beaulieu’s ap-
proach. This fact makes the DFT method an enticing approach to assess the
performance to any degree of accuracy required.

3.1.1.3. Central Limit Theorem-based Approximation

A third option consists in taking advantage of the independence of the random
variables U+

i in the summation (3.4) to invoke the Central Limit Theorem (CLT).
This result states that the distribution of R will tend to a Gaussian as L2 → ∞,
in which case we may approximate the probability of error as

Pe ≈ Q





L2

2
− ∑L2

i=1 E{U+
i }

√

∑L2

i=1 Var{U+
i }



 , (3.7)

where Q(·) was already defined in Section 2.3 as Q(x) , 1√
2π

∫ ∞
x

e−
τ2

2 dτ .

The main advantage of CLT-based approximation is that it gives a closed
expression for Pe, which can be exploited for analytical purposes (see Sec-
tion 3.1.2.2). Although this method to compute Pe is much simpler than the
previous ones, some remarks are due. First, for small values of L2 it could en-
tail problems in the convergence of R to a Gaussian. One factor that speeds up
convergence is the similarity between the distributions of the summands. Also,
and as discussed in [131], note that the process of building the one-sided distribu-
tions fU+

i
(u+

i ) may produce highly skewed pdfs whose convolution converges very
slowly to a Gaussian distribution. If this is the case, the Gaussian approximation
to Pe may underestimate the importance of the tails of fR(r).

Last, although analytical expressions of E{U+
i } and Var{U+

i } are available in
closed form when Ni follows a uniform distribution [37], in general the explicit
computation of these statistics may require numerical integration. Therefore, it
is recommended to use the DFT method for obtaining numerical results, as it
gives a higher degree of accuracy.
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3.1.1.4. Bounds on Pe

In this section we discuss several other known bounds on the bit error proba-
bility.

3.1.1.4.1. Erez and Zamir’s Bound

Erez and Zamir have recently proposed a method that can be accommo-
dated to upperbound the probability of error of binary DC-DM when per-
forming Euclidean lattice decoding —i.e., minimum distance decoding— un-
der Additive White Gaussian Noise (AWGN) channel distortion [70]. Let
W = V

(

{2Z
L2} ∪ {2Z

L2 + 1}
)

denote the region associated to a right decision,
i.e., Pe = Pr{U /∈ W}. Then, it is possible to write Pe ≤ Pr{T /∈ W}. Erez and
Zamir’s procedure may be used to construct an upper bound on the latter proba-
bility that depends on Dw, Dc, Λ and L2. In turn, this obviously upperbounds Pe.
Unfortunately, the bound turns out to be rather loose for our particular problem
(see Section 3.1.7); for this reason, we will omit the details of its implementation.

3.1.1.4.2. Union Bound and Nearest Neighbor Approximation

The classical union bound (UB) is based on adding the pairwise probability of
mistaking the transmitted centroid with each of its nearest neighbors correspond-
ing to a wrong decision. The possible overlaps of the error regions associated to
each of these error events are disregarded in this computation, and this is the rea-
son why it produces an upper bound. When the WNR is increased these overlaps
diminish, and so the bound gets closer to the true value. As in our implementa-
tion of DC-DM we are using uniform scalar quantizers, there are 2L2 nearest error
neighbors. Thus, assuming that the pdf of the channel distortion is symmetric,
the union bound may be computed as

Pe ≤ Punion = 2L2 · Pr{‖U‖2 > ‖U − 1‖2}

= 2L2 · Pr

{

L2
∑

i=1

Ui > L2/2

}

,

where the last probability can be obtained by means of any of the methods in
Sections 3.1.1.1–3.1.1.3, similarly to what is done with (3.2). Alternatively, for
L2 large enough, we can compute an approximation applying the Central Limit
Theorem. To this end, we just need to compute the variance of the zero-mean
random variable whose pdf is the circular convolution of the channel noise and
the self-noise. Note that due to the approximation implicit in the CLT, we can
no longer ensure that the result is a bound, but an approximation to the bound,
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which will be asymptotically good as L2 → ∞. This approximation is given by

Pe ≈ 2L2 · Q





L2

2
√

∑L2

i=1 Var{Ui}



 . (3.8)

In contrast to Section 3.1.1.3, if Ni is symmetric about the origin the involved
pdfs (i.e., those of fUi

(ui)) are also symmetric, so their convolution will converge
more quickly to a Gaussian distribution.

Following the previous guidelines for the union bound we may also approxi-
mate the bit error probability using the nearest neighbor distance sketched in [32].
The estimate therein assumes Quantization Index Modulation without distortion
compensation and additive white Gaussian noise. This result may be improved
by replacing the real Gaussian pdf with a Gaussian with variance the sum of
those corresponding to the channel noise and the self-noise, what yields

Pe ∼ Q





L2

2
√

∑L2

i=1 Var{Ui}



 . (3.9)

Following the discussion in [20] on the validity of the CLT, it is necessary
to check against empirical results all the CLT-based approximations and bounds
that we have given in Sections 3.1.1.3 and 3.1.1.4.2. This task is undertaken in
Section 3.1.7.1.

3.1.2. Improvements on Standard DC-DM

In this section we introduce some improvements in the performance of the
DC-DM scheme studied so far. Specifically, we will deal with the distortion
compensation parameter as well as with the decoding weights.

3.1.2.1. Study of the Distortion Compensation Parameter

The distortion compensation parameter α, may be used in two equivalent
ways. Namely, it may reduce the embedding power by a factor α2 for a fixed
lattice, or, alternatively, it may afford an expansion of the lattice by a factor
1
α

when the power of the watermark is kept constant. Interestingly, it can be
shown that both lead to the same bit error probability for a given WNR when
the power spectral density of the noise sequence is fixed, save for a multiplicative
constant. Therefore, although throughout this work we are using a fixed lattice,
we should be aware that, when the stated conditions are met, this is equivalent
to the expansion of that lattice for a fixed Dw.
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The determination of the distortion compensation parameter may be tackled
under a number of different optimization criteria. Obviously, these criteria will
in general lead to different values of α. Probably the simplest, but also one of
the most used, is the minimum mean square error (MMSE) criterion (see [73]).
This criterion was for instance used in [70]. We may also think of optimizing this
parameter depending on the bit error rate. The problem in this case is the lack
of closed-form expressions that would allow to face the optimization problem in
an analytical way. Following MMSE, the initial intention would be to minimize
∑L2

i=1 σ2
Ui

; however, due to the aliasing effect, this becomes an unsurmountable
problem. Considering that for large WNRs and large values of α the modulo
operation can be neglected, it is reasonable to address instead the minimization
of

ϕ(α) ,

L2
∑

i=1

σ2
Ti

=

L2
∑

i=1

{

σ2
Ni

∆2
i

+
(1 − α)2

3

}

=

L2
∑

i=1

{

α2ξi

3
+

(1 − α)2

3

}

, (3.10)

for a fixed ξi , σ2
Ni

/σ2
Wi

, i = 1, · · · , L2. Note that ξi can be regarded to as a
noise to watermark ratio for the i-th dimension. Function ϕ(α) above can be
easily seen to be minimized at

α∗ =
1

1 + 1
L2

∑L2

i=1 ξi

.

Alternatively, one may also consider using a different value of α for each
dimension. This yields a vector of distortion compensation parameters α ,

(α1, · · · , αL2), so (3.10) takes now the shape

ϕ(α) =

L2
∑

i=1

{

α2
i ξi

3
+

(1 − αi)
2

3

}

, (3.11)

where, as above, the noise to watermark ratio in the i-th coefficient, ξi, is kept
fixed. The vector of distortion compensation parameters that minimizes (3.11) is
given now by

α∗
i ,

1

1 + ξi

,

for all i = 1, · · · , L2. Clearly, ϕ(α∗) ≤ ϕ(α∗), since the first minimization is a
particular case of the second constrained to a vector with equal components.

It is possible to regard the distortion compensation effect of the vector case as
a Wiener filtering with matrix A∗ , diag(α∗). This is so because all the self-noise
elements corresponding to the components of α∗ are mutually independent, what
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implies a diagonal filter. In fact, similar solutions have been proposed by Yu et
al. in [164] from an information-theoretic point of view.

Finally, we would like to make some remarks. The performance improvement
achieved by replacing α with α is compatible with the gain due to using the
decoding weights in (2.37). Whereas α modifies the pdfs independently at each
dimension, we will see in the next section that β modifies the weighting of the
dimensions when they are considered together. This fact will be duly shown in
Section 3.1.7.2.

3.1.2.2. Derivation of the Improved Decoding Weights

We turn next our attention to the problem of optimizing the weights intro-
duced in (2.37). Recall that the objective of this approach is to improve the
performance of the minimum distance decoder using additional knowledge about
the channel distortion eventually available at the decoder.

Adapting the method followed in Section 3.1.1 to the decoder in (2.37), it
turns out that now Pe can be written as

Pe = Pr

{

L2
∑

i=1

βiU
+
i >

1

2

L2
∑

i=1

βi

}

,

which obviously reduces to (3.2) for β = 1. Taking into account that any ana-
lytical optimization of the weights requires the availability of a closed-form ap-
proximation to Pe, we will discuss here the minimization of (3.7) and (3.8) when
weights are introduced. Starting with the CLT-based approximation, which we
will see that it is very accurate for low values of WNR in Section 3.1.7, and under
the same assumptions as in Section 3.1.1.3, it is possible to write

Pe ≈ Ps1 = Q





1
2

∑L2

i=1 βi −
∑L2

i=1 βiE{U+
i }

√

∑L2

i=1 β2
i Var{U+

i }



 . (3.12)

Recalling that the Q(·) function is monotonically decreasing, it follows that Ps1

is minimized when its argument is maximized. Then, the improved decoding
weights can be found by differentiating the argument of Q(·) in (3.12) with respect
to βi, 1 ≤ i ≤ L2. Then, the decoding weights minimizing Ps1 are

β∗
i = K ·

(

1
2
− E{U+

i }
)

Var{U+
i } , 1 ≤ i ≤ L2, (3.13)

where K is an irrelevant positive real constant, since the weights vector can be
scaled without any impact on performance. Also, it is very interesting to note
that some of the β∗

i may be negative. This will happen when E{U+
i } > 1/2,
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which may occur for large distortions. The effect of a negative weight can be
interpreted as a swapping of the centroids assigned to each symbol.

As it can be inferred from (3.13), in order to compute the improved decod-
ing weights, knowledge of E{U+

i } and Var{U+
i } is required. Note that due to

the aliasing and truncation effects that show up in the construction of U+, this
information is not directly derivable from the first and second order moments of
the total noise random variable.

3.1.2.2.1. High WNR

As we will see in Section 3.1.7 (Figure 3.6), the CLT-based approximation
moves away from the empirical results as the WNR increases. In this case we can
consider to use the union bound (3.8) to compute the improved decoding weights,
since it is a better approximation to the Pe in the present scenario. Accordingly,
the function that we have to minimize now is

Pe ≈ Ps2 = 2L2 · Q





∑L2

i=1 βi

2
√

∑L2

i=1 β2
i Var{Ui}



 , (3.14)

which can be shown to be equivalent to the minimization of
∑L2

i=1 β2
i Var{Ui}

constrained to
∑L2

i=1 βi = G, for some arbitrary G. Applying Lagrange multipliers
we may write the optimization functional as

ϕ(β) =

L2
∑

i=1

β2
i Var{Ui} − λ

(

L2
∑

i=1

βi − G

)

. (3.15)

Differentiating it with respect to βi and equating to zero it is straightforward to
see that the minimum of (3.14) is obtained for

β∗∗
i = K

1

Var{Ui}
,

for 1 ≤ i ≤ L2 and any positive constant K. Interestingly, it is possible to show
analytically that for large WNRs β∗ will be nearly proportional to β∗∗, which
justifies the use of β∗ also for large WNRs in spite of the lossy approximation
employed for its computation.

Notice that, after the optimal weights for the CLT-based approximations have
been obtained, it is possible to resort to a more accurate computation of Pe (such
as the Beaulieu’s method or the DFT approach) by slightly modifying it to take
the weights into account. The improvements afforded by β∗ and β∗∗ will be
empirically shown in Section 3.1.7.2.
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3.1.3. A Geometric Interpretation of the Decoding Strate-
gies

Here we provide a geometric interpretation of the various decoding strategies
we have discussed, which will help to understand the role of the decoding weights
and the goodness of Forney’s approximation. For pictorial reasons, the case
L2 = 2 is considered here. First of all, we derive the ML decision boundary
based on Forney’s approach when σ2

Ti
is large. Noticing that from (2.33) the

true ML lattice decoding boundary is the locus of the points (u1, u2)
T for which

fU(u1, u2) = fU((u1 − 1) mod 2Z, (u2 − 1) mod 2Z), and making use of the
approximation in Section 2.6.1, we can conclude that in the positive quadrant
this boundary is approximately given by

φ =
{

(u1, u2)
T ∈ [0, 1] × [0, 1] :

(

1 + 2e−π2σ2
T1

/2 cos(πu1)
)

·
(

1 + 2e−π2σ2
T2

/2 cos(πu2)
)

=
(

1 − 2e−π2σ2
T1

/2 cos(πu1)
)

·
(

1 − 2e−π2σ2
T2

/2 cos(πu2)
) }

, (3.16)

with straightforward extensions to all other quadrants.

Figure 3.2 shows for the positive quadrant the true ML lattice decoder decision
region for b̂ = 0 (shaded area) and the approximate decision boundary given by
(3.16). The parameters of this plot are: σN1/∆1 = 0.4113, σN2/∆2 = 0.2530 and
α = 0.5, so σT1 = 0.5025 and σT2 = 0.3838. As it can be perceived, Forney’s
approximation gives a very good estimate of the real boundary. Figure 3.2 also
plots the decision boundaries that result using (2.37) with β = 1, and β =
β∗, which with the above parameters becomes β∗

1 = 1.5936 and β∗
2 = 3.9005.

Observe how the use of β∗
i leads to a linear approximation of the true lattice ML

decision boundary. Note however, that the ultimate purpose of the weights β∗ is
not to yield the best linear approximation of this boundary but to minimize an
approximation of the bit error probability.

3.1.4. Discussion about the Pseudorandom Choice of the
Partitions

Throughout this section we have been assuming that the samples comprising
the j-th host subvector Xj were pseudorandomly chosen. In this subsection
we will try to theoretically justify the use of such pseudorandom assignment to
minimize the overall Pe when L2 is large enough, starting from our CLT-based
approximations, and using the law of large numbers. Furthermore, a empirical
justification will be provided.
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Figure 3.2: Comparison of the decision regions for DC-DM (L2 = 2) obtained
using Forney’s approximation, the ML lattice decoder, and the Euclidean distance
decoder with β∗ and β = 1.

We will use in our proof the minimum weighted Euclidean distance lattice
decoding, i.e. (2.37), when the improved decoding weights β∗ computed in Section
3.1.2.2 are used; remember that we have shown that this β∗ can improve the
decoding. Therefore, using the CLT-based approximation and replacing (3.13)
in (3.12), we can write the probability of decoding error for the j-th hidden bit
hidden, P j

e , as

P j
e ≈ Q





√

√

√

√

j·L2
∑

k=(j−1)·L2+1

(

1
2
− E{U+

k }
)2

Var{U+
k }



 , j ∈ {1, · · · , Lb}. (3.17)

The overall probability of decoding error Pe will be just the average of all P j
e ,

j = 1, · · · , Lb, and it can be upperbounded using Chernoff bounding as

Pe ≤
1

Lb

Lb
∑

j=1

e
−∑j·L2

k=(j−1)·L2+1
γk/2

, (3.18)

with γk ,
(

1
2
− E{U+

k }
)2

/Var{U+
k }. Notice that, as γk > 0 for all k, the right-

hand side of (3.18) will be always lower than 1. Since the γk’s will be different for
each dimension, they can be thought as realizations of a mean-ergodic random
variable. Defining next θj ,

∑j·L2

k=(j−1)·L2+1 γk/2, the problem of choosing the best
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partitions can be approximately formulated as the minimization of

Lb
∑

j=1

e−θj (3.19)

constrained to

Lb
∑

j=1

θj =

Lb
∑

j=1

j·L2
∑

k=(j−1)·L2+1

γk/2 =

Lb
∑

k=1

γk/2 = K. (3.20)

This constrained optimization problem can be solved by building the func-
tional

ϕ(θ) ,

Lb
∑

j=1

e−θj − λ

(

Lb
∑

j=1

θj − K

)

, (3.21)

using the Lagrange multiplier λ. Differentiating (3.21) with respect to θj and
equating to zero, we get

∂ϕ(θ)

∂θj

= −e−θj − λ = 0, for all j = 1, · · · , Lb, (3.22)

and, consequently, the optimal θj has to be constant over all j = 1, · · · , Lb;
be aware that this result implies θj ≥ 0, so it is not neccesary to consider the
Kuhn-Tucker multiplier corresponding to that constraint in (3.21).

Equivalently

j·L2
∑

k=(j−1)·L2+1

γk = C, for all j = 1, · · · , Lb, (3.23)

for a given constant C. Invoking the law of large numbers, a simple way to achieve
this condition for a large enough value of L2 is by pseudorandomly choosing the
indices in xj. Therefore, accepting the limitations of the CLT-based approxima-
tion and the Chernoff bounding, the pseudorandom selection of the subvectors
seems to be a good choice for large values of L2.

Nevertheless, taking into account the last reasons, the former justification is
not so theoretically rigorous as it could be desirable, and an empirical justification
will be also provided.

With this aim, we will consider the particular case of applying DC-DM water-
marking to an image on the mid-frequencies of its 8×8-block DCT, the transform
used in the Joint Photographic Experts Group (JPEG) standard [3]. Moreover, we
will let the channel noise variance be proportional to the squared JPEG quanti-
zation step (quality factor QF = 80) in each dimension, being this noise uniform.
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Figure 3.3: Empirical and theoretical performance obtained with global vs.
frequency-dependent pseudorandom partitions, using DC-DM on the DCT do-
main with optimally weighted Euclidean distance decoding. L2 = 20, α = 0.4,
uniform noise, host image Lena 256 × 256, payload Lb = 1126 bits.

This quality factor is a scalar ranging from 0 (poor quality) to 100 (high quality)
used by some implementations of the JPEG compression algorithm to indicate
the quantization table. We have chosen this attack because it is assumed to have
a perceptually-based power distribution (as JPEG quantization steps stem from
perceptual considerations), although it does not follow the same power alloca-
tion as the watermark. We will consider two cases for defining the subvectors
Xj: global pseudorandom partitions (i.e., all available coefficients in the same
pool), and frequency-dependent pseudorandom partitions (i.e., each pool consists
of those coefficients with the same frequency indices that come from different
blocks); in both cases the permutation was changed at each realization of the
experiment.

This last strategy resembles the one used by Ramkumar and Akansu in [138] as
well as the parallel channels studied by Moulin [121] applied to the DCT domain.
In the former work, the data hiding capacity of compressed images is analyzed
by decomposing an image into Lb subbands using transform blocks, thus giving
rise to Lb parallel subchannels. Then, each symbol is only transmitted through a
specific subchannel. With that strategy, all the coefficients devoted to conveying
a certain symbol can be assumed to have the same noise statistics, differently to
what happens when the indices are chosen pseudorandomly.

In Figure 3.3 the improvement due to the use of global pseudorandom par-
titions is shown, choosing the mid-frequencies as in [93] and using the same
perceptual mask and attack as in Section 3.1.7.2. The theoretical results were
obtained using the DFT method. It is important however to note that a fixed
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subvector length has been assumed in this comparison, which clearly puts the
frequency-dependent scheme at disadvantage, because each subchannel will have
different host and noise statistics and, thus, different SNR’s. A solution to this
is to use subvector lengths that are also frequency-dependent, at the price of
needing additional knowledge about the channel at both embedder and decoder,
something that is not required when global partitions are used. Additionally,
global pseudorandom partitions may increase the entropy of the watermark and
hence the security of the system.

3.1.5. Comparison with STDM

In this section we will compare the performance of DC-DM with repetition
coding, with the STDM-like methods. As shown in [64] and later confirmed in
[132], STDM-like methods show superior performance than DC-DM in AWGN
channels as the repetition L2 (and, equivalently, the spreading factor L1/L3,
which coincides with L2 when L3 = Lb, i.e. when the embedding in the projected
domain is performed by a scalar quantizer) increases; this was already briefly
discussed in Section 2.7.1, showing the gain of L1/L3 in the effective WNR in
the projected domain, and is now experimentally confirmed in Figure 3.4 using
real images as host data. The watermark is embedded in the mid-frequency
coefficients of the 8× 8 block-DCT domain [93] with a fixed Peak Signal to Noise
Ratio (PSNR) of 40 dB, and uniform noise is added with standard deviation
proportional to the corresponding JPEG quantization step in each dimension
(quality factor QF=80). The figure also shows theoretical results, obtained using
the CLT method in Section 3.1.1.3 for DC-DM and [132] for SSTDM. We observe
a large gap between both methods for high PSNRs, but it is necessary to take
into account that α = 0.4 used in the plot is not the optimal one when the PSNR
of the attacked signal is close to 40 dB (large WNR). The optimal projection
parameters β∗ for SSTDM in Figure 3.4 will be derived in Section 3.5.5, even
though other optimization strategies are available (see for instance [87]).

3.1.6. Performance under Unforeseen Attacks

An interesting problem is posed by the performance analysis of DC-DM when
the attack is different than the one expected by both the embedder and the
decoder. We remind that the available information about the attack is exploited
by them to compute, respectively, the optimal distortion compensation parameter
and the optimal decoding weights. The general problem should be addressed from
a game-theoretic approach, trying to find the optimal attack and the optimal
encoding/decoding strategies, using a bit error rate payoff in our case. A first
approach to this problem will be introduced in Section 3.5.4, where the players
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Figure 3.4: Empirical and theoretical performance of DC-DM (α = 0.4) vs. scalar
STDM, watermarking the DCT domain of real images and attacking with additive
uniform noise; results averaged over twenty-two 256 × 256 images, with L2 = 20
(payload Lb = 1126 bits).

of the game are only the attacker and the decoder, whereas the encoder strategy
is fixed.

In any case, it is interesting to observe the performance degradation when
there is a mismatch between the actual attack and the one considered when op-
timizing the method. In Figure 3.5 experimental results for this case are shown
for a particular case in which DC-DM is applied to the Lena image in the spa-
tial domain, and the embedder and decoder expect uniform noise in the same
domain. However, the noise is added both in the spatial and DCT domains. In
order to set realistic conditions, the uniform noise in the DCT domain has, at
each coefficient, variances proportional to a squared perceptual mask computed
following Watson [160]. Although it can be verified that the energy distribution
of the corresponding inverse transformed noise in the spatial domain differs con-
siderably from the spatial perceptual mask, we may see that there is only a small
performance difference (in fact a gain) with respect to the ideal case where the
noise follows the expected distribution.

3.1.7. Empirical Results

In this section we will check the validity of our theoretical developments,
comparing the analytical results with empirical ones.
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Figure 3.5: Experimental performance of DC-DM in the spatial domain under
uniform additive noise applied in the spatial and DCT domain, with α = 0.4,
L2 = 20 and optimal decoding weight computed taking into account the noise in
the spatial domain (payload Lb = 1126 bits); results averaged over twenty-two
256 × 256 images.

3.1.7.1. Comparison of the Approximations and Bounds

Figure 3.6 shows the approximations and bounds in Section 3.1.1 versus the
outcomes of i.i.d. Montecarlo simulations. In this plot channel noise is additive
zero-mean Gaussian, the components of X and N are i.i.d., L2 = 10 and α
is optimized following Costa’s formula, i.e., α = αc , Dw/(Dw + Dc). We may
verify that the accuracy of the approximations given in Sections 3.1.1.1 and 3.1.1.2
is remarkable. The CLT-based approximation is excellent for low values of the
WNR, but, as the WNR is increased, it gets away from the true probability of
error. As it was explained in Section 3.1.1.3, this is due to the support of fU+

i
(u+

i )
being only positive, to the small value of L2 used in the experiment, and to the
increase in the skew-effect of the resulting pdf for large values of the WNR. Since
this approach underrates the importance of the tails of fR(r), the approximation
produces overly optimistic results.

On the other hand, the union bound gets closer to the empirical results when
the WNR increases. This is a consequence of the reduction of the probability
corresponding to the overlapped decision regions when the WNR grows. We
also have plotted the results of applying the CLT to compute the probability of
error with only one neighbor and then using the union bound, as described in
Section 3.1.1.4.2. In this case the pdf involved in the computation is symmetric
about the origin, so convergence to the Gaussian distribution is unaffected when
the WNR is increased. Note that both bounds approach the true probability
of bit error asymptotically as the WNR increases. The values predicted by the
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Figure 3.6: Comparison of the empirical BER vs. the different analytical and
numerical approximations and bounds for DC-DM under Gaussian noise. L2 =
10, α = αc. Synthetic host data.

approximation of Chen and Wornell are obviously parallel to those obtained when
both the union bound and the CLT are used (see Section 3.1.1.4.2). As it should
be expected, those values are clearly lower than the empirical results, since only
the probability of mistaking two neighbors is taken into account.

Finally, the bound by Erez and Zamir is not shown in Figure 3.6 because its
value is around 103. It is pertinent to remark here that even though this bound is
valid for any pair of nested lattices, it was designed to show the capacity-achieving
property of lattice decoding. Nevertheless, for that purpose, it is necessary that
the pair of nested lattices verify certain properties which fall short of being true
for the lattices used by DC-DM. This explains why such large values arise and
demonstrates how information-theoretic results cannot always be effortlessly ex-
trapolated to practical schemes.

3.1.7.2. Optimized Distortion Compensation Parameter and Im-
proved Decoding Weights

The next set of experiments were carried out by watermarking the image
Lena 256 × 256 in the DCT domain, using a perceptual mask proportional to
the perceptual thresholds proposed in [160] and [6]. The attack is uniformly
distributed with amplitude proportional in each dimension to the corresponding
JPEG quantization step for QF=80.

Figure 3.7 shows the performance improvements due to the use of the weights
β∗ and β∗∗ in the Euclidean distance decoder. The plot depicts the WNR needed
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Figure 3.7: DC-DM watermarking of the Lena 256× 256 host signal in the DCT
domain with uniformly distributed additive attack. WNR needed to achieve
Pe = 0.01 vs. L2 for α = 0.7, with different weightings on the Euclidean distance
decoder.

to achieve Pe = 0.01 with L2 ranging from 5 to 100, and clearly shows the im-
provement obtained when β∗ is used. The performance gain is already large at
L2 = 100, but the gap keeps increasing with L2. Nevertheless, the improvement
is not so large when β∗∗ is used. In order to explain this effect, consider that the
WNR’s studied are rather negative, and therefore that the CLT-based approx-
imation used for the computation of β∗ is clearly better than the union bound
plus CLT expression used for the computation of β∗∗ (see Section 3.1.1.4.2 and
cf. Figure 3.6).

Figure 3.8 shows the results obtained when α∗ and α∗ are used in conjunction
with β = 1 (i.e., no weighting), β∗ and β∗∗, for the case L2 = 10. A consid-
erable gain is achieved by using a vectorial distortion compensation parameter
α∗ instead of a scalar one, α∗. The improvement due to using β∗ and β∗∗ com-
pared to no weighting is also apparent. Note also that the weighting strategy
β∗ yields the best results for the whole range considered in this case. Finally, as
we have pointed out in Section 3.1.2.1, the use of a distortion compensation vec-
tor is compatible with the improved decoding weights, so the combination offers
improvements of about 2 dB over the standard embedding/decoding strategy.

In Figure 3.9 we compare ML lattice decoding versus Euclidean distance de-
coding weighted by β∗. The theoretical results for β∗ in that figure were com-
puted employing the DFT method. This plot clearly shows the near-optimality
of performing Euclidean distance decoding with our optimal weighting strategy,
since the results obtained are virtually the same than those obtained with ML
lattice decoding. This result can be explained (at least for small values of WNR,
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variance proportional to the squared JPEG quantization step (QF = 80), α = 0.5,
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where Forney’s approximation is valid) in view of the resemblance between the
decision regions used by these two decoders (see Section 3.1.3). It is interesting
to remark that, as the variance of the host signal is much larger than that of the
watermark, adjacent DC-DM centroids have similar probabilities, and then ML
lattice decoding approaches ML decoding.



58 3.2. DC-DM Performance under Coarse Quantization

3.1.7.3. Comparison with Miller et al.’s Trellis-based Embedding

We compare next DC-DM to the side-informed algorithm based on trellis
quantization presented in [115]. In order to undertake the comparison, we encoded
DC-DM using the cascade of an outer code, given by two serially-concatenated
codes [22] with global rate 1/4, with an inner 1/3 repetition code, obtaining the
same overall coding rate 1/12 used in [115]. The use of channel coding is necessary
in order to make a fair comparison, since the method in [115] inherently includes
an involved (source) code. Admittedly, the comparison will be dependent on the
particular codes used in each case, but we may get in this way an acceptable
perspective of the relative performance of both methods.

In order to set the same test conditions, DC-DM embedding is performed
with the same image and using the same DCT coefficients as in [115], and hence
the payload is also Lb = 1380 bits. Similarly, the same Watson-based perceptual
constraints [160] are taken into account, and the Watson measure due to the DC-
DM watermark is fixed to 27.20 as in [115]. Our experiments show that Pe ≈ 10−3

for DC-DM when the standard deviation of the additive noise is 8.5, marking the
region of the turbo-cliff in the iteratively decoded DC-DM scheme. For the same
noise power, Miller et al.’s method yields Pe ≈ 3.3×10−3. Thus, both techniques
exhibit similar performance under this very specific scenario.

3.2. DC-DM Performance under Coarse Quan-

tization

In this section we will analyze the performance of DC-DM when the water-
marked signal Y undergoes coarse quantization, which is quite a common unin-
tentional attack. Notice that we cannot deal with this particular attack using
the generic methods presented in Section 3.1, as in this case we cannot assume
the independence of the channel noise (actually the coarse quantization error).
Furthermore, our analysis will serve to show how to improve the performance of
DC-DM under this particular attack.

We assume next that a coarse quantizer with centroids given by the lattice δiZ

is applied to yi for all 1 ≤ i ≤ L2. The computation of the probability of decoding
error relies on knowing the probability mass function (pmf) of Zi. Notice that
this pmf will not only depend on the pdf of the host image, but also on that of
the watermark, which in turn depends on the transmitted bit b and on the dither
di. In order to obtain the desired probability we need the upper and lower limits
of the k-th coarse-quantization bin, which will be denoted by θ+

ik
, kδi + δi/2

and θ−ik , kδi − δi/2, respectively. So, the probability that Zi is equal to the k-th
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coarse-quantization centroid conditioned to the transmission of b is

Pr{Zi = kδi | b} = Pr{Yi ∈ (θ−ik , θ
+
ik

] | b}

=

∫ θ+
ik

θ−ik

fYi
(yi|b)dyi. (3.24)

We are interested in reformulating this integral in terms of Xi, what requires a
change of variable affecting the integration limits of the expression. This change
of variable is not evident, but it can be obtained in a straightforward manner.
First, notice that the DC-DM centroid corresponding to the symbol b and closest
to the upper limit θ+

ik
of the integral (3.24) is just Qb(θ

+
ik

), with Qb(·) defined

in (2.23). Then, considering the offset ρy(θ
+
ik
, b) , θ+

ik
− Qb(θ

+
ik

), it can be shown
that the corresponding offset with respect to Qb(θ

+
ik

) from the point of view of Xi

is

ρx(θ
+
ik
, b) ,

min{max[ρy(θ
+
ik
, b),−(1 − α)∆i], (1 − α)∆i}

(1 − α)
. (3.25)

Therefore, the upper limit when the integral in (3.24) is evaluated using fXi
(xi)

is just γ+
ik

(b) , Qb(θ
+
ik

) + ρx(θ
+
ik
, b). The lower limit γ−

ik
can be obtained similarly,

and then the desired probability can be put as

Pr{Zi = kδi | b} =

∫ γ+
ik

(b)

γ−
ik

(b)

fXi
(xi)dxi. (3.26)

This pmf plays a similar role as the pdf fTi
(·) in (2.30). Hence, the probability

of decoding error under coarse quantization can be obtained by applying to this
pmf the same modular strategy used in Section 3.1.1. Unfortunately, the resulting
expression is quite involved and it has to be computed numerically in practice.

Notice that the probability of error thus obtained will be in general dependent
on b. A side-effect of this dependence is that the weights optimization in Sec-
tion 3.1.2.2 is not valid for coarse quantization in general. Actually, the improved
decoding weights β∗

i will only be valid for symmetric settings. In section 3.2.2
we will compare the performance under coarse quantization using two kinds of
dithers. For the first one we choose di ∈ {±∆i/2}, for all i = 1, · · · , L2. Due to
symmetry, in this case the statistics for each dimension are independent of the
embedded bit, and the procedure to compute the decoding weights can still be
used. For the second one, di ∈ {0, ∆i} for all i = 1, · · · , L2, which does not give a
symmetric setting. With this choice, the statistics in each dimension do depend
on the embedded bit, thus making it impossible to derive the aforementioned
weights. Be also aware that the watermark power in both cases has not to be
the same. In fact, in the asymptotic case, when the host distribution goes to a
Dirac’s delta, the power of the watermark in the first case is ∆2/4, but in the
last one ∆2/2; in any case, with more realistic (in the sense of smoother) host
distributions the difference is not going to be so large.
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3.2.1. JPEG Compression

We may particularize the expression (3.26) for a real coarse quantization case
such as the one induced by the popular JPEG standard for image compression [3].
Accordingly, let us assume throughout this subsection that the host signal is given
in the 8× 8 block-DCT domain where JPEG works. As discussed in [93] the AC
coefficients of the DCT can be reasonably modeled by zero-mean generalized
Gaussian pdfs, given by the expression

fX(x) = Ae−|ηx|c . (3.27)

The parameters A and η can be expressed as a function of the shape parameter
c and the standard deviation σX . We refer the reader to [93] for the details
on how to tackle in practice the issue of their estimation. Taking into account
the model (3.27), and assuming that its parameters are estimated adaptively
for each dimension, we may rewrite (3.26) as Pr{Zi = kδi | b} = Pr{Xi ≤
γ+

ik
(b)} − Pr{Xi ≤ γ−

ik
(b)}, with

Pr(Xi ≤ τ) =

{

Ai

ηici
Γ(1/ci, |ηiτ |ci), if τ ≤ 0

1 − Ai

ηici
Γ(1/ci, |ηiτ |ci), if τ > 0

,

where Γ(·, ·) is the incomplete Gamma function1.

Figure 3.10 tries to provide an intuitive idea of the reasoning followed in this
section.

3.2.2. Empirical Results

We compare next in Figure 3.11 the performance of DC-DM under the coarse
quantization attack given by JPEG compression, using the symmetric and asym-
metric dithers discussed in Section 3.2. In the plot, the probability of bit error
is plotted versus the quality factor QF used to compress the watermarked signal
Lena using JPEG. Embedding takes place in the 8 × 8 block-DCT domain. In
order to obtain the theoretical results we have used the CLT-based approxima-
tion and assumed a Laplacian distribution for the host signal, which corresponds
to c = 1 in (3.27). This approximation explains the small discrepancies between
the theoretical and empirical results, which are more evident for β∗ as the con-
vergence of the decision statistic to a Gaussian is slower with weighting. As it
can be seen, the use of an asymmetric dither yields superior performance, even
considering that it is not possible to use the optimal weights in this case.

1Γ(a, z) ,
∫ ∞

z
ta−1e−tdt.
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3.3. Cropping Attack

As it was discussed in Section 2.7.1, SSTDM achieves the same spreading gain
as Add-SS by relying on the projection stage of the latter, so that both become
robust to additive attacks. In this section, we will show that the similarities be-
tween Add-SS and SSTDM do not extend to the popular cropping attack (i.e., the
removal of some components of the watermarked signal), since when the removed
area increases, performance degrades smoothly for the former but steeply for the
latter. One arrives at this conclusion after comparing the analytical expressions
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Figure 3.11: Empirical and theoretical performance when Lena is watermarked
with DC-DM in the DCT domain and JPEG-compressed with quality factor QF,
for symmetric and asymmetric dithers. L2 = 10, payload Lb = 2252 bits, α = 0.5.

derived for both methods. Increasing the size of the projected subspace and using
a cubic lattice with repetition coding is shown to be a possible solution to cope
with cropping while retaining host interference cancellation. Our main results,
presented in Section 3.3.1, also apply to other relatively similar impairments, such
as line-removal and block-replacement attacks.

3.3.1. Describing the Cropping Attack

For the sake of notational simplicity, our presentation in this subsection will
be restricted to any of the L2-dimensional subvectors xj, dropping the subindex
j. The cropping attack removes some components of the watermarked image y,
reducing the size of the received signal. Let I and Ī respectively denote the
set of removed components indices and its complement, i.e., Ī = {1, · · · , L2}\I.
The decoder receives the |Ī|-length signal z from which it obtains an L2-length
estimate ŷ of the watermarked signal2 in such a way that ŷ = y + n, where n
is a noise vector (which can be seen as realization of random vector N). The
decoding process will not take into account the received incomplete signal z, but
its restored version, i.e. the estimate of the watermarked signal ŷ, so the decoding
strategy will be typically given by

b̂ = arg min
b∈{0,P−1}

||Ŷp − Qb(Ŷp)||,

where Ŷp = sT Ŷ.

2This estimation makes sense whenever parts of the watermarked signal are completely lost,
as it is the case for the cropping atttack.
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In spite of producing a large distortion in a mean squared error sense, cropping
does not result in any perceptual distortion provided that significant parts of the
host signal are not removed, e.g. by removing a thin frame from an image and
leaving the rest unaltered. Taking this into account, a meaningful measure of
distortion is to consider only those coefficients that have survived cropping; hence,
it is convenient to define Dcremain

= 1
|Ī|

∑

i∈Ī E{(Zi − Yi)
2}, so the Watermark to

Noise Ratio (WNR) is redefined as WNRremain = Dw/Dcremain
.

Notice that cropping also causes a synchronization problem; however, this is
not only characteristic of SSTDM, but of any data hiding scheme. For this reason,
we will assume that proper measures have been taken to ensure synchronization;
further discussions about this topic can be found in [15], [114] and [148]. Hence,
under perfect synchronization, the main complication caused by cropping is the
loss of some coefficients of the watermarked signal, so the decoder will have to
decide which symbol was embedded by taking into account the available prior
information about those coefficients. In this way, the decoder will see the cropping
attack as the addition of the random variable Nj = Ŷj −Yj, j ∈ I, where ŷj is an
estimate of the unkown watermarked coefficient yj. For those indices j ∈ Ī, we
will take ŷj = zj, as it is typically done, so Nj = Zj − Yj. Notice that, as long as
a stochastic characterization is available, this model also encompasses any kind
of restoration attempt based on extrapolation from the available coefficients.

Next, we analyze the impact of the cropping attack on Add-SS and SSTDM,
taking the probability of error Pe as a measure of performance. For the sake of
simplicity, and in order to obtain interpretable results, throughout this section we
make the following assumptions: 1) binary (i.e., P = 2) signaling; 2) projection
vector s is such that si ∈ {±1}, for all 1 ≤ i ≤ L2; 3) the attack is limited to
cropping, so zi = yi, for all i ∈ Ī; and 4) Ŷ is an unbiased estimate of Y, and the
components of both Y and Ŷ are mutually independent. As it was discussed in
Section 2.1, the latter assumption is reasonable if the projected host features are
pseudorandomly chosen over the full image, as this choice practically eliminates
local dependencies.

3.3.1.1. Performance Analysis of Cropping Attack on Add-SS

When host samples are modeled by a zero-mean independent Gaussian process
and γ = 13, the usual decoder is given by

b̂ =

{

0, whenever sT · ŷ < 0
1, whenever sT · ŷ > 0

,

3The last hypothesis, i.e. γ = 1, is considered in this section for the sake of notational
simplicity of the obtained results.
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then taking ŷi = 0, i ∈ I, the probability of error when |I| samples are cropped,
can be written as

Pe(|I|) = Q





|Ī|
√

∑

j∈Ī σ2
Xj



 .

Therefore, if we assume that any coefficient has a probability ξ of being re-
moved, and for the case σ2

Xi
= σ2

X , i = 1, · · · , L2, we can average over the set of
possible croppings, so

Pe =

L2
∑

j=0

(

L2

j

)

ξj(1 − ξ)L2−jQ
(√

L2 − j

σX

)

,

which, according to the Law of Large Numbers, for large values of L2 can be
approximated by

Pe ≈ Q
(√

L2

√
1 − ξ

σX

)

. (3.28)

3.3.1.2. Performance Analysis of Cropping Attack on SSTDM

In [132] the probability of error for SSTDM was shown to be

Pe = 1 −
∞

∑

k=−∞

∫ +∆/2+2k∆

−∆/2+2k∆

fNp
(τ)dτ, (3.29)

where Np , sT ·N denotes the projected noise random variable. An upper bound
is obtained by considering just the two nearest centroids to the desired one [132]:

Pe ≤ Pe,u = 1 −
∫ +∆/2

−∆/2

fNp
(τ)dτ

When Np is Gaussian (see Section 2.7.1) the upper bound evaluates to

Pe,u = 2Q





∆/2
√

∑L2

i=1 Var{Ni}



 . (3.30)

When the random variables Ni are i.i.d. with variance σ2
N for i ∈ I, and zero

otherwise, equation (3.30) must be averaged over the possible croppings:

Pe,u = 2

L2
∑

j=1

(

L2

j

)

ξj(1 − ξ)L2−jQ
(

∆/2
√

j · σ2
N

)

. (3.31)
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Figure 3.12: Comparison between Add-SS, SSTDM and multidimensional STDM.
The plot shows the DWR empirically needed to achieve Pe = 10−3 versus the
fraction of cropped coefficients ξ, taking Var{Ni} = Var{Yi} for all i ∈ I. L2 =
100. L4 = 10 for multidimensional STDM.

A further simplification results for large values of L2, as the number of cropped
coefficients is roughly L2ξ. Moreover, for Var{Xp} ≫ ∆2, i.e., for a high res-

olution quantization, we have Dw = ∆2

3·(L2)2
. Therefore, equation (3.31) can be

approximated by

Pe,u ≈ 2Q
(√

3 · L2 · Dw

4 · ξ · σ2
N

)

.

From this expression it is immediate to estimate the fraction ξ of pixels that can
be randomly removed in order to achieve a given probability of error Pe:

ξ =
Dw · 3 · L2/4

η2 · σ2
N

, (3.32)

where η , Q−1(Pe/2).

Figure 3.12 plots the DWR empirically needed to achieve Pe = 10−3, versus the
cropping ratio ξ for Add-SS, which virtually coincides with the results obtained
from (3.28), and SSTDM, when Var{Ni} = Var{Yi}, for all i ∈ I. It is worth
mentioning that this case corresponds to the decoder being unable to estimate
the removed coefficients from the available ones, so it sets ŷi = 0, for all i ∈ I.
Note that this can be considered as a worst case, because in practice it may be
possible to estimate some of the lost coefficients from their available neighbors. In
any event, Figure 3.12 shows the sharp degradation of SSTDM as opposed to the
graceful one corresponding to Add-SS when cropping is applied, and illustrates
as well the goodness of the estimate given in (3.32).
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3.3.2. Possible solutions

In this section we will justify why the multidimensional version of STDM using
the Cartesian product of scalar uniform quantizers (equivalently, ST-SCS with
repetition and α = 1) [65], [132] turns out to be a good solution against cropping,
while still showing a satisfactory behavior under additive noise attacks.4

In order to have similar noise power in all the projected components, we
propose to choose an orthogonal S, such that ST · S = (L1/L3) · IL3×L3 , where
IL3×L3 is the identity matrix of size L3. Furthermore, the set of indices with non-
zero values should be disjoint for each pair of columns, in such a way that a single
cropped coefficient will affect just one component in the projected domain. This
condition is not fulfilled by watermarking systems which embed the watermark in
the full-block DCT or DFT domains, because a single removed pixel will change
many components in the transformed domain.

It can be also seen that the dimensionality of the projected subspace should
not be too small; in this way, it will be possible to find components in such sub-
space that have not been distorted by cropping. Note, however, that there is a
trade-off between robustness to cropping (which would require a large value of
L3), and to additive noise attacks (for which a small L3 is preferred). Finally,
it is desirable that quantization of a projected component should be done inde-
pendently of the other ones. In such case, the cropping-induced distortion in one
projected component will not leak into other components, which then can still
be correctly decoded. This requirement is fulfilled by cubic lattices (Λ = KZ

L4 ,
with K ∈ R) with repetition coding.

With all these considerations, we propose the following projection matrix S to
study the trade-off between robustness to cropping and to additive noise attacks:

sij =







































±
√

L1/L3√
K1

, if (j − 1)K1 < i ≤ jK1,

1 ≤ j ≤ L3 − K2

±
√

L1/L3√
K1+1

, if (j − 1)(K1 + 1) − L3 + K2 < i

≤ j(K1 + 1) − L3 + K2,
L3 − K2 + 1 ≤ j ≤ L3

0, otherwise

where K1 = ⌊L1/L3⌋ and K2 = L1−K1 ·L3, and the sign of the non-zero elements
is pseudorandomly generated.

Figure 3.12 also plots the DWR empirically needed for this scheme to achieve
Pe = 10−3 when L2 = 100 and L4 = 10, showing a better behavior of the multidi-

4Be aware that, as it was mentioned, the decoding rule is based on the estimate of the water-
marked signal Ŷ, i.e. b̂j = arg minbj∈{0,P−1} ||Ŷpj

−Qbj
(Ŷpj

)|| = arg minbj∈{0,P−1} ||Ŷpmodj
−

Qbj
(Ŷpmodj

)||, where Ŷp = ST Ŷ and Ŷpmod
= Ŷp mod Λ.
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mensional version in all the range of cropping ratios; nevertheless, be aware that
in order to make a fair comparison between SSTDM and the former multidimen-
sional version, the channel noise should be taken into account. In Figure 3.13 the
value of L3/Lb minimizing Pe for different WNRremains is plotted as a function
of the cropping ratio ξ, showing the aforementioned trade-off between robustness
to cropping and additive noise attacks. Decoding was performed disregarding
those projected components which depend on cropped coefficients, because their
large variance would likely confuse the decoder. This strategy is equivalent to
weighting those components by 0 when computing Euclidean distances, see [46].
Whenever the cropping ratio is close to 0, the predominant effect is due to the
additive noise, so the best results are obtained for small values of L3/Lb, that is,
strategies close to SSTDM (L4 = L3/Lb = 1); however, when the ratio ξ is raised,
cropping becomes the main problem and, as discussed above, increasing L3/Lb is
a good solution. Recall that by increasing L3 we are approaching a non-projected
scheme; in fact, the case L3 = L1 corresponds to SCS with repetition coding.

Finally, Figure 3.14 compares the performance of DC-DM with uniform scalar
quantizers and repetition coding with that obtained for the SSTDM case, after
removing an 8-pixels-wide outer frame; the original Lena, and its cropped version
are plotted in Figure 3.15. The data are hidden in the mid-frequency coefficients
of the 8×8 block-DCT domain, as it was done in Section 3.1.5. The results shown
in Figure 3.14, jointly with those previously plotted in Figure 3.4, confirm that
a combination of DC-DM and SSTDM is a good choice towards a truly robust
moderate-rate scheme.
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Figure 3.14: Experimental results of DC-DM (α = 0.4) vs. SSTDM, watermark-
ing the DCT domain of actual images, with additive uniform noise after cropping
an 8-pixels-wide frame; results averaged over twenty-two 256 × 256 images, with
L2 = 20 (payload Lb = 1126 bits).
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Figure 3.15: (a) Original Lena. (b) 8 × 8-pixels-wide outer frame is drawn in
black. (c) Resulting cropped image.

3.3.3. Conclusions

Even though data hiding schemes that work by projecting and quantizing
on a scalar domain achieve the same spreading gain as Add-SS, care should be
taken before extrapolating the favorable properties of the latter to the former.
For instance, it is known that while binary Add-SS is impervious to amplitude
scalings, this is no longer the case of standard quantization-based methods. Here
we have shown that for cropping attacks both methods behave quite differently,
since the degradation observed in SSTDM is much sharper than for Add-SS. By
following some design rules for the projection matrix, which entail increasing the
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dimensionality of the projected subspace, it is possible to derive a quantization-
based method robust both to cropping and to additive noise attacks. Due to the
simplicity and potential impact of cropping, future benchmarks for Quantization
Index Modulation (QIM) like methods should always consider this attack.

3.4. Sensitivity Attack

Until now, the sensitivity attack was considered as a serious threat to the
robustness and security of spread-spectrum-based schemes, since it provides a
practical method of removing watermarks with minimum attacking distortion.
Nevertheless, it had not been used to remove the watermark from other water-
marking algorithms, such as those which use side-information. Furthermore, the
sensitivity attack has never been used to obtain falsely watermarked contents,
also known as forgeries. In this section an overview of previous research on this
subject is presented and a new version of the sensitivity attack based on a general
formulation is proposed; this method does not require any knowledge about the
detection function nor any other system parameter, but just the binary output
of the detector, being suitable for attacking most known watermarking methods.
The new approach is validated with experiments.

3.4.1. Scenario

As it was said in Section 1.1, digital data hiding was conceived in its early
years as a potential solution to the problems of illegal copy control and intellec-
tual property rights (IPR) protection. Perhaps for this reason and the analogies
commonly made to the field of cryptography, watermarking was declared as syn-
onymous to security [96]. However, watermarking research until now has much
more to do with robustness than with security : roughly speaking, watermarking
security may be related to attacks which try to gain knowledge about certain
secret parameters of the watermarking system, whereas robustness is more con-
cerned with attacks whose aim is to degrade the performance of the watermarking
system [38]; see Section 4.2 for a further discussion on this topic.

In watermarking for IPR protection and copy control, the aim is to distinguish
whether the digital media at hand contains a certain watermark or not. This is a
watermark detection problem, which is commonly modeled as a binary hypothesis
testing problem, which can be written as

H0 : y = x
H1 : y = x + w.

Recall that w may be made key-dependent in order to improve the security of
the system. Since the watermarked signal could have been attacked, the detector
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should adapt this test to take the attack into account. As it will be explained,
the sensitivity attack is iteratively computed, so in order to distinguish it from
the typical one-attempt attacks, we will model it as the addition of a vector t,
yielding a signal z = y + t. The optimal solution to the hypothesis test is given
by the likelihood ratio test, i.e.,

l(z) =
fZ|H1

(z|H1)

fZ|H0
(z|H0)

H1

>
≤
H0

η, (3.33)

where fZ|Hi
(z|Hi) is the pdf of Z conditioned on hypothesis Hi and η is a threshold

which can be adjusted so as to optimize a certain criterion (Neyman-Pearson,
Bayes, etc.). The output of the detector will be denoted by D ∈ H = {H0, H1}.
The detection function given by (3.33) divides the subspace R

L1 in two disjoint
regions, R and Rc, termed acceptance or detection region and rejection region,
respectively, such that R

L1 = R∪Rc. These regions are defined as

R = {z ∈ R
L1 : l(z) > η};Rc = {z ∈ R

L1 : l(z) ≤ η}.

Unfortunately, an analytical derivation of the likelihood ratio test is not always
feasible, so we will consider instead a more general family of detection functions.
Thus, the test performed by the detector is

f(z,θ)

H1

>
≤
H0

η,

where θ is the secret key used in the detection process. Of course, the resulting
detector will be optimal only when f(z,θ) coincides with the likelihood ratio l(z).

In the considered scenarios, i.e. copyright protection and copy control, the
watermark detector is often made public, generally in the form of a tamper-proof
black box which only provides binary outputs, in such a way that an observer
can check whether f(z,θ) is larger or smaller than η, but he/she can not know
its actual value. This scenario gives rise to the so-called oracle attacks, where
the attacker uses the detector outputs to some selected inputs in order to gain
knowledge about secret information used in the detection process (for instance,
the detection key). Intuitively speaking, the detector acts as an oracle, responding
yes or no to the inputs provided by the attacker. A block-diagram of the oracle
attacks can be found in Figure 3.16.

The most popular oracle attack is the so-called sensitivity attack, introduced
for the first time in [53]. At the time this attack was proposed, additive spread
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Figure 3.16: Block diagram of oracle attacks.

spectrum (Add-SS) methods [52] constituted the state of the art in digital water-
marking, so this attack was suited to this particular scenario. For Add-SS under
the assumption of an i.i.d. Gaussian host, the likelihood ratio is given by the
linear correlation l(z) = zTw, so the optimal detector in this case must apply the
following test:

zTw

H1

>
≤
H0

η. (3.34)

Detectors that implement the test given by (3.34) are termed linear correlation
detectors. Essentially, the sensitivity attack (specialized to the case of digital
images) for this kind of detectors consists of the following steps [53]:

1. The algorithm starts from a watermarked image y of dimension L1. The first
step is the modification of y so as to obtain a new image z near the bound-
ary of R, which according to (3.34) is a hyperplane in an L1-dimensional
subspace, perpendicular to w.

2. For the i-th pixel of z, a vector ti = (0, · · · , 0, ti, 0, · · · , 0)T is added to z
observing how the sign of ti affects the outputs of the detector and, hence,
gaining knowledge about the polarity of the watermark in each pixel. Since
z is near the detection boundary, small changes are likely to toggle the
detector response. This procedure is repeated for all i = 1, · · · , L1.

3. At the end of the previous step, by combining the results for all pixels, the
attacker has a rough estimate ŵ of the watermark vector and, thus, of the
detection boundary, which in the considered case is perpendicular to w.

According to the classification introduced at the beginning of this section, the
sensitivity attack clearly falls into the category of attacks to security for Add-SS
methods, since the attacker is trying to disclose the spreading sequence (which
is supposed to be secret to unauthorized users), or equivalently the boundary of
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the detection region. Nevertheless, when more involved detection regions are con-
sidered, the attacker can try just to obtain the closest point to the watermarked
signal onto the decision boundary, and this will not almost provide him/her infor-
mation about the shape of the boundary (at most, just a local estimation), or the
secret key, so it can be considered to be a robustness attack more than a security
one; summarizing, the sensitivity can be thought of being in the midway between
security and robustness attacks, or even being a previous step to other attack. For
example, once the attacker has estimated this boundary, he/she can use his/her
knowledge to devise smart attacks against watermarked contents: for instance,
once the estimate ŵ has been obtained, the attacker can generate an attacked
image z with small distortion, capable of fooling the detector, just by subtracting
a suitably scaled version of ŵ. Before the sensitivity attack was proposed, it was
believed that the complexity of an attack disclosing the watermark was O(2L1)
(by means of a brute force approach), but the proposed strategy showed that
for Add-SS it would be feasible in a number of iterations which is linear with
the dimensionality of the watermarked image, i.e., the complexity of the attack
was reduced to O(L1). Hence, it is easy to realize that this attack represented a
serious threat to any watermarking scheme with a public detector available, and
it raised up the problem of security in watermarking.

This section is concerned with the generalization of the sensitivity attack, pro-
viding a formulation that encompasses most known watermark detection schemes
with parameterizable and differentiable (but unknown to the attacker) detection
boundaries. Furthermore, we will also use the attack for generating false pos-
itives, i.e. from a watermarked signal and an original unwatermarked different
signal, a watermarked version of the latter will be constructed. The rest of the
section is organized as follows: Section 3.4.2 provides an overview of previous
works dealing with this attack and the countermeasures proposed to increase the
security of a watermarking system where public detectors are available. In Sec-
tion 3.4.3, our new formulation of the problem is presented, and its application
to some examples is given in Section 3.4.4. Finally, Section 3.4.5 deals with the
computational complexity of the proposed method, and some final remarks are
introduced in Section 3.4.6.

3.4.2. Previous work and improvements

The sensitivity attack for detectors based on linear correlation, i.e., those
given by (3.34), was extensively studied in [109] and [97]. Starting from the
formulation of the attack given in [53], which was explained in Section 3.4.1, the
work in [109] proposes a first countermeasure based on the randomization of the
detection boundary: the basic idea is to define a region around the points that
satisfy zTw = η, where the decision of the detector is made random, in order to
reduce the sensitivity of the detector to small changes in its inputs. Thus, the
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detection function is modified as follows:

D =







H1, if zTw > η2

H0, if zTw < η1

H1 with probability p(zTw), if η1 ≤ zTw ≤ η2

, (3.35)

where the two new thresholds η1 and η2 must be close to η so as not to degrade
significantly the performance of the detector, and p(r) verifies p(η1) = 0 and
p(η2) = 1. The internal behavior of the detector is such that its outputs are
deterministic, i.e., the response of the detector is always the same for a fixed
input signal z, in order to avoid the estimation of p(r) simply by feeding the
same z to the detector repeatedly. Anyway, estimation of the watermark is still
possible. Let z′ be a vector such that η1 ≤ (z′)Tw ≤ η2, and ǫ a random vector.
For sufficiently small ǫi, i = 1, · · · , L1, and z = z′ + ǫ, we have that

p(zTw) = p((z′)Tw + ǫTw) ≈ p((z′)Tw), (3.36)

so after trying a sufficiently large number of different vectors ǫ, the value of
p((z′)Tw) can be estimated simply by counting the number of outcomes that
yield D = H1. Similarly, for ti = (0, · · · , 0, ti, 0, · · · , 0)T and zi = z′ + ti + ǫ, we
have

(zi)Tw = (z′)Tw + tiwi + ǫTw ≈ (z′)Tw + tiwi = (z′)Tw ± tiδ, (3.37)

where in the last equality we have assumed that wi ∈ {±δ}. By means of a first
order approximation, and assuming that p(r) is differentiable, we can write

p((zi)Tw) ≈ p((z′)Tw ± tiδ) ≈ p((z′)Tw) ± tiδp
′((z′)Tw), (3.38)

where p′(r) ,
∂p(r)

∂r
is the derivative of p(r). Again, using enough different vec-

tors ǫ, an estimate of p((zi)Tw) can be obtained. By comparing this estimate to
the previous estimate of p(yTw), the sign of wi can be inferred (as long as p(r)
is a monotically increasing function). In [109], the information leakage about
the watermark provided by the detector outputs is quantified in an information-
theoretic sense, and the shape of the optimum function p(r) for η1 ≤ r ≤ η2 that
minimizes the information leakage is given. It is easy to see that this counter-
measure complicates the sensitivity attack, but its complexity still remains linear
with the dimensionality of the images. In fact, a practical method for estimat-
ing the watermark in this framework was devised in [97]. The method basically
consists of the following steps:

1. Starting from a valid watermarked image y, an image z′ which yields η1 ≤
(z′)Tw ≤ η2 is constructed by iteratively degrading y.

2. The image z′ is perturbed by the addition of zero-mean random vectors t
with ti = {±δ} (where δ has not to take the same value that in (3.37)).
If w and t are positively correlated, the detector will return D = H1 with
higher probability, so t will be taken as an approximation of w; otherwise,
if D = H0, then −t will be taken as an estimate of w.
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3. By averaging the estimates obtained in the previous step, an approximation
of w is obtained.

Following this approach it is possible to obtain reliable estimates of w in a number
of iterations which is a small multiple of L1, as it was shown in [97].

Another approach for performing a successful sensitivity attack was presented
in [111]. The method is able to estimate the boundary of the acceptance region by
modeling the attack as a classical adaptive filtering problem: it is easy to realize
that the linear detection function given in (3.34) for additive spread spectrum can
be thought of in terms of filtering z with a filter w̃ such that w̃i = wL1+1−i ∀ i =
1, · · · , L1; furthermore, the attacker knows that z ∗ w̃ = f(z,θ), where ∗ denotes
the convolution operator, so if he/she can access the values of f(z,θ), then using
this signal as reference he/she can manage to construct an estimate of w̃. The
authors propose in [111] the use of the Least Mean Squares (LMS) algorithm in
order to iteratively construct these estimates. Let ŵk be the estimate of w̃ in
the k-th iteration and {zk} a set of vectors near the detection boundary; each
iteration of the LMS algorithm consists of the following steps:

1. rk = zk ∗ w̃,
2. ek = f(zk,θ) − rk,
3. wk+1 = wk + µekzk,

where µ is the step-length. In a more realistic situation, the attacker only has
access to the detector output, D, so the authors introduce some modifications in
the algorithm to work with just the binary output of the system. In this situation,
the attacker must restrict the set {zk} to those vectors lying near the detection
boundary, because he/she still knows that f(zk,θ) ≈ η; thus, the algorithm is
complicated by the fact of computing the appropriate set {zk}. The authors also
propose some modifications in order to cope with the countermeasure introduced
in [109], which was explained in the above paragraph.

In view of the security flaws presented by traditional spread spectrum meth-
ods under sensitivity-like attacks, researchers put their effort in the design of
asymmetric schemes [78]. One of the advantages offered by asymmetric schemes
against sensitivity attacks is the fact that the embedding and detection keys are
different, thus the impact of a successful attack revealing the detection bound-
ary is minimized (recall that disclosure of the watermark in traditional Add-SS
methods allows to unwatermark legal contents, as well as generating forged il-
legal documents). The other advantage of asymmetric watermarking is the use
of more involved detection regions, complicating the description of the detection
boundary; for instance, in [78], four asymmetric methods are analyzed under a
unified framework, showing that the detection function can be written in terms
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of a quadratic form in R
L1 for all cases, i.e.

zTAz

L1

H1

>
≤
H0

η,

where A is a matrix which depends on the secret key θ.

The idea of increasing the security of the system against sensitivity attacks by
complicating the detection region is exploited by the family of detection functions
called JANIS (Just Another N -order Side-Informed Scheme) [77], which use N -th
order polynomial detection functions, i.e.

f(z,θ) =
1

L1

L1/N
∑

k=1

N
∏

j=1

zp[(k−1)·N+j](θ) · ap[(k−1)·N+j](θ)(θ),

where a is a pseudorandom ±1 vector and p is a pseudorandom permutation
vector, both of them depending on the secret key θ. Based on this detection
function the watermark is obtained as w = γ∇f(x,θ), where γ is a parameter
to adjust the embedding distortion and ∇(·) is the gradient operator.5 Indeed
it makes much more difficult the sensitivity attack, but obviously this is not the
ultimate solution: for example, an N -th order detection boundary can still be
described by estimating (L1)

N points on such boundary. This point was addressed
in [111], showing that the LMS attack can be properly modified in order to
cope with this kind of detection boundaries. A possible solution to this problem
was proposed also in [111] by means of non-parametric decision boundaries, i.e.,
by using decision boundaries that can not be described by a finite number of
parameters. An example of such decision boundaries are those given by fractal
curves like the Peano curve, which is used in [111] to replace the original linear
detection boundary in a spread spectrum scheme. With a proper design, the
authors defend that the proposed method can invalidate sensitivity attacks with
slight degradations in robustness.

A different approach is followed in [154] which proposes the use of a decision
function which is randomized whenever a signal with a similar hash was previously
input to the detector; in this way the attacker could not rely on the outputs of
the detector when he/she inputs similar signals, as it is the case of the sensitivity
attack. Furthermore, [154] proposed the combination of the latter strategy with
a response delay as a possible countermeasure against oracle attacks.

Recently, a rigorous formulation of the sensitivity attack was presented in [67]:
first, the convergence of the algorithm proposed in [97] is proved, using the law

5Be aware that a and p are needed by the encoding algorithm, so JANIS is not an asymmetric
method.
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of large numbers; thereafter, a new non-iterative sensitivity attack for detectors
based on linear correlation is presented. This new algorithm is also suitable
for estimating continuous-valued watermarks, whereas the algorithms previously
proposed in [109] and [97] assumed that the watermark could only take discrete
values. The main steps of this new algorithm are outlined in the following:

1. As in the former algorithms, the first step is the construction of a signal z′

near the boundary of the detection region.

2. Now consider the set of vectors {ti}, i = 1, · · · , L1, defined by the canon-
ical basis of R

L1 . For each ti, a signal z′′ = z′ + νit
i on the detection

boundary is constructed, by properly selecting the scaling factor νi. The
search for this value of νi must be accomplished by means of some numerical
algorithm, so it will be surely the most costly part.

3. For the detector under consideration, it holds that (z′′)Tw =
∑L1

k=1 z′kwk +
νiwi = η, i = 1, · · · , L1 where η is the detection threshold, and wi = (ti)Tw.
Thus, a linear system with L1 equations and L1 unknowns has been defined.
By taking into account the special structure of this system, it is easy to show
that it can be solved in L1 + 1 elemental operations.

Another remarkable contribution of [67] is the extension of the sensitivity attack
in order to work with a more generic family of detection functions of the form
g(y,w); furthermore, this method has the advantage of returning an estimate
of the watermark. Nevertheless, this approach presents several drawbacks: the
attacker needs to know the detection function and even the inverse of the gradient
of the detection function. Thus, the need for a new formulation which overcomes
these problems is justified; in the next section we will try to solve this problem,
achieving a solution which will be shown to work with a wider range of detection
functions. The method proposed has the following characteristics:

It does not require knowledge about the detection function; it just needs to
know the binary output of the detection function for a given input. Due to
this, our method is indeed able to deal with watermarking methods which
use a secret detection key (different from the embedding key), in such a way
that the attacker has no access to the decoding function. This is the case,
for example, of asymmetric watermarking and JANIS.

The gradient of the detection function does not need to be inverted. As it
was said in the previous point, sometimes the detection function will not
be known by the attacker, so he/she will not be able to invert its gradient.
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3.4.3. The Blind Newton Sensitivity Attack (BNSA)

Focusing on watermark detection, we will describe the detector output
through the function fbinary : R

L1 → H, with H = {H0, H1}. Without loss
of generality, we can define the following functions

f : R
L1 → R

L3 and (3.39)

gbinary : R
L3 → H,

with L3 ≤ L1, in such a way that fbinary = gbinary ◦ f , and f is parameterized
by the secret key θ.6 This decomposition will be shown to be useful in the
next sections, since some of the most popular watermarking techniques perform
embedding/detection in a projected domain so f can be seen as the projection
function.7 Furthermore, in the schemes studied in this work the output of gbinary

will be based on the output of a real function g and a threshold η, in such a way
that

gbinary(x) =

{

H0, if g(x) ≤ η
H1, if g(x) > η

, (3.40)

with g : R
L3 → R.

On the other hand, a distortion measure has to be defined in order to quantify
the impact of the attacking signal, termed t, on the watermarked signal y: 8

dy : R
L1 → R

+

t → dy(t).

This distortion measure should be based on perceptual criteria (depending on the
nature of the host signal), although very often, and for the sake of simplicity, the
squared Euclidean norm of t is chosen (i.e., dy(t) = ||t||22).

Recalling that the attacker tries to find the vector t which yields a “no water-
mark” decision (i.e., fbinary(y+t) = H0) while minimizing the distortion measure
dy(t), his/her target can be formalized as

arg min
t:g◦f(y+t)≤η

dy(t). (3.41)

Let us assume that dy(t) is a continuous and convex function of t (for a
given watermarked signal y), which achieves its global minimum value at t0 (the

6Be aware that f is generalized with respect to its definition in the previous sections, in
order to provide L3-dimensional outputs, and the dependency with θ is not explicitly shown
for the sake of notational simplicity.

7We have used L3 to denote the dimensionality of the projected domain, following the
notation introduced in the description of STDM methods (Section 2.7), even when in this case
the projection could be nonlinear.

8Ideally, this measure should quantify the differences between the original host signal and
its attacked version; nevertheless, the attacker will have to design his/her strategy taking into
account the watermarked signal, since he/she has not access to the original one.
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squared Euclidean norm obviously fulfills these conditions), a vector that belongs
to the set of attacking vectors yielding H1 (which we will denote by B),9 i.e.,
t0 ∈ B , {t : g ◦ f(t + y) > η}. Note that B , R − y. Then, replacing
B in (3.41), and denoting by ∂B its boundary and by Bc its complement, it is
straightforward to show that arg mint∈Bc dy(t) ∈ ∂B, so (3.41) is equivalent to

arg min
t:g◦f(y+t)=η

dy(t). (3.42)

This is a typical Lagrange multipliers problem, so the attacker could find a the-
oretical solution if both dy and g ◦ f were known by him/her; nevertheless, this
is not the case, since the latter depends on the secret key, which is unknown for
the attacker. Actually, he/she will have only access to the binary output of the
detector. In Appendix C we show that (3.42) is equivalent to

arg min
s∈RL1

d⋆
y(hy(s)), (3.43)

where d⋆
y is the restriction of dy to ∂B, and hy is a function verifying that: a) hy

is a surjection which maps R
L1 onto ∂B, i.e. hy(RL1) = ∂B; b) hy(s) = s, for all

s ∈ ∂B; c) hy(s) ∈ C2, i.e., its second derivative is continuous in a neighborhood
of s; and d) hy(s) is estimated based on the binary output of the detector, without
any other knowledge about the detection function.

Since theoretical solutions to (3.43) are not possible in general due to the lack
of knowledge of the boundary of the decision region, numerical iterative methods
should be applied by the attacker in order to find a solution. Due to this, in most
cases the attacker will have to be satisfied with computing a local minimum of
the function in (3.43), since the achievement of global minima is only ensured
for convex problems, which need also the convexity of Bc [24]; nevertheless, in
Section 3.4.4 the experimental results will show that this suboptimal solution
is usually good enough. Concerning the iterative method, in this work we will
use an adaptation of Newton’s method [124], where the updated vector in the
(k + 1)-th iteration is computed as

sk+1 = sk − ξk ·
[

∇2(d⋆
y ◦ hy)(sk)

]−1

· ∇(d⋆
y ◦ hy)(sk), (3.44)

where ξk ∈ R
+ is the step-length, whose computation requires (in general) a line

search [124, 24]: a small value of ξk will imply a slow convergence, but with a
large one convergence cannot be assured.

It is straightforward to see that ∇(d⋆
y ◦ hy)(sk) and ∇2(d⋆

y ◦ hy)(sk) cannot
be obtained in an analytic way, therefore they must be numerically approximated

9Be aware that in most cases it is reasonable to consider that t0 = 0, since in that case the
attacked signal will be the watermarked one, so the distortion is minimized; furthermore t0 is
in B, since g ◦ f(y) will yield H1.
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by taking into account that

∂(d⋆
y ◦ hy)

∂si

(s) =
(d⋆

y ◦ hy)(s + δei) − (d⋆
y ◦ hy)(s)

δ
+ O(δ), and (3.45)

∂2(d⋆
y ◦ hy)

∂si∂sj

(s) =
(d⋆

y ◦ hy)(s + δei + δej) − (d⋆
y ◦ hy)(s + δei)

δ2

+
−(d⋆

y ◦ hy)(s + δej) + (d⋆
y ◦ hy)(s)

δ2
+ O(δ), (3.46)

with ei the i-th vector of the canonical basis, and δ > 0 the step size used by the
approximation.

An alternative strategy to (3.44), which is especially suitable for large-scale
problems, is based on replacing the Hessian by a diagonal matrix just keeping
the diagonal elements; in this way, an iteration of the algorithm just requires
(2 · L1 + 1) evaluations of (d⋆

y ◦ hy)(s) and (3.44) is computed with L1 scalar
divisions (if the complete matrix were used, a linear system with L1 equations
and L1 variables should be solved). Another updating algorithm is given by

sk+1 = sk − ξk · ∇̂(d⋆
y ◦ hy)(sk), (3.47)

where ∇̂(d⋆
y◦hy)(sk) is the estimation of the gradient of (d⋆

y◦hy) based on (3.45),
which only requires L1 +1 evaluations; for a small enough ξk, equation (3.47) will
guarantee a decrease in (d⋆

y ◦hy) as far as (∇̂(d⋆
y ◦hy)(sk))

T ·∇(d⋆
y ◦hy)(sk) > 0,

where the last condition is based on the Taylor series expansion of the objective
function.

Although hy(s) could be any function verifying the properties introduced
above, in the experimental part of this work we will use hy(s) = ν∗ · s, where
ν∗ = arg minν∈R:ν·s∈∂B |ν|. This computation of hy(·) is based on the fact that 0 ∈
B, since y is a watermarked signal, and also that for most known watermarking
methods β · s ∈ Bc for large values of β, so ν∗ (equivalently hy) can be estimated
by a bisection algorithm, where just the binary output of the detector is needed
to determine what will be the extremes of the interval at the next iteration.
Given that this method is based on the binary output of the detector, without
any other knowledge about the detection function, the algorithm is said to be
blind. An example of an iteration of the algorithm is plotted in Figure 3.17,
where the reduction from ||νksk||2 to ||νk+1sk+1||2 is represented by the decrease
of the radius of two spheres centered at y. It is important to remark that the
blindness of the proposed attack comes at the price of its iterative nature and
thus typically requires many more calls to the oracle than other algorithms, e.g.
[53], [97], [67], for which the attacker is assumed to perfectly know the shape of
the detection function.
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y + sk+1
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Figure 3.17: Example of an iteration of the algorithm. Given a watermarked
signal y and the attacking vector in the k-th iteration sk, the last one is slightly
modified to estimate the gradient and Hessian of d⋆

y ◦ hy(sk). Once the descent
direction and the step-length have been computed, sk+1 is obtained. It can be
seen that y + ν∗

k+1sk+1 is closer to y than y + ν∗
ksk, i.e. ||ν∗

k+1sk+1||2 < ||ν∗
ksk||2.

3.4.3.1. Implementation

In this section, the different steps of BNSA are enumerated, and some con-
siderations on its implementation are made.

1. Initialization: in order to start to iterate, a first point on the boundary
of the detection region is needed. We propose to use z = γ∗ · y, where
γ∗ = arg maxγ∈R+:g◦f(γy)=η(γ). This choice is based on the fact that for
most known watermarking methods 0 is in Rc. Were this not the case, we
assume that the attacker can compute a signal yielding in Rc, and hence a
document on the decision boundary can still be computed by simple convex
combination of this signal and the watermarked one. The factor γ∗ can be
computed using a bisection algorithm.

Therefore, the initialization value of sk is given by s0 = (γ∗ − 1)y.

2. Updating: the update of the algorithm has the generic form

sk+1 = sk − ξk · Bk
−1 · ∇̂(d⋆

y ◦ hy)(sk),
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where ∇̂(d⋆
y ◦ hy)(sk) is the estimate of the gradient of (d⋆

y ◦ hy)(sk), and
its i-th component is computed as

[∇̂(d⋆
y ◦ hy)(sk)]i =

(d⋆
y ◦ hy)(s + δei) − (d⋆

y ◦ hy)(s)

δ
.

This computation requires also to estimate hy(·), which is not known by
the attacker. As it was mentioned above, the proposed strategy is to use
hy(s) = ν∗ · s, where ν∗ = arg minν∈R:ν·s∈∂B |ν|, although any function veri-
fying the conditions described above could be used. Again, in the proposed
implementation ν∗ is computed using a bisection algorithm.

Concerning the matrix Bk, different possibilities can be considered; they
are chosen by the attacker based on his/her computational resources. First
of all, we can consider an approximation to the Hessian, i.e. Bk = ∇̂2(d⋆

y ◦
hy)(sk), which yields an approximation to the classical Newton’s method.
The (i, j)-th component of that matrix is computed as

[∇̂2(d⋆
y ◦ hy)(s)]i,j =

(d⋆
y ◦ hy)(s + δei + δej) − (d⋆

y ◦ hy)(s + δei)

δ2

+
−(d⋆

y ◦ hy)(s + δej) + (d⋆
y ◦ hy)(s)

δ2
.

This alternative is really computationally expensive, since it requires O(L2
1)

calls to the detector per update of the algorithm.

Finally, the computation of ξk, which is done just once per iteration of the
algorithm, can be calculated using one off-the-shelf line search algorithm
(see [124, 24] for further references). In our implementation we have followed
Armijo’s rule, due to its simplicity.

3. Stopping: the stopping condition could be based on different criteria. For
example, the attacker could stop when he/she computes a non-watermarked
signal with a sufficiently good quality, or when the distortion measure func-
tion is not significantly reduced from one iteration to the next. Another
alternative is to constrain the number of calls to the detector.

3.4.3.2. Computing forgeries

Let us suppose now that the attacker has access to a watermarked signal y and
an original unwatermarked content x, i.e. fbinary(x) = H0. A possible application
of the proposed method is the computation of a signal z = x + ŵ which yields
fbinary(z) = H1 while minimizing the distortion when it is compared with x,
i.e., we can create a watermarked version of a signal x whenever a watermarked
content y and a detector are available.
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Following the approach introduced in the previous section, this problem can
be formalized as

arg min
t:g◦f(y+t)>η

dx(y + t − x), (3.48)

i.e., we are trying to find a vector t such that when it is added to y yields a
watermarked signal which is as similar as possible to x, so z = x + ŵ = y + t.
Assuming again that dx(t) is a continuous and convex function of t, the solution
t∗ to (3.48) will verify g ◦ f(y + t∗) = η + ǫ, where ǫ > 0 is arbitrarily small.
Therefore, from a practical point of view, we can think of t∗ as being on ∂B.
Proceeding in a similar way to (3.43), we can rewrite (3.48) as

arg min
s∈RL1

dx(y + hy(s) − x). (3.49)

The solution to the last problem will be based on numerical iterative methods,
so in the general case of non-convex decision regions just a local minimum will
be achieved, as it happened with the watermark removal problem.

Taking into account that the probability of randomly finding a point in the
detection region is given by the probability of false alarm Pfa,

10 which typically
is really small due to design criteria, the attacker still needs to be given a water-
marked signal y. This signal, which can be completely different of the document
to be forged x, is necessary in order to define the projecting function hy(·), which
will allow the attacker to compute documents on the detection boundary. As-
suming that he/she has access to a watermarked signal y, then hy(·) can be
given by the expression proposed in Section 3.4.3.1, i.e. hy(s) = ν∗ · s, where
ν∗ = arg minν∈R:ν·s∈∂B |ν|.

Finally, one must be aware that the decision regions could depend on the
statistics of the input signal, as it is the case for the ML detector for a General-
ized Gaussian distributed host, where the decision region depends on the shape
parameter of the received signal. This dependency has a limited impact when
the initial signal is not substantially modified, since in that case the statistics
of that initial signal will be almost unaltered; this will be usually the case when
the attacker tries to unwatermark a signal, but the statistics could dramatically
change the decision regions when the attacker tries to move from one image to
another, possibly frustrating an attack.

3.4.4. Application to real methods

In this section we will particularize the proposed algorithm to some of the
most popular watermarking methods, showing the practical usefulness of this
new attack and comparing the performance of the different schemes.

10The probability of false alarm Pfa is defined as Pr{gbinary◦f(x+t) = H1|H0}. On the other
hand, the probability of missed detection Pm is defined as Pr{gbinary ◦ f(x + w + t) = H0|H1}.
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Figure 3.18: Decision regions obtained taking into account a lc-norm when c1 =
c2 = 0.5.

3.4.4.1. Spread Spectrum

Detection of standard Add-SS methods is based on the correlation between
the received signal z and the watermark w. Therefore, the function f , defined in
(3.39), projects z onto a one-dimensional domain (L3 = 1), i.e. f(z) = zT · w,
and g in (3.40) will be the identity function (g(x) = x, for all x ∈ R), so the
detection function is given by

zT · w
H1

>
≤
H0

η,

in such a way that the boundary of the decision region will be a hyperplane. We
will denote this case by SS-corr.

Another alternative for the detection function is that proposed by Cox et al. in
[56]; in that case, the embedding is still given by (2.5), and f quantifies the angle

between the received signal z and the watermark vector w, i.e. f(z) = zT ·w
||z||·||w|| ,

and g is again the identity function, yielding a decision region B which is an
L1-dimensional cone. This method will be named SS-angle, as it really measures
the angle between the received signal and the watermark.

As a countermeasure against BNSA, one could design detection functions for
which component-wise modifications produce bounded increments, since for this
kind of functions the task of finding vectors on the boundary of the detection
function is considerably complicated. Interestingly, the ML detection function
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D

Figure 3.19: AND Region for QPD.

for Generalized Gaussian distributed hosts [93], i.e. equation (2.11), denoted by
SS-GG, fulfills this requirement whenever the shape parameter ci is such that
ci < 1. An example of the resulting decision region is plotted in Figure 3.18.

3.4.4.2. Side-informed methods

In Section 3.4.2 the JANIS methods were introduced. In order to make a com-
parison with the other existing methods, we have fixed the order of the detection
function to N = 4, so

f(z) =
1

L1

L1/4
∑

k=1

4
∏

j=1

zp[(k−1)·N+j] · ap[(k−1)·N+j].

Quantization-based methods have been shown to be useful for data hiding
applications; nevertheless, and despite of their success in that application, very
little has been said about their use in detection scenarios. To the best of our
knowledge, the first work addressing the problem from this point of view is [66],
where the Scalar Costa Scheme is adapted to authentication purposes by embed-

ding a fixed message, yielding the detection function gSCS(z,θ) =
fY(z)

fX(z)
. Note

that in this case the sensitivity attack is straightforward, since it can be done
componentwise.

On the other hand, in [110] the received signal z is quantized with a lattice
Λ and the decision is made upon the squared norm of the quantization error.
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D

Figure 3.20: OR Region for QPD.

Formalizing it, we can write f(z) = ||z mod Λ||2, and g is the identity func-
tion again. In this way, the acceptance region is the union of L1-dimensional
hyperspheres centered at the centroids of Λ. From the point of view of attacking
such a system, this decision region assures that the attacker can produce a signal
yielding H0 by adding any noise vector with a given variance, as far as that noise
vector is independent of the self noise. Therefore, a sensitivity attack is not really
necessary in this case.

Another approach to this problem is Quantized Projection based Detec-
tion (QPD) [126], where uniform scalar quantizers are used to quantify an L3-
dimensional projected version of the received signal z and the detection function
depends on the quantization error, introducing two different strategies: the AND
and OR detection regions, which can be formalized as

fi(z) =

L1
∑

j=1

aijzj, 1 ≤ i ≤ L3,

gAND(f(z)) = max
1≤i≤L3

|(fi(z) mod ∆) − ∆/2|, and

gOR(f(z)) = min
1≤i≤L3

|(fi(z) mod ∆) − ∆/2|,

where ∆ is the quantization step, aij are the secret projection matrix coefficients
and L3 the dimensionality of the projected subspace. The resulting methods
are denoted as QPD-AND and QPD-OR, and the obtained decision regions are
plotted in Figure 3.19 and Figure 3.20 for L3 = 2. The convergence of the
algorithm introduced in Section 3.4.3 for finding the optimal attacking vector will
be very much slower for the OR region, since the cost function has its minimum
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value at a non-differentiable point of gOR. In fact, in such case we will follow
a different strategy in which we try to estimate the L3 projecting vectors; this
implies the complete disclosure of the secret key, and the optimal attacking vector
can be computed as the sum of those vectors.

3.4.4.3. Comparison

This section shows the robustness of the watermarking methods introduced
above to the BNSA attack. Experiments were carried out for both synthetic and
real images, considering two different measures of robustness:

1. The ratio ρ (in dB) between the power needed to achieve an unwatermarked
signal and the embedding power. If the watermarked image is y = x + w
(with x the host and w the watermark) and the attacked image is z = y+t
(with t the output of BNSA), then

ρ = 10 log10

( ||t||2
||w||2

)

.

The average of ρ over a large number of realizations is a good indication
of the robustness of each method against BNSA when used to remove the
watermark. This will be the robustness measure used for synthetic images.

2. The Peak Signal to Noise Ratio (PSNR). In the case of watermark removal,
we will measure PSNR(y, z), whereas for the case of creating forgeries the
measure will be PSNR(x, z).11 This will be the robustness measure used
for real images.

3.4.4.4. Synthetic images

In this case, the host images are random vectors generated according to a
Gaussian distribution, except when the ML detector for the Generalized Gaussian
host is used, where we have chosen the shape parameter to be 0.5. In order to
make a fair comparison, the value of the probability of false alarm Pfa has been
fixed to 10−4, L1 = 2048 and the document to watermark ratio to 16 dB (with
σ2

W = 1) in order to ensure a reasonable probability of missed detection for all the
studied methods. We have used the version of BNSA with the diagonal estimate
of the Hessian.

11Be aware that in both cases the PSNR is given by 10 log10

(

(L1·255)
2

||v||2

)

, where v is the vector

added to the considered image, i.e. in the watermarking removal problem we have v = hy(s),
whereas in the problem of computing forgeries, v = y + hy(s) − x.
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Figure 3.21: ρ averaged over 100 watermarked Gaussian vectors as a function
of the number of iterations, for different decision regions: Add-SS based on a
hyperplane (SS-corr), Add-SS based on the angle (SS-angle), Add-SS ML detector
for Generalized Gaussian distributed hosts with shaping parameter c = 0.5 (SS-
GG), JANIS and QPD for AND regions (QPD-AND). Iteration 0 corresponds to
random attacking vectors (without applying the proposed algorithm).

Figure 3.21 shows the robustness measure ρ versus the number of iterations
of BNSA, for each of the considered watermarking methods. Iteration 0 means
that no BNSA attack was applied, and as such it represents the value of ρ when
the attacking vectors are randomly generated.

It can be seen that at iteration 0 SS-corr is much more robust than SS-angle,
but the robustness of both methods converge to the same value when the number
of iterations is increased. The most robust method against BNSA turns out to
be SS-GG with shape parameter ck = 0.5, even when the power required for
producing an unwatermarked signal is reduced in 11.8 dB after just 3 iterations,
achieving its minimum at -1.79 dB. Close to this result are the -3.21 dB needed
by JANIS, for which the power required to produce an unwatermarked signal is
reduced in 24 dB after 10 iterations.

For QPD-AND with L3 = 10, as soon as one of the projecting vectors has
been estimated, its robustness against BNSA is significantly smaller than that of
the methods commented above. Finally, QPD-OR with L3 = 10 (not plotted in
Figure 3.21) shows the smallest robustness among the considered methods, since
the value of ρ after 10 iterations is only -38 dB.
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3.4.4.5. Real images

In order to reduce the computational cost, the updating algorithm described
in (3.47) was implemented in this case. Once again, the probability of false alarm
Pfa was fixed to 10−4 for all watermarking methods, for the sake of fairness.

3.4.4.5.1. Watermark removal.

Image Lena 256 × 256, i.e. L1 = 65536, was watermarked using the above
described methods with an embedding PSNR, i.e. PSNR(x,y), of 38.58 dB (with
σ2

W = 9). The results are summarized in Table 3.1, which shows the value of
PSNR(y, z) for one iteration of BNSA. It can be seen the similar behavior of
SS-corr and SS-angle, and on the other hand JANIS appears to be most robust
method, supporting the conclusions drawn in Section 3.4.4.4. For illustration
purposes, the image watermarked with JANIS is plotted in Figure 3.22, whereas
the unwatermarked result of applying BNSA can be seen in Figure 3.23. Indeed,
one can observe that the quality of the unwatermarked image obtained by BNSA is
better than the quality of the watermarked one, meaning that BNSA is successful
in estimating the actual embedded watermark, i.e. the attacked image is closer
to the original host image than its watermarked version. This is clearly reflected
on PSNR(x, z), which takes a value of 58.48 dB.

Figure 3.24 is included in order to provide an intuitive idea of the robustness of
JANIS against blind attacks, showing the result of applying to the watermarked
signal Additive White Gaussian Noise (AWGN) with the power necessary to
push the watermarked signal out of the detection region. By comparing this
figure to Figure 3.23, one can realize that strong robustness against additive noise
attacks does not imply at all robustness in the case of smarter attacks, as those
represented by BNSA. The method labeled as Trellis-based [115] in Table 3.1 is
considered here for similar reasons: it stands for the Trellis-based side-informed
method proposed in [115], well known for its robustness against AWGN attacks;
however, it is somewhat surprising to see that an unwatermarked version of Lena
was obtained with a PSNR(y, z) = 52.17, just after one BNSA iteration. In
any case, one must be aware that this method was firstly proposed for decoding
scenarios, not for detection; we have adapted it to detection by comparing the
decoded message with a reference one. Furthermore, the reported results could
vary depending on the chosen parameters: in this case, the parameters were fixed
to a spreading factor of 4, 16 states, and 8 arcs per state.

3.4.4.5.2. Generation of forgeries.

For the creation of forgeries, the original unwatermarked signal x was chosen
to be Baboon (Figure 3.25), whereas the reference watermarked signal is Lena.
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Figure 3.22: Lena watermarked by JANIS. PSNR(x,y) = 38.58 dB.

Figure 3.23: Lena watermarked by JANIS and attacked by BNSA. PSNR(y, z) =
38.31 dB.

The results shown in this section were obtained after 10 BNSA iterations, and are
summarized in Table 3.2. We want to highlight here the result obtained for SS-
GG, for which the detection regions are modified when the host statistics change,
complicating the optimization problem: the resulting forgery can be found in
Figure 3.26. Likewise, the forged Baboon for JANIS detector is represented in
Figure 3.27.
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Figure 3.24: Lena watermarked by JANIS and attacked by AWGN.

SS-corr SS-angle JANIS Trellis-based [115]
PSNR(y, z) (dB) 40.25 40.25 38.31 52.17

Table 3.1: Values of PSNR(y, z) for Lena image, after one iteration of BSNA for
different watermarking methods.

Figure 3.25: Original Baboon 256 × 256.

3.4.5. Computational complexity

One question that needs to be answered is the amount of calls to the detector
that are required to achieve the results presented so far. With this aim, the num-
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Figure 3.26: Forgery of Baboon for the ML detector of Generalized Gaussian
distributed hosts. PSNR(x, z) = 32.03 dB.

Figure 3.27: Forgery of Baboon for JANIS. PSNR(x, z) = 50.69 dB.

ber of calls per dimension needed to perform one iteration of BNSA was averaged
for all the images considered in Section 3.4.4.5. Interestingly, this number was
about 58 for all the methods analyzed in this section, independently of whether
the attack consisted in removing the watermark or forging watermarked images.
In this computation we used the initialization step and the definition of hy(·) pro-
posed in Section 3.4.3.1, whereas matrix Bk was set to the identity and Armijo’s
rule was chosen for the line search. The tolerance for the bisection algorithm
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SS-corr SS-angle SS-GG JANIS
PSNR(x, z) (dB) 55.73 55.23 32.03 50.69

Table 3.2: Values of PSNR(x, z) for the forgeries of Baboon, after 10 iterations
of BSNA for different watermarking methods.

was set to 10−12. This implies that each iteration of BNSA for our test images
needs about 3.8 × 106 calls to the detector. Although this large number could
be frightening at first sight, the attack is still practical, as it is confirmed by the
experimental part of this work. In any case, note that the number of calls to the
detector required by the non-iterative method proposed in [67] will be similar to
that needed by one iteration of BNSA, since in both cases L1 boundary points
must be located using a binary search (bisection algorithm).

As a final remark, note that our conclusions do not necessarily generalize
to other schemes; in fact, one possible countermeasure against BNSA could be
based on the design of detection regions which need a large number of iterations
of BNSA to converge to an acceptable solution.

3.4.6. Final remarks

Following are some guidelines on how to measure the robustness of water-
marking methods against BNSA, and the application of BNSA to new scenarios:

Although ρ can be seen as a measure of the robustness of a watermarking
method against BNSA, note that this measure does not provide full infor-
mation on the behavior of a particular method; for instance, QPD methods,
which have been shown here to be quite weak against BNSA, have a very
good Receiver Operating Characteristic in AWGN channels (see [126] for a
comparison with SS-corr).

Taking into account that it just needs the binary output of the detector, the
BNSA is also suitable for detectors based on zero-knowledge protocols [5],
where, at the end, regardless of the domain where the detection function
is computed, the detector will output a binary decision which can be used
by the proposed algorithm to estimate the underlying detection region.
The only difficulty that could emerge, is related to the bandwidth and
computational cost required by these methods; but this is their limitation,
not a problem intrinsic to the BNSA.

The detection regions based on fractal curves proposed in [111] are also
suitable for being attacked by BNSA. Although the decision boundaries
are non-parametric, the attacker could try to estimate their envelope, since
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this estimation will be usually enough to remove the watermark or create
forgeries. From a practical point of view, the envelope can be estimated by
computing (3.45) and (3.46) with a large value of δ.

As a final remark, the approach presented in this section can be also used in
the case of data-hiding systems, since the decoding process is nothing but
a multiple hypothesis test. In this case, any change of the decoder output
should be interpreted as if it were done by a change in the detector output;
this is equivalent to have the following binary hypothesis: a) the decoded
message is changed; b) the decoded message is unaltered.

3.5. Game Theoretic Approach

In this section Add-SS, DC-DM with uniform scalar quantizers and repetition
coding and scalar STDM are analyzed from a game-theoretic point of view, using
the probability of bit error as the payoff. The theoretical expressions for the BER
obtained in the previous sections are optimized to derive the strategies for both
the attacker and the decoder, assuming that the embedder simply follows point-
wise constraints given by the perceptual mask. Experimental results supporting
our analyses are also shown, with examples of watermarking in the spatial domain
as well as the block DCT domain.

3.5.1. State-of-the-art

In the literature there is a number of works dealing with watermarking from a
game-theoretic approach, e.g. [34, 122, 121, 119, 142, 143]. In this section we will
recall the main results of these works, as well as the framework and assumptions
they are based on.

3.5.1.1. The Gaussian Watermarking Game

One of the most relevant works is [34], where the embedding and decoding
functions, as well as the distributions of the original host signal and of the secret
key are assumed to be public. Since the embedding and decoding functions are
fixed before the attack, the Maximum-Likelihood decoder, which requires knowl-
edge of the attack, is not included in this scenario; therefore, it can be considered
a conservative approach. On the other hand, attacking noise is modeled as a
deterministic mapping which depends on an attacker’s key and the watermarked
signal; the attacking distortion is measured with respect to the watermarked
signal. Both the blind and non-blind watermarking cases (denoted respectively
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as public and private) are studied in different frameworks. The payoff function
used throughout most of the paper is the so-called Coding Capacity, which is de-
fined as the supremum of all achievable rates (of reliable transmission); the main
conclusions of this paper are:

Reliable transmission is not possible in either version of the game if aver-
age distortion constraints are taken into account, instead of almost surely
distortion contraints.

A Gaussian host signal yields the highest coding capacity: the embedder
takes advantage of the uncertainty of the host signal to transmit the water-
mark, and it is well-known that the Gaussian is the distribution with the
highest entropy for a given variance.

When the original host signal is an i.i.d. Gaussian sequence with zero mean
(Gaussian watermarking case), the capacity of the game is achieved for both
the blind and non-blind scenarios.

Costa’s “Writing on dirty paper” [50] can be regarded as a particular case
of the Gaussian watermarking game, where the attacking noise is an i.i.d.
Gaussian sequence independent of Y.

The additive attack watermarking game, where the attacking noise sequence
is independent of the watermarked signal, is shown to be suboptimal for
the attacker. The authors showed that the capacity of Costa’s “Writing
on dirty paper” can be achieved for both the blind and non-blind scenar-
ios, independently of the distribution of the noise, when the host signal is
Gaussian.12 This result can be viewed as an extension of Costa’s result,
since the noise sequence distribution is arbitrary, instead of being an i.i.d.
Gaussian sequence, and its distribution is unknown to the embedder and
decoder; nevertheless, it also shows that the most harmful additive attack
for the watermarking game is an i.i.d. Gaussian sequence.

The payoff function could also be some mutual information based measure,
yielding the so-called mutual information games; in this case, the game is
played between the embedder and attacker, having the last one full knowl-
edge of the strategy followed by the former.

As long as the original host signal is a power-constrained ergodic process
noncausally known to the encoder, and the channel noise is a stationary
Gaussian process not known to either the embedder or the decoder, being
both of them independent and independent of the watermark, Costa’s result
is applicable.

12Be aware that this is a sufficient condition, since Erez et al. later showed that this rate can
be achieved in the blind scenario independently of both host and noise distributions [70].
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3.5.1.2. Information-Theoretic Analysis of Information Hiding

Another outstanding paper dealing with watermarking from a game theo-
retic point of view is [122]; in this work the authors state the information-hiding
game for finite alphabets, and afterwards they generalize it for the infinite case.
Similarly to the approach followed in [34], the attacker is assumed to know the
embedding function and the distribution of all the random variables, but not
the secret key; nevertheless, in this case the decoder will be designed taking into
account not just the embedding function, but also the attacking strategy, so the
ML decoder can be considered. Other characteristics of their approach are:

Similarly to [34] the attacks are constrained by taking into account the
distortion they introduce with respect to the watermarked signal, although
the game using constraints over the distortion introduced with respect to
the original host signal is sketched too. Due to the former constraint, the
set of feasible attacks depends on the embedding function, whereas the
set of feasible decoding functions does not depend on the choice of the
embedding function nor on the attacking strategy. Throughout the paper,
just memoryless attacks are considered, except for a final section where a
blockwise memoryless information hiding problem is explored. Concerning
the host signal, it is assumed to be an i.i.d. sequence, and the paper studies
both the non-blind and blind scenarios.

In the proposed information hiding game two cooperative players (embed-
der and decoder) try to maximize a payoff function which the attacker tries
to minimize. This payoff function could be related with the probability of
error or the maximum achievable rate of reliable transmision; the last one
was chosen by the authors. The results obtained for the unidimensional
case and continuous alphabets coincide with those in [34], achieving the
maximum for Gaussian hosts, and they are generalized for the multidimen-
sional case using a sphere-packing argument. If the host signal is zero-mean
non-Gaussian distributed with a given variance, then the hiding capacity
is upper-bounded by that obtained for the previous (Gaussian) scenario.
Following this approach both Add-SS and DC-DM information-hiding ca-
pacities are analyzed.

An interesting by-product of this analysis (performed for continuous alpha-
bets in the unidimensional domain) are the expressions of both the optimal
embedding and the attacking strategies when the host is Gaussian and the
distortion measure is the squared Euclidean norm. For the studied unidi-
mensional case, when the host is available at the decoder, the embedder
consists in scaling the original host signal and adding a Gaussian signal in-
dependent of the original host, whereas the optimal attack is the so-called
Gaussian test channel, from rate-distortion theory [51], which also scales
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the watermarked signal (with a different scaling factor) and adds a Gaus-
sian signal independent of the watermarked signal. In the blind data hiding
scenario both embedding and attacking strategies coincide with those de-
scribed above, with a change on the scaling factor used by the embedder;
in any case, this does not affect the capacity of the system.

Surprisingly, in the small-distortion regime, i.e. when both the allowed
embedding and attacking distortions are much smaller that the host vari-
ance, the Additive White Gaussian Noise (AWGN) attack is asymptotically
optimal; furthermore, the hiding capacity is shown to be asymptotically in-
dependent of the distribution (including the variance) of the host signal.

A final conclusion is that the attack trying to recover the original host signal
using the maximum a posteriori estimation rule, which yields a Wiener
filtering, does not reduce at all the hiding capacity, given that the optimal
decoder is used.

3.5.1.3. The Parallel-Gaussian Watermarking Game

In [121] the authors follow an approach similar to that in [122], extending
some of the results presented therein. Some of the main results are:

Perhaps the most apparent difference with respect to [122], is that in all the
results exposed in [121] the attacking distortion is measured with respect
to the original host signal, instead of taking into account the watermarked
signal. Despite of this difference, the embedding and attacking strategies,
as well as the hiding capacities, are similar to those in [122].

Trying to generalize the previous results, the authors propose to model the
multidimensional host signals as independent parallel-Gaussian channels
(also named sources). They show that given the embedding and attacking
powers devoted to each channel, the optimal strategy for a given channel is
that obtained in the previous unidimensional case, and independent of the
strategies followed on the other channels. Therefore, the problem is simpli-
fied to just finding the optimal allocation of the embedding and attacking
powers; to this end, a numerical optimization algorithm is provided. Fur-
thermore, the asymptotical behavior of channels with both large and small
host signal powers is studied.

If the correlation matrix of the host signal is not diagonal, i.e. if its dimen-
sions are correlated, the solution to the watermarking game is achieved by
diagonalizing the correlation matrix with the Karhunen-Loève transform, in
such a way that the problem is converted again to that of independent par-
allel Gaussian channels described above. Furthermore, if the host signal is
non-Gaussian, its hiding capacity is upper bounded by the hiding capacity



Chapter 3. Robustness 97

obtained for a Gaussian host with the same correlation matrix. Finally, it is
shown that the data-hiding capacity for Gaussian hosts is strictly reduced
by correlation.

If the host signal can be modeled as a stationary Gaussian process with
bounded and continuous spectral density, then the watermarking game is
redefined as a stationary-Gaussian watermarking game. The solution to this
problem is just the extension of the previous results for parallel-Gaussian
channels to the continuous case, i.e. the role previously played by the power
of a given channel, is now played by the spectral density of the host signal.
Taking into account this difference, the power allocation (i.e. the spectral
densities of both the watermark and the attack) is obtained following the
methodology used for the parallel-Gaussian channels.

3.5.1.4. The Zero-Rate Spread-Spectrum Watermarking Game

The two previous works ([122] and [121]) have a clear influence on [119], where
the authors analyze the game among embedder, attacker and decoder/detector
for spread-spectrum watermarking schemes. Next we have described some of the
peculiarities and main results of their analysis:

In this work, both the attacker and the decoder/detector know the distri-
butions of the original host signal, the message, and the secret key. As
in [122] and [121], the decoder/detector is assumed to know the attacking
strategy; this enables the study of the scenario where the decoder/detector
uses the Maximum a Posteriori (MAP) decision rule, which is the optimal
strategy for the decoder/detector. Therefore, the game is played again just
between the attacker and the embedder; the first one tries to maximize a
pay-off function (in this case the probability of error) whereas the second
tries to minimize it. The strategies of embedder and attacker have to verify
a power constraint, which in the case of the attack will take into account
the distortion introduced with respect to the original host signal (similarly
to [121]).

The authors obtained the solution for the scenario with the following char-
acteristics: a) zero-mean Gaussian host signal, b) the watermarked signal
is computed as the result of filtering the addition of the host signal and a
zero-mean Gaussian random vector independent of the host signal, and c)
the attacked signal is computed as the filtering of the watermarked signal
and the subsequent addition of a zero-mean Gaussian random vector in-
dependent of the watermarked signal. Under those assumptions the MAP
decoder is derived, yielding a generalized version of the widely extended
correlation-based decoder. Taking into account this analysis, the authors
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study the detection problem,13 replacing the probability of error by the
averaged distance as pay-off function. For the scalar case, both the em-
bedding and attacking solutions are the above introduced Gaussian test
channel, which is a non-additive strategy. For the vector case, the au-
thors restrict their attention to diagonal processors on the Karhunen-Loève
Transform (KLT) coefficients; a numerical method is provided to compute
the solution.

As a special case of the previous scenario, the use of additive watermarks
and attacks is studied. The obtained solution is a waterfilling strategy
[51], where the attacker spends his/her power in ruining the components
with a small host interference, since those with a large host interference are
already almost not useful before attacking them. On the other hand, the
embedder will spend his/her power in those components with a smaller host
interference. The authors conclude that the additive noise attack is much
less harmful than that combining filtering and additive noise, although in
small-distortion regime both the additive watermarks and attacks asymp-
totically approach the optimal strategy; this result agrees with a similar
one obtained in [122].

3.5.1.5. Works by Somekh-Baruch and Merhav

In [142] and [143] Somekh-Baruch and Merhav studied the games of private
and public watermarking respectively. Some of their results are summarized
below:

In [142] two pay-off functions are considered, yielding to two different games:
the error exponent and the coding capacity. In both cases the host takes
values from a finite-alphabet (discrete) memoryless stationary source, con-
trarily to previous works where the host was assumed to be Gaussian [34];
the authors named private game to the fact of being the host available to the
decoder, i.e. non-blind decoding. The distortions are measured with a gen-
eral function, not necessarily the squared Euclidean distance; furthermore,
the attacking distortion is measured with respect to the watermarked signal.
The probability of non verifying the constraint on the attacking distortion
decreases exponentially with the dimensionality (the authors named it large
deviations distortion constraint); the almost-sure constraint of Cohen and
Lapidoth’s approach [34] can be seen as a particular case of this new for-
mulation. Concerning the game itself, the attacker is aware of embedder

13The decoding problem, i.e. multiple hypothesis testing, is considered at the end as a gener-
alization of the detection analysis, taking into account the union bound. The main conclusion
is that most of errors will be due to the unwatermarked-watermarked decision, not to mistaking
the embedded message.
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and decoder strategy, but the decoder does not know attacker’s strategy;
this obviously constitutes a pessimistic approach. In this framework, the
structure of the embedder, worst case attack and decoder solutions to the
error exponent game are introduced, showing that the order the game is
played does not affect to its result (i.e., a saddle point is achieved). Finally,
the capacity of the watermarking game in the described scenario is found.

The same authors studied the problem of public (i.e., blind) watermarking in
[143]. The scenario is basicly that studied in [142], but for the fact that the
host now is not availabe to the decoder, and the large deviations distortion
constraint is replaced by the almost-sure one. One of the novelties of this
paper compared with the previous ones in the literature is the lack of an
upper bound on the cardinality of the alphabet of the auxiliary random
variable the transmission is based on (i.e., the U of Costa and Gel’fand-
Pinsker). Following authors’ explanation, this is due to the game between
attacker and embedder-decoder studied in this framework, oppositely to
Gel’fan-Pinsker model, where the channel is a known fixed one. Comparing
this result with other ones in the literature where the aforementioned bound
does appear (see [122]), the authors claimed that that paper has a mistake.

3.5.1.6. Works by Le Guelvouit, Pateux and Guillemot

A game theoretic approach was also followed by Le Guelvouit, Pateux and
Guillemot in some of their works, which we will briefly described here:

In [86] the authors studied Add-SS from a game theoretic point of view. In
this work, the authors modeled the host signal as a vector of independent
non identically distributed Gaussian random variables. In the considered
framework the attacker, who is aware of the embedding strategy, is con-
strained to just scale the watermarked signal and to add it AWGN; the
attacking distortion is measured as a weighted squared Euclidean norm of
the difference between the original host signal and the attacked one. The
pay-off of the game is the probability of error when the MAP detector is
used; therefore, the detector is out of the game. In the obtained solution,
three regions are differentiated, corresponding to different attacks: the erase
attack, where the signal is set to 0; the Wiener filtering attack, where no
noise is added, but the watermarked image is filtered using Wiener filter;
and finally, the intermediate attack, which is composed of the filtering and
addition of additive Gaussian noise. Taking this result into account, the
optimal watermark power allocation is computed. One of the main novel-
ties of this work is that the watermarked signal is proposed to undergo a
Wiener filter after embedding, in order to reduce the embedding distortion,
showing the improvement of that strategy.
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This framework was generalized in [87], allowing to consider the reduction
of the host signal interference, as well as the reduction of the interference
due to carriers conveying other symbols; an important consequence of this
generalization is that STDM-like methods can be analyzed. The structure
of the decoder is also modified; now, a linear correlator is considered, and
the authors optimize the weight of each dimension. The same three attack
regions are obtained for this modified framework.

These ideas are also the fundamental of [125], where further discussions
about the dimensionality of the projected domain of STDM, and a geomet-
rical interpretation of watermarking with side information are also intro-
duced.

Finally, in [85] the authors particularize the results obtained in [87] to the
case of no interference due to the host signal, neither to the other carriers.
A dirty paper trellis based code, that recalls that presented in [115], is
proposed to reduce the host signal interference; similarly, some strategies
are introduced aimed at eliminating the interference due to other carriers.

3.5.1.7. Works by Su, Eggers and Girod

In [145] and [144] Su, Eggers and Girod dealt with the best distribution for
the watermark, as well as with the optimization of certain kind of attacks. Some
characteristics of their approach are:

In [145], the authors study the problem of watermark detection (no decod-
ing) based on linear correlation; in the proposed scenario, the detector is
fixed (out of the game), so it does not compensate the attack. The target of
the attacker is to minimize the MSE distortion (measured with respect to
the original host signal) of the attack needed to obtain a signal with a cor-
relation value below a given threshold. An important characteristic of their
approach is that the attacker designs his/her strategy taking into account
the power spectrum of the watermark, meaning that the attacker has the
final word (this is a maxmin problem). Furthermore, Su and Girod just con-
sider attacks which try to remove the watemark by linear, shift-invariant
filtering, and additive noise. The authors show that the optimal attack
consists of estimating the watermark using the Wiener filter, and then sub-
tracting a scaled version of this estimate from the watermarked signal. The
optimal attack should not introduce any additive noise; this occurs because
the fixed correlation detector does not change trying to compensate the
attack. Finally, as a countermeasure, the watermark power spectrum that
maximizes the target distorsion is computed. The result is nothing but a
scaled version of the power spectrum of the original host signal, yielding
the so-called power-spectrum condition (PSC).
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In a later work [144],14 Su, Eggers and Girod study a problem similar to
that in [145], but considering the decoding scenario. In the followed ap-
proach the decoder also plays the game, and it is assumed to perfectly
know the attacker strategy. In turn, the attacker is assumed to perfectly
know the embedder strategy; therefore, this is a max-min-max problem. In
the proposed approach, the target of the attacker is to minimize the chan-
nel capacity constrained to a given attacking distortion, whereas both the
embedder and the decoder try to maximize that capacity verifying a con-
straint on the embedding distortion. These distortions are measured using
MSE and frequency-weighted MSE, in both cases with respect to the orig-
inal host signal. Moreover, similarly to [145], the attacker is constrained
to use linear, shift-invariant filtering and Additive Colored Gaussian Noise.
Concerning the interference due to the host, the two extremes are studied:
conventional blind decoding (where the system does not take advantage
of the knowledge of the original host), and optimal blind decoding (where
the host interference is completely rejected). The obtained optimum attack
can be roughly characterized as adding noise at low attacking distortions,
and discarding frequency components at high attacking distortions. On the
other hand, due to the active role of the decoder, the PSC previously in-
troduced does not longer provide the optimal power spectrum distribution
of the watermark. Therefore, the authors use iterative numerical methods
to compute this optimal distribution, alternately re-optimizing the water-
mark power spectrum and the optimum attack. The main conclusion of
these optimizations for the case of optimal blind decoding is that at low at-
tack distortions white watermarks are nearly optimal, while at high attack
distortions, PSC-compliant watermarks are almost optimal. On the other
hand, for the conventional blind decoding a trade-off between the robust-
ness to the attack and the robustness against the interference due to the
host signal is observed. In this way, for low distortions the optimal water-
mark designing strategy does not allocate power on those frequencies with
largest values of power spectrum of the host, but as the attacking distortion
becomes larger, the watermark becomes more PSC-compliant.

3.5.2. Our approach

The main purpose of this section will be to obtain improved decoding and
attacking strategies (since attacker and decoder will be the only agents involved)
for three of the main data hiding methods, namely, Add-SS, DC-DM with uniform
scalar quantizers and repetition coding, and scalar STDM, using the symbol
decoding error probability as pay-off function. We have chosen those algorithms
because of their widespread use.

14Although [144] was published in 2001 and [145] in 2002, they were respectively submitted
in 2000 and 1999.
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The main differences between our approach and those described above are:

The pay-off function typically studied in the literature is the information
hiding capacity, with the remarkable exception of [119], where the proba-
bilities of detection and decoding errors are used.

The agents involved: in [34] embedder, attacker and decoder played the
game, whereas in [122], [121] and [119] just the embedder and the attacker
take part on it, since the decoder is assumed to be the optimal one, following
a ML or MAP rule.

This last point could be someway criticizable, given that the decoder will
be usually constrained to have reduced complexity and cost, so the decoding
strategy should be as simple as possible; this requirement obviously collides with
the exact estimate of the attack channel needed for the aforementioned decoding
strategies. In this sense, the target of this section will be the optimization of some
decoding parameters which are intended to improve the decoding performance at
the cost of just a reduced complexity increase. With these decoding parameters,
we are trying to modify the usual decoders the least possible. This is feasible
because the proposed decoders have the same structure as the usual ones, and
their improvement is just based on such those optimized parameters, that will
simply weight the decoding criterion (usually the squared Euclidean distance
between the attacked signal and the codewords) at each dimension depending
only on the variance of the attack channel, the host signal, and the watermark.
Obviously, the resulting strategy will not be the optimal one, but in any case
the improvement achieved by this novel approach is shown to be substantial
compared with the strategies typically used so far. In fact, in order to distinguish
the obtained strategies from other suboptimal ones, we will termed them optimal,
but the reader should be aware of this semantic licence.

On the other hand, the embedder, which in the previous works always played
an active role, is kept out of the game in our approach (an exception was made for
the scalar STDM analysis, as it will be described below). All the above described
works in the literature use the squared Euclidean distance computed over the
complete signals to constrain the embedding strategies. Nevertheless, recalling
the discussion in Section 2.2.1, the MSE measures do not have a perceptual
meaning, so we have preferred to establish a coefficient-wise constraint for the
embedder, in such a way that the watermark power corresponding to the i-th
coefficient will verify σ2

Wi
≤ γ2

i , with 1 ≤ i ≤ L1. Taking the last inequality into
account, we will assume that the embedder will just allocate as much power as
possible in all the signal coefficients, i.e. σ2

Wi
= γ2

i for 1 ≤ i ≤ L1, independently
of the strategies followed by attacker and/or decoder; therefore, the embedder is
left out of the game.

One could think of following the same strategy with the attacker, i.e. allocat-
ing as much power as possible in each coefficient. Nevertheless, we have discarded
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the study of such an option because it would yield to a trivial solution. More-
over, the distortion constraint seems to be weaker for the attacker than for the
embedder, so a more relaxed constraint, as the MSE one, could make sense for
the attack. This last consideration is based on the fact that the watermarked
signal should have a high quality, as the buyer/user is going to pay for watch-
ing/listening it, and he/she will not usually allow a reduction in the quality of
the content; contrarily, the attacker could sell the attacked media to less exigent
clients, who would allow a reduction in the quality, if it implied a reduction in its
price.

Taking this discussion into account, we have set a double power constraint
for the attacking vector. On one hand, the MSE introduced by the complete at-
tacking vector will be constrained, as it was done in the above referenced works;
this constraint can be written as 1

L1

∑L1

i=1 σ2
Ni

≤ Dc. One the other hand, try-
ing to overcome the lack of perceptual meaning of the MSE measures (see the
discussion in Section 2.2.1), we will avoid that the attacking power devoted to
a given coefficient were larger that the mean attacking power corresponding to
the set of coefficients which convey a symbol, i.e. σ2

Ni
≤ L2Dc, for 1 ≤ i ≤ L1.

Furthermore, we will constrain the set of feasible attacks to the set of additive
random vectors, with mutually independent components and also independent
of the watermarked signal. In this way, the attacker will just have freedom to
choose the noise distribution and to allocate the attacking power to each dimen-
sion, constrained to the above introduced conditions. In general, this will be a
suboptimal choice for the attacker. Nevertheless, our interest in studying this
attacking strategy is justified by its reduced complexity, the wide use of additive
noise attacks in the literature as a tool to measure watermarking methods ro-
bustness, as well as by the results in [122] and [119], where the optimal attack in
small-distortion regime was shown to be the additive Gaussian one, although the
actual scenario is clearly different of those studied in the mentioned works.

Summarizing, the game consists in the maximization/minimization of the
probability of decoding error Pe, which is a function of the attack power allocation
σ2

N and the decoding weights β, by respectively the attacker and the decoder,
i.e.

min
β

max
σN

Pe(β,σN), or (3.50)

max
σN

min
β

Pe(β,σN). (3.51)

The problem in (3.50) is said to be a minimax problem, and in that case the
decoder plays first than the attacker, that is, the last one knows the strategy
followed by the first one when he/she designs his/her strategy. In a certain sense,
we can say that the attacker has the final word. On the other had, (3.51) is said to
be a maximin problem, where the attacker plays before, and the decoder manages
to know the attack power allocation, taking it into account when designing the
decoding strategy. It can be said that the decoder has now the final word.
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The game has a pure (deterministic) equilibrium if the minmax solution equals
the maxmin one at a given Pe value (called the value of the game) for some
deterministic optimal values σ∗

N and β∗. Then, the payoff function is said to
have a saddle-point at (σ∗

N ,β∗). If this happens, the order in which the agents
play the game is irrelevant as neither the attacker nor the decoder want to deviate
from the most conservative option marked by the saddle-point. Nevertheless, the
order is relevant if there does not exist at least one saddle-point.

Finally, we would like to recall that the indices of the coefficients devoted to
transmit the i-th symbol will depend on the secret key θ through the permutation
Π(·) described in Section 2.1. Given that the attacker has not access to θ, he/she
will not know which coefficients are used to convey a given bit. Therefore, the
attacker will have to renounce to compute the exact probability of error, and
afterwards maximize it; due to this, in our analyses we will assume that the
attacker will just take into account the averaged channel, and not the particular
partition due to a certain value of θ. For the sake of notation, each one of the
possible partitions of the host signal will be denoted as T , and D will be the set
containing them.

3.5.3. Additive Spread Spectrum

As it was said in Section 2.3, the most popular Add-SS decoder is that based
on the cross-correlation (see equation (2.6)) between the received signal and the
spreading sequence, even when this strategy is the optimal one only if both the
host signal and the channel noise are i.i.d. Gaussian distributed, |si| = |sk|, and
γi = γk, for all i, k ∈ {L2 ·(j−1)+1, · · · , L2 ·j}, with j = 1, · · · , Lb. Furthermore,
the generalized version of this decoder using the weighting parameters β was given
in equation (2.8).

If some technique trying to reduce the interference due to the host signal by
using linear filtering were used (as it was suggested in Section 2.3), the correlation
value for the j-th subvector, i.e. rj , sT

j ·zj, with j = 1, · · · , Lb, when T is known
can be modeled as the output of an AWGN channel (see [92]), ri|T = ai|T bi +ui|T ,
i ∈ {1, · · · , Lb}, where

ai|T =

i·L2
∑

k=(i−1)·L2+1

βkhk,kγk, i = 1, · · · , Lb (3.52)

and u1|T , · · · , uLb|T are samples of an i.i.d. zero-mean Gaussian random process
with variance

σ2
ui|T

=

i·L2
∑

k=(i−1)·L2+1

β2
k

[

x2
fk

+

L1
∑

l=1

h2
k,l

(

γ2
l + σ2

Nl

)

− h2
k,kγ

2
k

]

, i = 1, · · · , Lb.

(3.53)
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Since T is generated by θ, we will assume the attacker does not know it. There-
fore, assuming si ∈ {−1, +1} for all 1 ≤ i ≤ L1, he/she will try to maximize
the probability of error considering the averaged channel, whose statistics for the
case of uniform partitions are

a =
∑

∀T ∈D
E(ri|T )Pr(T ) =

1

Lb

L1
∑

k=1

βkhk,kγk (3.54)

σ2
u =

∑

∀T ∈D
Var(ri|T )Pr(T ) +

∑

∀T ∈D
E2(ri|T )Pr(T ) −

(

∑

∀T ∈D
E(ri|T )Pr(T )

)2

=
1

Lb

L1
∑

k=1

β2
k

[

x2
fk

+

L1
∑

l=1

h2
k,l

(

γ2
l + σ2

Nl

)

− h2
k,kγ

2
k

]

+
Lb − 1

L2
b

L1
∑

k=1

β2
kh

2
k,kγ

2
k (3.55)

and since Lb will be typically large, (Lb − 1)/L2
b can be replaced by 1/Lb. Note

that even when the covariance matrix of the averaged channel is no longer diag-
onal, [92] shows that the cross-covariance terms will be small compared with the
diagonal terms, so they can be neglected.

From (2.7), and recalling we are considering the averaged channel

Pe = Q
(

a

σu

)

, (3.56)

from the attacking point of view, the objective will be to maximize the partition-
averaged signal-to-noise ratio given by

SNR ,
a2

σ2
u

(3.57)

while from the decoding point of view, the objective will be to maximize the
signal to noise ratio corresponding to the i-th symbol, given to be

SNRi ,
a2

i|T
σ2

ui|T

(3.58)

for all i ∈ {1, · · · , Lb}, since the decoder knows the partition which is being used,
so he/she knows the probability of error for this partition is

Pe =
1

Lb

Lb
∑

i=1

Q
(

ai|T
σui|T

)

(3.59)
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3.5.3.1. Optimal Decoding Weights for a Known Attack Distribution.

First, we will consider the case in which the attacking-noise distribution is
known and determine the optimal decoding weights vector β∗ that minimizes
the BER in (3.59). Substituting (3.52) and (3.53) into (3.58) and inverting the
result, we obtain the noise-to-signal ratio for the i-th bit, that the decoder should
minimize:

NSRi =

∑i·L2

j=(i−1)·L2+1 β2
j

[

x2
fj

+
∑L1

l=1 h2
j,l

(

γ2
l + σ2

Nl

)

− h2
j,jγ

2
j

]

(

∑i·L2

j=(i−1)·L2+1 βjhj,jγj

)2 , (3.60)

∀ i = 1, · · · , L1.

The problem can be solved in a general form to yield the following optimal
weights

β∗
j =

Khj,jγj

x2
fj

+
∑L1

l=1 h2
j,l

(

γ2
l + σ2

Nl

)

− h2
j,jγ

2
j

, 1 ≤ j ≤ L1 (3.61)

with K any positive constant. Be aware that β∗
j does not depend on the indices of

the other coefficients devoted to transmit the i-th symbol, i.e. it does not depend
on the chosen partition. This means that the attacker could also compute β∗

j in
spite of not knowing the used partition.

3.5.3.2. Optimal Attack for Known Decoding Weights.

In the case that the attacker knows the decoding weights vector β, his/her
problem becomes that of maximizing the NSR in (3.57) subject to an impercep-
tibility constraint. It can be proven that for a MSE distortion constraint the
optimal attack would imply concentrating all the distortion in those coefficients
with the largest values of τj =

∑L1

k=1 β2
kh

2
k,j. Note that this strategy will likely

produce visible results and clearly shows that constraining just the MSE may
lead to impractical attacks.

3.5.3.3. Optimal Attack When the Decoder Follows the Optimal
Strategy.

Now, suppose that the decoder knows which distribution the attacker is using,
so that he/she employs the optimal strategy derived in Section 3.5.3.1. In this
case, the best an attacker can do is to minimize (3.57) after replacing βj with
(3.61), while satisfying a certain distortion constraint. Therefore, making the



Chapter 3. Robustness 107

assignments p2
j = x2

fj
+

∑L1

l=1 h2
j,l

(

γ2
l + σ2

Nl

)

− h2
j,jγ

2
j , and qj = hj,jγj the attacker

has to minimize

SNR =

(

∑L1

k=1 βkqk

)2

Lb

[

∑L1

k=1 β2
kp

2
k + β2

kq
2
k

] =

(

∑L1

k=1

q2
k

p2
k

)2

Lb

[

∑L1

k=1

q2
k

p2
k

+
q4
k

p4
k

] . (3.62)

Since p2
j ≫ q2

j we may neglect the second term in the denominator, so we can
reformulate the problem as the minimization of

ϕ ,

L1
∑

k=1

q2
k

p2
k

=

L1
∑

k=1

h2
k,kγ

2
k

m2
k +

∑L1

l=1 h2
k,lσ

2
Nl

, (3.63)

where mk , x2
fk

+
∑L1

l=1 h2
k,lγ

2
l − h2

k,kγ
2
k. Unfortunately, a close look at (3.63)

reveals that each particular noise sample exerts influence on several terms of the
sum, thus making it difficult the interpretation of the solution. Aiming at pro-
ducing meaningful results, for the remaining of this section we will make the
simplification H = diag(h1,1, · · · , hL1,L1) which is reasonable in many practical
situations: as an example we have closely studied Wiener filtering and made the
whole numerical optimization taking into account all the values of hk,l [152], [94].
The results are virtually the same as those we obtained with the proposed simpli-
fication. The explanation is based on the fact that the central element of the filter
is much larger than the others, so the influence of the latter on the optimization

is very small. Therefore, (3.63) becomes ϕ =
∑L1

k=1
γ2

k

x2
fk

h2
k,k

+σ2
Nk

and (3.61) simplifies

to βi =
kγihi,i

x2
fi

+h2
i,iσ

2
Ni

. As in the previous section, the attack is constrained to meet

a condition for the maximum allowed distortion introduced in the image, that is,
Dc ≥ 1

L1

∑L1

j=1 σ2
Nj

and it must also verify σ2
Nj

≤ L2 · Dc. As it was previously
explained, this last condition tries to avoid the effect of assigning all the power to
a few coefficients. One host image coefficient should not be assigned more power
than the average power dedicated to each bit. In this case it can be shown that
the optimal attacking distribution is

σ∗
Ni

2 = min

[

L2 · Dc,

(

ξγi −
x2

fi

h2
i,i

)+
]

, for all 1 ≤ i ≤ L1 (3.64)

where (x)+ , max{x, 0}, and ξ is a suitably chosen parameter so that

1

L1

L1
∑

i=1

min

[

L2 · Dc,

(

ξγi −
x2

fi

h2
i,i

)+
]

= Dc. (3.65)

This strategy is closely related with the so-called waterfilling, which is the solution
achieved in the capacity analysis of channels with colored Gaussian noise (see
[51]).
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Although the analyzed problems are very different, this result is quite similar
to the expression obtained in [119], where after the diagonalization by the KLT,
the eigenvalues of the noise covariance matrix are

σ∗
Ni

2 =
(

ξ2γi − σ2
Xi

)+
, (3.66)

where σ2
Xi

is the variance of Xi and ξ2 a constant such that

1

L1

L1
∑

i=1

(

ξ2γi − σ2
Xi

)+
= Dc. (3.67)

3.5.4. DC-DM with uniform quantizers and repetition
coding

The analysis of DC-DM is clearly more difficult than the previous one. This
difficulty is intrinsically due to the non-linear nature of quantization based meth-
ods. Nevertheless, in Section 3.1.2.2 analytical values of optimal decoding weights
were derived;15 these values (β∗ and β∗∗) were based on the CLT-based approxi-
mations to the probability of decoding error, and took into account the statistics
of U+ or U.

Unfortunately, such an analysis is not possible for the other two scenarios
studied in the previous section. For example, when one tries to compute the
optimal attack for known decoding weights, it is easy to verify that the procedure
of building the Lagrangian and equating its derivatives to zero leads to a system
of nonlinear equations, which requires numerical methods for solving it. Since
this does not shed any light on the strategy that the attacker should follow, we
will not develop it any further.

In order to illustrate the complexity of the game-theoretic analysis of this
scheme, we will focus on the computation of the optimal attack when the decoder
uses the optimal decoding weights β∗, given by (3.13). This problem is rather
difficult to solve even in the simplest cases. In fact, in order to obtain analytical
results we have limited our analysis to the case where the attacker knows the
partition T (which can be regarded to as a worst case scenario for the decoder),
the attack consists on uniform noise with distribution for the i-th dimension
[−ηi∆i, ηi∆i] ([−ηi, ηi] once it has been normalized by ∆i), with ηi the parameter
to be optimized, for all 1 ≤ i ≤ L1, and there is no distortion compensation (pure
DM case); furthermore, the previous MSE and component-wise constraints will be

replaced by the simpler one
∑i·L2

k=(i−1)·L2+1
∆2

k
η2

k

3
≤ Dc(i), i = 1, · · · , Lb. Therefore,

15As it was discussed before, the strategies introduced in this section are suboptimal. In
Section 3.1.2.2 we prefered to termed those weights improved in order to make clear that they
are computed to improve the decoding performance, but they are not necessarily optimal in a
strict sense.
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replacing β∗ by its optimal value in the argument of (3.12), the attacker has to
minimize

SNRi =

i·L2
∑

k=(i−1)·L2+1

(

1
2
− E{U+

k }
)2

Var{U+
k } =

i·L2
∑

k=(i−1)·L2+1

3 (1 − ηk)
2

η2
k

, i = 1, · · · , Lb

constrained to
∑i·L2

k=(i−1)·L2+1

∆2
k
η2

k

3
≤ Dc(i), i = 1, · · · , Lb.

Using the Lagrange multipliers technique, we may proceed to differentiate the
unconstrained functional with respect to ηj and equate to zero to get

(ηj − 1) η2
j − (ηj − 1)2 ηj

η4
j

+ λiηj∆
2
j = 0,

for all ((i − 1) · L2 + 1) ≤ j ≤ i · L2, i = 1, · · · , Lb.

So even in this simple case, the following fourth order equation has to be solved
for every ηj, ((i − 1) · L2 + 1) ≤ j ≤ i · L2,

λiη
4
j ∆

2
j + ηj − 1 = 0 (3.68)

Equation (3.68) gives a hint on the complexity of the problem for DC-DM, because
in such case the noise due to distortion compensation (self-noise) is combined with
the additive noise from the attacker.

3.5.5. Scalar STDM

In this case, the decoder will use the weighting vector β in order to yield
the projected received signal zp, i.e., zpj

=
∑j·L2

i=(j−1)·L2+1 βisiyi. By doing so,

he/she will be able to provide more importance in the decoding process to those
dimensions with a lower level of relative noise. A problem with this approach is
that the embedder should compute xp using the same vector β that the decoder,

i.e. xpj
=

∑j·L2

i=(j−1)·L2+1 βisixi, in order to obtain the decoding centroids at the
same locations that the embedding ones. This implies that the embedder should
be able in some way to estimate the attacking power in order to compute β.
This constraint seems to be rather restrictive; nevertheless, one must take into
account that similar estimates of the channel at the embedder are also needed
for the computation of the distortion compensation parameter α for DC-DM
(and equivalently SCS). Fortunately, in Section 3.5.5.3 it will be shown that such
estimation is not needed when the attacker is assumed to know the permutation
vector, i.e. when he/she knows the coefficients devoted to convey a given symbol.
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Following the procedure in [132] it is straightforward to show that the prob-
ability of decoding error for the i-th bit, i.e. Pe(i), can be approximated by

Pe(i) ≈ 2Q
(

∆i

2σNpi

)

= 2Q





τi

(

∑i·L2

j=(i−1)·L2+1 γjβj

)

2
√

∑i·L2

j=(i−1)·L2+1 σ2
Nj

β2
j



 ,

i ∈ {1, · · · , Lb} (3.69)

where τi ∈ [
√

3, 2] is a function that depends on the ratio
σXpi

∆i
, and consequently

also on β, although in a weaker way (a further discussion about τi can be found
both in [132] and [20]). Therefore, as Q(·) is monotonic, the attacker (decoder)
has to minimize (maximize) the argument of this function in (3.69).

3.5.5.1. Optimal Decoding Weights for a Known Attack Distribution.

If we assume that τi does not depend on β (in fact, there is only a weak
dependence), it can be proven that the optimal weights become

β∗
j =

Kγj

σ2
Nj

, for all (i − 1) · L2 + 1 ≤ j ≤ i · L2, i ∈ {1, · · · , Lb} (3.70)

being K any positive constant.

3.5.5.2. Optimal Attack for Known Decoding Weights.

In this case, we are in the same situation as in Section 3.5.3.2, so all the
considerations made there are perfectly valid here. All the attacking power will
be concentrated in those coefficients with the largest values of β2

k .

3.5.5.3. Optimal Attack When the Decoder Follows the Optimal
Strategy.

If we follow a strategy similar to the one described in Section 3.5.3.3, assuming
that the attacker does not know the actual partition, we obtain an expression like
(3.62), where now pj = σNj

, qj = γj, tj = 0. In this case it is not so clear that
pj ≫ qj. In fact, for WNR> 0, qj > pj. Therefore, the same simplification as
in (3.63) cannot be done and the problem requires to be solved by numerical
optimization. In order to be able to compare the results in previous sections with
some theoretical results on scalar STDM, we have also analyzed the case when
the attacker knows the partition; this could be seen as a pessimistic scenario for
the system. In that case, when the decoder follows the optimum strategy, the
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probability of wrongly decoding a given bit (whose index has been removed for
the sake of simplicity) can be approximated as

Pe ≈ 2Q





τ(
∑L2

j=1 γ2
j /σ

2
Nj

)

2
√

∑L2

j=1 γ2
j /σ

2
Nj



 = 2Q





τ

2

√

√

√

√

L2
∑

j=1

γ2
j

σ2
Nj



 , (3.71)

so the attacker will be willing to minimize
∑L2

j=1 γ2
j /σ

2
Nj

, constrained to
∑L2

j=1 σ2
Nj

≤ Dc. Using Lagrange multipliers, and differentiating with respect

to σ2
Nj

, one obtains

− γ2
j

σ4
Nj

+ λ = 0, (3.72)

where λ is the corresponding Lagrange multiplier. This yields

(σ2
Nj

)∗ = ξγj, for all j ∈ {1, · · · , L2}, (3.73)

with ξ = L2 · Dc/
(

∑L2

j=1 γj

)

.

Finally, we would like to remark that this attacking power allocation leads to
βi = Kj, for all i ∈ {(j − 1) ·L2 + 1, · · · , j ·L2} and j ∈ {1, · · · , Lb}. This clearly
obviates the need for estimating the attack at the embedder, as it was discussed
in the introductory part of Section 3.5.5.

3.5.6. Experimental Results

We show next the results of applying the strategies derived along the previous
sections to real data. In the figures that follow, symbols refer to empirical (Monte
Carlo) simulations, while lines show theoretical results. Empirical data come from
the gray-scale Lena image (256 × 256), for which the spatial perceptual mask γ

has been computed using the edge detection method described in [107], except
for the DC-DM scheme where, for illustrative purposes, we have chosen to work
in the DCT domain, using the perceptual mask proposed by Watson in [160].

First, in Figure 3.28 the Pe’s resulting when different strategies are considered
for Add-SS (Section 3.5.3) are shown. Watermarking has been performed in the
spatial domain with Wiener filtering prior to decoding and 50 pixels per bit
(L2 = 50) have been used. Three cases are analyzed: first, the noise variance σ2

Nj

at each sample is made proportional to γ2
j and β = Kγ, with K any positive

constant; second, the attack is the same as in the previous case but the optimal
decoding weights β∗ are employed; finally, the plot labeled as “worst attack” refers
to the case where the attacker follows his/her optimal strategy knowing that the
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Figure 3.28: BER versus WNR for Add-SS (L2 = 50) showing three different
attacking/decoding strategies.

decoder also uses the optimal decoding weights. In all cases, the theoretical
results lie close to the empirical ones, although for those where the optimal β∗ is
used the difference is larger.

The cases depicted in Figure 3.29 correspond to the binary DC-DM method
where, as mentioned, watermarking is done in the DCT domain. The distortion
compensating parameter α is set to 0.7. In order to establish a meaningful case for
the experiments, we have selected uniform noise proportional to the quantization
step that results when a JPEG quality factor of 80 is selected. Two scenarios are
depicted in Figure 3.29: in the first case, each sample, say the j-th, is scaled by ∆j

at the decoder but no further weighting (i.e., βj = 1) is considered; in the second
plot, the optimal β∗ that follows from applying the results from Section 3.1.2.2
is used.16 For both Figures we have set L2 = 10. The theoretical approximations
are based on the results introduced in [131], so they were computed as

Papprox. = Pr{(T+)TB(T+) > (T+ − 1)TB(T+ − 1)}, (3.74)

where T+
i = |Ti|, for i ∈ {1, · · · , L2}, with T defined in (2.28).

The fact that in the second case the empirical results lie above the theoretical
ones may be surprising at first sight, since the latter was said in [131] (where

16For the sake of computational simplicity, the optimal weights β∗ used in Figure 3.29 were
computed taking into account the statistics of the random variables |Ti|, 1 ≤ i ≤ L2, not
their modulo-lattice reduced versions U+

i , as it should have been done following the results of
Section 3.1.2.2. In any case, Figure 3.29 shows the gain of using the weighting parameters.
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B = IL2×L2) to be an upper bound to Pe. The explanation to this phenomenon is
that in such case some β∗

j take negative values, affecting the validity as an upper
bound of the CLT approximation based on the non-modulo reduced variables.
Note that as we have less noise (i.e., the WNR increases), it becomes more unlikely
to have negative values of β∗ (since E{U+

i }, 1 ≤ i ≤ L2, decreases), so the
theoretical curve and the empirical results get much closer. In any case, be
aware that the exact theoretical values could be also computed using the results
introduced in Section 3.1 (their accuracy can be checked, for example, in Figures
3.3 and 3.9).
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Figure 3.29: BER versus WNR for DC-DM with uniform scalar quantizers and
repetition coding (L2 = 10, α = 0.7), for uniform noise proportional to JPEG
quantization step (QF = 80) when no weights are used, and for the optimal
weighting.

Finally figure 3.30 shows a similar comparison for the case considered in Sec-
tion 3.5.5.2. The decoding weights are set so that β = γ, and the optimal attack
for this case is compared to an attack consisting in using noise variances σ2

Nk

proportional to γk.

3.5.7. Conclusions

As a conclusion of this section, one aspect that clearly requires further study
is that of distortion constraints and their relationship with optimal strategies.
For instance, as it can be checked in Sections 3.5.3.2 and 3.5.5.2, the optimal
attack will likely end up in a visible attacked image. Whether this image keeps
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Figure 3.30: BER versus WNR corresponding to the suboptimal and optimal
attacks for scalar STDM when the attacker knows the decoder weights (L2 = 10).

some of its original value is a moot question that largely depends on the final
application scenario.

Related to this, we can think of the problem where the embedder has an
active role (as we have already done in scalar STDM), and does not just generate
the watermarked image independently of the possible attacks. In any way, the
distortion introduced by the embedder has to be extremely small; in that regard,
we can assume that the attacker has always more freedom to make it difficult the
decoding process.

3.6. Worst Additve Attack for scalar DC-DM

As it was explained in Section 2.5, the lattice decoding approach, where the
decoder operates over variables that are reduced modulo-lattice, is typically used
to decode DC-DM. Its use is based on a complexity reduction, given that a re-
ally reduced number of centroids (only one per possible symbol) must be taken
into account. Furthermore, for very large values of DWR and the most com-
mon distributions of the host, the modulo-lattice reduced version of the host will
be asymptotically uniform over the Voronoi region of the lattice; therefore, the
original host signal distribution has not to be considered in order to perform
the decoding. Nevertheless, the reader should be aware that, in general, the
modulo-lattice reduction operation could be information lossy.
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Despite of this possible information loss, lattice decoding is extensively used
in practical implementations of DC-DM, so the analysis of its maximum reliable
transmission rate is fully justified. The objective of this section will be the study
of this maximum reliable rate for the case of power-constrained additive noise
channels. This problem can be interpreted as a game between embedder, who
must choose the watermarking code in order to maximize the reliable rate, and
the attacker, who tries to find the power-constrained additive noise distribution
which minimizes the rate. In this way, the embedder will choose the lattice Λ and
the distortion compensation parameter α maximizing the reliable rate. On the
other hand, the attacker will be assumed to know Λ and α (this can be regarded as
a pessimistic approach), and will try to find the power-constrained additive noise
distribution fN(n) minimizing the reliable rate (a.k.a. worst power-constrained
additive noise).

3.6.1. Computation of the worst additive noise in the lit-
erature

The problem of finding the worst case additive noise for a given constellation
has been widely studied in the literature. Below, we will summarize some of these
results:

A pioneering paper in this field is [141], where the worst power-constrained
additive noise is studied for the scenario of binary input channels ({−1, +1})
with continuous-valued outputs. In this paper the receiver is assumed to
know the noise statistics, so the ML detector is considered. The p.d.f.
maximizing the probability of error is shown to be a train of Dirac’s delta
functions located at the integers {−K, · · · , K}, with K depending on the
signal-to-noise ratio, and the probability of each delta on whether the re-
lated integer is even or odd.

When the target function to be minimized is the capacity, the optimal noise
is shown to be located on a subset of a lattice. In fact, at least for the cases
considered by the authors, the noise is located at 2Z, with a probability
distribution approaching a Gaussian shape for low SNRs.

These results can be generalized for the case of finite input constellations
that take values on a finite subset of a lattice. The worst power-constrained
additive noise is then shown to be a mixture of two distributions on lattices
that are shifted versions of the input lattice. In any case, be aware that this
framework is far from being the one we are interested in, due to the lack of
the modulo reduction.

The previous work was extended in [112], where the noise is constrained not
only in power but it is also required to be similar to a nominal distribution;
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this similarity is measured with the Kullback-Leibler distance between the
pdf of the studied noise and that of the nominal distribution. The worst
case additive noises when just the similarity constraint is considered, and
when the power constraint is also taken into account are studied; the target
function is in both cases the probability of error of the zero-threshold detec-
tor, paying special attention to the case of Gaussian nominals. When the
similarity constraint is relaxed (allowing for a large difference), the worst
noise approachs a three-point distribution (recalling the result in [141]). Fi-
nally, asymptotical results are also provided for the case of small differences
allowed between the noise pdf and the nominal one.

A framework similar to [112] was later analyzed by the same authors in
[113], where the ML detector is considered. Again, special attention is paid
to Gaussian nominals, and asymptotic behaviors are analyzed.

The computation of DC-DM power-constrained case worst additive attack
(WCAA) obviously differs from the former scenarios in several points:

The input signal, i.e. the watermarked signal, is not assumed to be dis-
tributed on a finite subset.

The modulo-lattice reduction must be considered.

The uniform noise due to the distortion compensation (the self-noise) has
to be taken into account.

These points make the optimization of DC-DM worst additive attack quite par-
ticular. In fact, the problem was not solved even for the simplest case of uniform
scalar quantizers, until [130].

3.6.2. Theoretical Analysis

Given that the maximum reliable rate is given by the mutual information
between the observed signal and the message, this problem can be formulated as

max
Λ,α,v(B)

min
fN(n)

I(Zmod;B), (3.75)

which shows the attacker knowledge about the watermarking code on the order
the game is played. The minimization in (3.75) has to be carried out over the
set of possible additive channels verifying E{||Z − Y||2} = E{||N||2} ≤ L2 · Dc;
therefore, (3.75) is obviously equivalent to

max
Λ,α,v(B)

min
fN(n):E{||N||2}≤L2·Dc

I([v(B) − (1 − α)E + N] mod Λ;B), (3.76)



Chapter 3. Robustness 117

where fN(n) is a pdf, so
∫

fN(n)dn = 1 and fN(n) ≥ 0, for all n ∈ R
L2 . As it

was previously explained, in most of practical scenarios X mod Λ ∼ U(V(Λ)),
so E ∼ U(V(Λ)). Moreover, it is straightforward to see that the capacity will be
maximized for a uniform distribution of v(B) over V(Λ) (see [70] for a further
discussion on this topic); since an infinite number of vectors v(B) must be avail-
able to obtain such distribution, also an infinite number of messages is required,
i.e. P → ∞.

Furthermore, as it was introduced in [130], the worst additive attack will no
longer be the Gaussian one, as it could be thought, since there will exist other
distributions whose modulo reduced version will have the same pdf than the
modulo reduced version of the Gaussian one, but with lower variance. Considering
this effect, the worst case distribution has to be computed in order to know the
maximum reliable rate. In order to do so, we will assume that all the messages
have the same probability, and all the codewords are equidistant; be aware that
these hypotheses are not so restricting as they might seem, as they are verified
in most practical scenarios. Taking into account the structure of the resulting
constellation and denoting U′ , [−(1−α)E+N] mod Λ, the mutual information
in (3.76) was shown to be [130]

I([v(B) − (1 − α)E + N] mod Λ;B) = D
(

fU′(x)||fU′′(x)
)

where U′′ , [v(B) + U′ − v(0)] mod Λ, so fU′′(x) =
1

P Lb

∑

b∈{0,··· ,P−1}Lb
fU′([v(b) + x − v(0)] mod Λ), for x ∈ V(Λ). There-

fore, the mutual information can be seen as the Kullback-Leibler distance
between the pdf of the total noise (fU′), and the average pdf obtained when this
noise is shifted by the dither vector related to each message.

In the next section, the maximum reliable rate in the above described frame-
work will be studied for the case of DC-DM with uniform scalar quantizers, or
equivalently SCS, (i.e., Λ = K · Z, L2 = 1), both for the binary message (i.e.,
P = 2) and the continuous (infinite) approximation (i.e., P → ∞); therefore, in
each of these two cases the only parameter the encoder can play with will be the
distortion compensation parameter α.

3.6.3. Numerical Optimization Results

In this section the results of the numerical optimization introduced so far are
presented; in all of them, we will assume that the host signal verifies the flat-host
assumption, i.e. X mod Λ ∼ U(V(Λ)) and all the elements of Λ have the same
probability of being chosen as the quantized value of the host. Furthermore,
given that we will just study the scalar case, we will assume for representation
purposes, and without loss of generality, that Λ = 2Z.
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First, we will consider the binary case. In Figure 3.31 we can see the maximum
achievable rate, for this scenario. Obviously, the fact of just having two codewords
is constraining the rate to be lower or equal to 1 bit per channel use. Given that we
are interested in computing the maximum of the achievable rates, a maximization
has been performed over the only parameter the embedder can play with: the
distortion compensation parameter α. As it was expected, the achievable rate for
a fixed WNR is always lower for the WCAA (so the worst case attack distribution
is clearly not the Gaussian one), although for some ranges of WNRs this distance
is evidently reduced; this is the case for very low WNRs, and around 2.5 dB. It
is especially remarkable the large difference that can be observed when the WNR
is around 10 dB. But perhaps more striking is to analyze the optimal value of α
obtained for the WCAA. In Figure 3.32 we can compare the value of α obtained
in different scenarios; we can see the optimal value of α numerically computed for
the WCAA (so the solution to the maximim game described above), as well as
the optimal α, also numerically computed, in presence of Gaussian noise. Finally,
both results can be compared with the values of α proposed by Costa [50], Eggers
[65], and Pérez-González in [130]. It is remarkable that the optimal value of α
for the WCAA does not follow at all the value obtained for any of the other
strategies; while α clearly goes to 1 when the WNR is increased in all the other
cases, here it is increased until it achieves a value of 0.63, where it stays (except
for some fluctuations around that value due to numerical errors). This means that
the increase in the power of the attacking noise that we would have by increasing
α is not compensated by the corresponding reduction in the self-noise, i.e. the
power that we allowed the attacker to use is more harmful than that due to the
self-noise. Finally, in Figure 3.33, we can see the pdfs of the worst case additive
attack, when α is set to maximize the achievable rate, for different WNRs.

On the other hand, the maximum achievable rate under both Gaussian noise
and the WCAA, when the input is uniformly distributed over the Voronoi region
of the quantizing lattice (or equivalently P → ∞) can be seen in Figure 3.34. At
first sight, we can see one of the main differences with the previous binary case;
now, the achievable rate can be made as large as desired by increasing the WNR.17

Furthermore, the achievable rate for the WCAA is just slightly lower than that
obtained with Gaussian noise. In Figure 3.34 we can also see the capacity of
Costa’s scheme, given by 1

2
log2(1 + WNR). The asymptotic difference between

the capacity and the achievable rate for both the WCAA and the Gaussian noise
is given by 1.53 dB, i.e. the shaping gain of a hypersphere of infinite dimensions.18

Consequently, if the system designer wanted to close this gap (or at least reduce

17As a matter of fact, the achievable rate would be upper-bounded by log2(P ), but P → ∞.
18The shaping gain is defined as the ratio between the normalized second moment of a hy-

percube and that of the analyzed lattice, i.e. gs(Λ) = −10 log10 (12G(Λ)), with G(Λ) the
normalized second moment of the considered lattice. The region with the smallest normalized
second moment for any dimensionality L1 is the L1-sphere, and that value is lower-bounded by

1
2πe

, achieving it just when L1 → ∞. Therefore, the maximum of the shaping gain is given by
10 log10

(

2πe
12

)

≈ 1.53 dB.
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Figure 3.31: Maximum achievable rate, for the case of binary message (P =
2), and Gaussian and worst case additive attack noise. The optimization was
performed sampling the Voronoi region, i.e. (−1, 1] at 256 points, and α at 100.

it), a form of source coding should be performed. This will be further explained
in Chapter 5, where a method combining both channel coding and source coding
is discussed, showing the advantage of following such an approach. Concerning
the optimization of the distortion compensation parameter, in Figure 3.35 we
can compare the different strategies. On the one hand, the optimized α for the
WCAA, and the value of α maximizing the achievable rate for the Gaussian case;
on other hand the previously explained values proposed by Costa, Eggers, and
Pérez-González are plotted. Note that despite the step-like aspect and the large
variability of the value of α obtained for the WCAA (due to the finite precision
of the optimization algorithm), there is a high resemblance with the other plots.
Finally, in Figure 3.36, we can see the pdfs of the worst case additive attack,
when α is chosen to maximize the achievable rate, for different WNRs. Note
that as long as the WNR is increased, the WCAA seems to approach a Gaussian
distribution.

3.6.4. Subsequent works on the worst additive attack for
DC-DM

After the worst power-constrained additive attack for DC-DM was for the first
time introduced in [130], several other works have dealt with this subject. Next,
we will summarize some of them:
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Figure 3.32: Optimal distortion compensation parameter α, for the case of binary
message (P = 2), and Gaussian and worst case additive attack noise. These
results, which were obtained by numerical optimization, are compared with the
optimal value of α by Costa [50], α = σ2

W /(σ2
W + σ2

N), the approximation given
by Eggers [65], α =

√

σ2
W /(σ2

W + 2.71σ2
N), and the value proposed by Pérez-

González in [130]. The optimization was performed sampling the Voronoi region,
i.e. (−1, 1] at 256 points, and α at 100.

In [158] the authors addressed the problem of finding the noise distribution
maximizing the probability of error for the minimum distance decoder; the
noise is constrained to be additive, power-constrained and similar to a target
distribution, resembling the approach followed in [112]. Considering the
obtained results, they proposed to follow a 3 Dirac’s deltas distribution,
parameterized by the distance from the two extreme deltas to the origin
and their probability. An interesting by-product of this analysis is the
proposal of a near-optimal distortion compensation parameter α = 2/3, for
which the probability of error can be upperbounded for a given WNR.

A similar approach was followed in [157] and [155], where the mutual in-
formation problem is also studied; the mutual information values obtained
for Gaussian and uniform attacks are compared with those obtained by the
worst case additive attack. The same subject is retaken in [156], where
the authors show that the 3 delta attack asymptotically produces the same
probability of error than the real worst additive attack.

The problem of finding the worst additive attack was also studied for the
non-blind Add-SS watermarking in [82]. In this work, both watermark and
attack are constrained in amplitude due to the Just Noticeable Difference
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Figure 3.33: Worst case additive attack pdfs for a binary message and different
WNRs, with α optimized for every WNR: (a) −20 dB, (b) −15 dB, (c) −10 dB, (d)
−5 dB, (e) −2 dB, (f) 0 dB, (g) 3 dB, (h) 10 dB and (i) 15 dB. The optimization
was performed sampling the Voronoi region, i.e. (−1, 1] at 256 points, and α at
100.

(JND) level; binary and quaternary input alphabets are analyzed. The
payoff functions were chosen to be the probability of decoding error and
the capacity of the system. For both of them the optimal distribution of
the attack and the watermark are computed.

The same authors considered in [81] a minimax problem, where the embed-
der computes the value of α minimizing the probability of error of the ML
detector, whereas the attacker computes the distribution of the memoryless
attack which maximizes such probability of error. The obtained results are
based on the Bhattacharyya bound. In order to gain robustness, the au-
thors proposed the use of randomly rotated lattices; in that case, the worst
attack pdf is shown to be a radial one, so it has memory.

A similar strategy (i.e. ML decoder, minimax problem, Bhattacharrya
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Figure 3.34: Maximum achievable rate, for the case of uniform input (P →
∞), and Gaussian and worst case additive attack noise. The optimization was
performed sampling the Voronoi region, i.e. (−1, 1] at 256 points, and α at 100.

bound and randomized rotation) is also followed in [117], where DC-DM
is combined with repetition coding in order to improve the decoding per-
formance. Worst additive noise distributions are provided for the cases
of a hexagonal lattice and a randomly rotated cubic lattice (radial noise).
Another contribution of this paper is the consideration of a more general
target function: this function is a generic upper bound on the probability
of error, in such a way that both Bhattacharrya and Chernoff bounds can
be considered as particular cases of it.

Finally, in [150] the mutual information game for SCS (or equivalently DC-
DM with uniform scalar quantizers) is considered. In the proposed frame-
work the embedder is allowed to play with the distribution of the input
and the distortion compensation parameter α, whereas the attacker, who is
assumed to know the embedder strategy, is restricted to additive attacks.
Since inputs uniformly distributed over the Voronoi region of the uniform
scalar quantizer maximize the mutual information, this will be the chosen
distribution. The resulting problem is solved by using the Blahut-Arimoto
algorithm. Obviously, the obtained results are equivalent to those in [130]
when P → ∞, since in that case the resulting input pdf is also (asymp-
totically) uniform over the Voronoi region of the uniform scalar quantizers,
and the optimization is just performed over fN(·) and α.
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Figure 3.35: Optimal distortion compensation parameter α, for the case of uni-
form input (P → ∞), and Gaussian and worst case additive attack noise. These
results, which were obtained by numerical optimization, are compared with the
optimal value of α by Costa [50], α = σ2

W /(σ2
W + σ2

N), the approximation given
by Eggers [65], α =

√

σ2
W /(σ2

W + 2.71σ2
N), and the value proposed by Pérez-

González in [130]. The optimization was performed sampling the Voronoi region,
i.e. (−1, 1] at 256 points, and α at 100.

3.7. Conclusions

In this chapter the performance of the most relevant state-of-the-art methods
(paying special attention to DC-DM) has been analyzed under a wide range
of attacks: from the classically considered additive noise, or the also typical
(although rarely analyzed) coarse quantization attack, to the cropping attack,
studied here to show an important weakness of the extensively used STDM-like
methods. Another interesting contribution is the BNSA, a generalized version
of the sensitivity attack, which was shown to be suitable for attacking several of
the most popular watermarking schemes. Nevertheless, one could also wonder
what is the optimal strategy for the attacker and the decoder/detector, when the
former does not have access to an instance of the latter. This is the question
that we tried to solve in our game-theoretic approach, constraining the decoder
to have a simplified structure. Finally, we have also dealt with the problem of
computing the noise distribution that minimizes the achievable rate for scalar DC-
DM and a given attacking distortion; the obtained results provide an enlightening
comparison with those obtained for the Gaussian noise, including a comparison
of the different values of the optimal distortion compensation parameter in each
scenario.
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Figure 3.36: Worst case additive attack pdfs for uniform input and different
WNRs, with α optimized for every WNR: (a) −10 dB, (b) −8 dB, (c) −5 dB, (d)
−2 dB, (e) 0 dB, (f) 5 dB. The optimization was performed sampling the Voronoi
region, i.e. (−1, 1] at 256 points, and α at 100.



Chapter 4

Security

In this chapter we try to distinguish the concepts of security and robustness in
watermarking. In order to do so, first we make a brief historical overview of the
separation of these concepts in the literature. Taking into account the key ideas
of some of those previous works, an information-theoretic approach is followed
to study data-hiding and watermarking security. In this approach, the security
is measured by the mutual information that quantifies the information about
the secret key that leaks from the observation of watermarked documents. This
framework is applied to the analysis of Add-SS and Costa’s data-hiding schemes
in different scenarios. For Add-SS some interesting links are shown between a
measure used in previous works in the literature, which is based on the Fisher
Information Matrix, and our proposed measure. Furthermore, the results for both
Add-SS and Costa’s scheme are compared with those obtained for scalar DC-DM
with uniform scalar quantizers (SCS).

4.1. Historical Overview

During the first years of digital data-hiding research focused mainly on the
analysis of the different proposed methods and their behavior against attacks.
Those attacks were usually divided in intentional and non-intentional, or some
similar classification. For example, in [54] the authors distinguished between
signal transformations and itentional attacks, where the latter including the so-
called statistical averaging attack (related to the collusion attack [100]) and the
sensitivity attack [53], which was extensively explained in Section 3.4.

But it is in [116], which was inspired by [27] and [167], where for the first time
a theoretical framework for analysing watermarking security is proposed. The
author measures the secrecy of the system as the mutual information between
the embedded message B and the watermarked signal Y, i.e. I(B;Y), and the

125
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robustness as the mutual information between the embedded message B and the
received signal Z given the decoding key Θd, i.e. I(B;Z|Θd), clearly separating
secrecy from robustness. In this way, the system is said to achieve perfect secrecy
when the corresponding mutual information is 0, resembling the concept intro-
duced by Shannon in his paper about cryptanalysis [140]. Nevertheless, probably
the most criticizable point of [116] is that the author does not consider the infor-
mation leakage about the secret key that could appear when several watermarked
contents are available.

As it was discussed in Section 3.4.2, asymmetric schemes try to reduce the
risk of attacks aimed at estimating the detection/decoding key; in symmetric
schemes, this estimate could be also used for easily forging falsely watermarked
signals, whereas this is not so straightforward for asymmetric schemes. The main
conclusion of [78], where four asymmetric methods were unified as quadratic
forms, is that one can gain security by increasing the number of parameters
to be estimated (which in this case is achieved by increasing the order of the
decoding/detection function), at the cost of reducing robustness. The proposed
approach has some similarities with that followed in [16].

Nevertheless, although security was starting to be a hot topic in watermark-
ing, there was still a lack of a proper definition. In [96], Kalker took significant
steps towards such definition. First of all, he defined robust watermarking as “a
mechanism to create a communication channel that is multiplexed into original
content”, and whose capacity “degrades as a smooth function of the degradation
of the marked content”. On the other hand, “security refers to the inability by
unauthorized users to have access to the raw watermarking channel”. That ac-
cess includes “removing, detecting and estimating, writing and modifying the raw
watermarking bits”. Nevertheless, this definition does not reflect some crucial
aspects as, for example, the intentionality of the attacks. In that sense intention-
ality and robustness/security can be regarded as independent concepts, being
feasible the four possible combinations of them. Therefore, following Kalker’s
definitions, both intentional and non-intentional attacks may result in a threat
to security.

In [76] the differences between security and robustness are emphasized: secu-
rity is not just related to the removal of the watermark, but also to the embedding
and detection by unauthorized parties. Furthermore, some aspects of the defi-
nitions proposed by the authors somehow collide with, or at least evolved from,
those introduced by Kalker in [96]. For example in [76], the authors claim that
“security deals only with intentional attacks, whereas robustness measures the im-
pact of classical content transformations on the detectability of the watermark”
being “inmaterial” for robustness “whether such transformations are intentional
or not”. Moreover, in the proposed framework robustness attacks are character-
ized by the lack of knowledge of the watermarking scheme by the attacker (those
are usually termed blind attacks), whereas in attacks to security the attacker does
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have knowledge of the system. This clearly resembles Kerckhoffs’ principle [99]
in cryptography, which in fact was translated to watermarking by the authors;
this principle states that the security of a system must rely just on a secret key
that is not known by the attacker, considering that the rest of the parameters of
the system, including embedding and detection/decoding functions, are perfectly
known by the attacker. Taking into account Kerckhoffs’ work the security level
is defined as “the effort (complexity, time, money, ...) the attacker requires to
disclose the secret key”. The authors, inspired by another outstanding work in
cryptography by Diffie and Hellman [60], introduce a classification of attacks:

Only watermarked content attack: just some watermarked contents are
available to the attacker.

Watermarked content pair attack: pairs of original contents and their cor-
responding watermarked versions are available.

Chosen original content attack: a watermark embedder is available.

Chosen watermarked content attack: a watermark detector is available (or-
acle attack).

Finally, the authors adapt the approach proposed by Shannon in cryptography to
measure the uncertainty about the secret key when some encrypted messages are
available to the decoder; in his work [140], Shannon measure this ignorance as the
entropy of the key given the encrypted messages. In [76], the uncertainty about
the secret key when some watermarked contents are available is similarly mea-
sured as the entropy of the key given the watermarked contents. Unfortunately,
some problems appear when the continuous case is studied.

Another interesting work about watermarking security is [18]. Probably the
main innovation of this work is that watermarking is considered as a game with
some rules, which determine the information publicly available. If the attacker
uses only this information, the attack is said to be fair; if he/she tries to learn
more information about the system, the attack is said to be unfair. The infor-
mation publicly available can range from no knowledge, that clearly collides with
Kerckhoffs’ principle, knowledge of embedding and detection algoritms, knowledge
of the detection key (for asymmetric schemes), to knowledge of both embedding
and detection keys, and the algorithms. Similarly to [76], the mutual information
is used to measure the knowledge gained by the attacker. Finally, a definition
of security level, also similar to that in [76], is introduced: “is the amount of
observations, the complexity, the amount of time, or the work that the attacker
needs to gather in order to hack a system”.

One of the most recent and outstanding works on watermarking security is
[30]. In this paper, that was the main inspiration of our subsequent theoretical
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analysis, the authors claim that security and robustness are “neighboring con-
cepts, which are hardly perceived as different”. According to the authors, “the
intentionality behind the attack is not enough to make a clear cut between these
two concepts”; furthermore the definitions of security and robustness by Kalker
[96] are clarified, establishing that robustness is related to “a classical content pro-
cessing (compression, low filtering, noise addition, geometric attack...)”, whereas
security is related to attacks “whose aims are not only the removal of the wa-
termark signal, excluding those already encompassed in the robustness category”.
Following an approach similar to that introduced in [76], that in turn was based
on Diffie-Hellman’s work [60], a classification of attacks is proposed:

Watermarked Only Attack (WOA): only watermarked documents are avail-
able.

Known Message Attack (KMA): the attacker can access to watermarked
documents and the corresponding messages.

Known Original Attack (KOA): the attacker can access to the original host
signal and their watermarked versions.

The authors also continue with the adaptation of Shannon’s concepts about cryp-
tography to watermarking, translating the concept perfect secrecy to perfect cov-
ering, meaning the situation where the observation of watermarked contents does
not provide any information about the secret key. For the case of discrete vari-
ables, the measure proposed to quantify the uncertainty about the secret key
given No observations is the conditional entropy

H(Θ|Y1,Y2, · · · ,YNo) = H(Θ) − I(Θ;Y1,Y2, · · · ,YNo), (4.1)

so the information leakage is proposed to be measured by the mutual information
between the observations and the secret key. Nevertheless, some problems appear
when continuous variables are analyzed; the authors defend that “the entropy (or
the conditional entropy) of a continuous random variable does not measure a
quantity of information, since, for instance, the equivocation can take positive or
non positive values”. This argument can be criticizable, given that differential
entropy of continuous random variables is just related to the volume of their
typical sets [51]; although it can yield negative values,1 its results can be still
really insightful.

Due to these problems with the entropy of continuous random variables, in [30]
the Fisher measure is proposed to quantify the information leakage. The Fisher
Information Matrix [71], can be used jointly with the Cramér-Rao theorem [58] to

1In fact, the differential entropy of a deterministic variable is −∞.
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provide a lower bound on the covariance matrix of an unbiased estimator of a pa-
rameter (in watermarking, the secret key). Specifically, the authors characterize
the information leakage using the variable

N⋆
o = Notr(FIM(Θ)−1), (4.2)

where No is the number of observations, and FIM(Θ) is the Fisher Information
Matrix of the secret key. The larger N⋆

o is, the more secure the system will be, in
such a way that the security level can be measured as O(N⋆

o ). Nevertheless, this
measure neglects some important parameters as the uncertainty in the secret key
or the watermarked signal, as it will be shown in Section 4.4.2.

The framework proposed in [30] is particularized for the security analysis of
Add-SS; in Add-SS the secret key determines the spreading sequences, so the
parameters the attacker would like to estimate, and therefore those involved in
the FIM computation, are such spreading sequences. The analysis is performed
for the three attacks described above, and the main conclusions are:

For KMA the information leakage is linear with the number of observation
No, whereas N⋆

o = O(DWR).

The KOA case is related to a blind source separation in a noisy environment,
and the spreading sequences can be identified up to a signed permutation
ambiguity.

For the WOA case the embedded messages play the role of nuisance param-
eters, that make more difficult the estimate of the spreading sequences.

Finally, the authors of [30] also propose algorithms based on Principal Compo-
nent Analysis (PCA) and Independent Component Analysis (ICA) to get access
to the watermarking channel. We would like to cite another simultaneous work in
the literature [62], where PCA is also used to disclose the watermarking channel.

4.2. Definitions and measures

Based on the works described in the previous section, fundamental defini-
tions and theoretical measures of security have been proposed in [38], and are
summarized next.

Firstly, a definition of robustness is proposed, focusing on the fact that attacks
to robustness are oriented to increase the probability of error of the data-hiding
channel. On the other hand, in attacks to security the attacker is interested
in gaining knowledge about the secret key; in this sense, if this knowledge is
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Figure 4.1: General model for security analysis: embedding (a) and decod-
ing/detection (b).

later used to increase the probability of error, security attacks could be regarded
as a previous step to attacks to robustness. Since the attacker is aware that
he/she is attacking the system, and he/she is assumed to know all the details of
the data-hiding system except for the secret key (following Kerckhoffs’ principle
[99]), all attacks to security are intentional and non-blind. Some other interesting
considerations and relationships between robustness and security can be found in
[38].

In order to define a security measure, Shannon’s cryptographic approach [140]
was translated to data-hiding; this measure was already foreseen for watermarking
by Hernández and Pérez-González in [91]. Nevertheless, some differences must
be taken into account when continuous random variables are considered. In fact,
the entropy in the discrete case, is replaced by the differential entropy in the
continuous case, so even though the entropy of a deterministic discrete variable
is 0, the differential entropy of a deterministic continuous variable is −∞.

Depending on what side of the data-hiding system is considered, security can
be analyzed in two different scenarios, which are depicted in Figure 4.1:

1. For the scenario depicted in Figure 4.1-a, informaton leakage is measured
by the mutual information between the observations Y and the secret key
Θ

I(Y1,Y2, . . . ,YNo ;Θ) = h(Y1,Y2, . . . ,YNo) − h(Y1,Y2, . . . ,YNo |Θ)

= h(Θ) − h(Θ|Y1,Y2, . . . ,YNo), (4.3)

where h(·) denotes the differential entropy, and Yn the n-th observation.2

Equivocation is defined as the remaining uncertainty about the key after

2The observations are produced from independent signals watermarked with the same secret
key Θ.
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the observations:

h(Θ|Y1,Y2, . . . ,YNo) = h(Θ) − I(Y1,Y2, . . . ,YNo ;Θ). (4.4)

This scenario encompasses attacks concerning the observation of water-
marked signals, where it is possible that additional parameters like the em-
bedded message B or the host X are also known by the attacker. The model
is valid for either side-informed and non-side-informed watermarking/data-
hiding schemes.

2. In the scenario depicted in Figure 4.1-b the attacker tries to gain knowledge
about the secret key Θ by observing the outputs B̂ of the detector/decoder
corresponding to some chosen inputs Y; it includes oracle attacks, and the
information leakage is measured by

I(B̂1, . . . , B̂No ,Y1, . . . ,YNo ;Θ),

where, in this case, the Yn are not necessarily watermarked objects but
any arbitrary signal, for instance the result of the iterations of an attacking
algorithm.

In both cases, relationships can be established between the residual entropy
and the variance of the estimation error (namely σ2

EE). For example, for the first
scenario, it is possible to write

σ2
EE ≥ 1

2πe
e2h(Θ|Y). (4.5)

This estimation error variance could be related to the probability of success of
an attack, so (4.5) would enable the computation of the minimum number of
observations needed to achieve a given estimation variance, which ensures certain
probability of success of the attack; this minimum number of observations could
be also considered as a measure of the security of the system. Nevertheless, the
relation between the probability of success of an attack and the variance of the
estimation error is not straightforward, so in the subsequent analyses we will
use the information theoretic measures described above. Finally, and concerning
those measures, we would like to note that from the three involved quantities (i.e.,
h(Θ), I(Y1,Y2, . . . ,YNo ;Θ), and h(Θ|Y1,Y2, . . . ,YNo) for the first scenario,
and h(Θ), I(B̂1, . . . , B̂No ,Y1, . . . ,YNo ;Θ), and h(Θ|B̂1, . . . , B̂No ,Y1, . . . ,YNo)
for the second one), at least two3 must be provided in order to have a complete
picture of the security of the scheme:

h(Θ) just provides information on the a priori uncertainty about the key,
and does not depend on the analyzed watermarking scheme.

3The third measure can be straightforwardly computed from the other two.
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I(·;Θ) just provides information about the information leakage, i.e. the
knowledge the attacker can gain, but it does not help in knowing what was
the a priori uncertainty, or what is the residual (given the observations)
entropy of the secret key. This is an important issue, since the mutual
information could be really small, but if the a priori uncertainty is also
reduced, the system can hardly be thought of as being secure.

h(Θ|·) reflects the uncertainty about the value of the secret key when the
available information is considered, but it does not provide any information
about the a priori uncertainty.

4.3. Analyzed attacks

We have performed the security analyses of the scenario depicted in Figure
4.1-a under several attacks. These attacks are basicly those introduced in [30], al-
though some modifications were introduced, as it will explained later. Depending
on the considered attack, the information theoretic security measures are given
by:

Known Message Attack (KMA): the mutual information between the re-
ceived signal and the secret key, when the sent message is known by the
attacker, is computed as

I(Y1, · · · ,YNo ;Θ|B1, · · · ,BNo) = h(Y1, · · · ,YNo |B1, · · · ,BNo)

− h(Y1, · · · ,YNo |Θ,B1, · · · ,BNo),

so the residual entropy will be

h(Θ|Y1, · · · ,YNo ,B1, · · · ,BNo) = h(Θ) − h(Y1, · · · ,YNo |B1, · · · ,BNo)

+ h(Y1, · · · ,YNo|Θ,B1, · · · ,BNo).

Watermarked Only Attack (WOA): the mutual information between the
observations and the secret key is

I(Y1, · · · ,YNo ;Θ) = h(Y1, · · · ,YNo) − h(Y1, · · · ,YNo|Θ)

and the residual entropy will be

h(Θ|Y1, · · · ,YNo) = h(Θ) − h(Y1, · · · ,YNo) + I(Y1, · · · ,YNo ;B1, · · · ,BNo|Θ)

+ h(Y1, · · · ,YNo|Θ,B1, · · · ,BNo).
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Estimated Original Attack (EOA): In this case the following will be com-
puted

I(Y1, · · · ,YNo ;Θ|X̂1
, · · · , X̂

No

) = h(Y1, · · · ,YNo |X̂1
, · · · , X̂

No

)

−h(Y1, · · · ,YNo|Θ, X̂
1
, · · · , X̂

No

), (4.6)

where X̂
i

, Xi + X̃
i

is an estimate of the original host signal for the i-

th observation Xi and X̃
i

is the estimation error; X̃
i

is assumed to have
power σ2

E and to be independent of Xi. The Known Original Attack (KOA)
proposed in [30] can be regarded to as a particular case of EOA, where the
variance of the original host estimation error is set to 0. On the other hand,
when the original host estimation error is σ2

X , we are in the WOA case, so it
can be also seen as particular case of EOA. The attacker could obtain this
estimate by averaging several versions of the same host watermarked with
different keys, but in order to ensure independence between the key and
the estimate, the watermarked version with the to-be-estimated key should
not be included in the averaging. Other alternative could be to filter the
watermarked signal to compute the estimate of the original host (assuming
the resulting signal is independent of the watermark).

Taking into account (4.6), it is possible to write

h(Θ|Y1, · · · ,YNo , X̂
1
, · · · , X̂

No

) = h(Θ) − h(Y1, · · · ,YNo |X̂1
, · · · , X̂

No

)

+ h(Y1, · · · ,YNo |Θ, X̂
1
, · · · , X̂

No

).

Constant Message Attack (CMA): The attacker does not know which mes-
sage is embedded in each observation, but he/she does know that it is the
same for all of them. This attack makes sense for applications such as fin-
gerprinting or copyright, where the attacker can have access to different
documents, or even different blocks of the same document (this is the case
of video sequences, for example) which are watermarked with the same se-
cret key and the same message, in order to facilitate synchronization. In
this case we will denote the mutual information as:

I(Y1, · · · ,YNo ;Θ|CM) = h(Y1, · · · ,YNo|CM)

− h(Y1, · · · ,YNo|Θ, CM),

where CM stands for Constant Message. Therefore, the residual entropy
will be

h(Θ|Y1, · · · ,YNo , CM) = h(Θ) − h(Y1, · · · ,YNo |CM)

+ h(Y1, · · · ,YNo |Θ, CM).

When No = 1, the superscript denoting the observation will be obviated for
notation simplicity.
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Finally, note that, depending on the method, the secret key could be re-
lated to the watermarking scheme parameters (i.e. the spreading sequence in
spread-spectrum, the dither sequence or lattice rotation parameters in DC-DM,
or the codebook in Costa’s scheme with random codebook) through a determin-
istic function, constructing a Markov chain, in such a way that the attacker could
be interested in just estimating the result of this function and not in the secret
key itself; furthermore, even if he/she wants to estimate the secret key, this esti-
mate will be based on the aforementioned parameters. Therefore, in the following
sections we will study the mutual information and/or residual entropy of these
scheme parameters, i.e. spreading sequences for Add-SS, codebook for Costa’s
scheme, and dither vector for DC-DM, instead of the corresponding to the actual
secret key.

4.4. Security Analysis of Add-SS Watermarking

In order to make a fair comparison with [30], the definition of Add-SS given
at Section 2.3 is now changed to remove the assumption that the coefficients
devoted to convey a given symbol constitute a subvector whose components are
taken from a subset which is disjoint from the subsets corresponding to other
symbols. Now, Lb random vectors Si (i.e., the spreading sequences), one for each
symbol to be hidden, are generated depending on the secret key Θ. In this way,
the embedding function can be written as:

Yj = Xj − 1√
Lb

Lb
∑

i=1

Si(−1)Bj
i , 1 ≤ j ≤ No, (4.7)

with the watermarked signal Yj, the original host signal Xj and the spreading
sequences Si L1-dimensional vectors, where Si,j is the j-th component of the i-th
spreading sequence. The host is modeled as an i.i.d. Gaussian process, Xj ∼
N (0, σ2

XIL1), and the message letters Bj
i ∈ {0, 1}, being Pr{Bj

i = 0} = Pr{Bj
i =

+1} = 1/2. All of these quantities are assumed to be mutually independent.
Since (4.7) is related to the secret key Θ only through the spreading sequences
Si’s, we will measure the security with respect to the Si’s.

4.4.1. Known Message Attack

First of all, we will consider the case with only one observation, that is, No = 1.
In this case, the information leakage can be computed as I(Y;S1,S2, . . . ,SLb

|B),
so for a generic distribution of Si numerical integration must be used. In Fig-
ure 4.2 and Figure 4.3 the results of this numerical integration are shown for the
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Figure 4.2: Results of numerical integration for the equivocation h(S1|Y) and
h(S1|B,Y) in Add-SS for Gaussian and uniform distributions of S1. L1 = 1 and
Lb = 1.

case of one transmitted symbol Lb = 1 and both Gaussian and uniform distribu-
tions of S1 in the scalar case. Those figures show that the information the attacker
can not learn (i.e., h(S1|B,Y)) is larger if S1 is chosen to be Gaussian. Taking
this into account, we will focus on the case Si ∼ N (0, σ2

SIL1). When the sent
symbol is known to the attacker, the following result is derived in Appendix D.1
for L1 > 1, Lb > 1 and No = 1,

I(Y;S1,S2, . . . ,SLb
|B) =

L1

2
log

(

1 +
σ2

S

σ2
X

)

, (4.8)

yielding

h(S1,S2, . . . ,SLb
|Y,B) =

L1

2
log

[

(

2πe
σ2

S

Lb

)Lb

· σ2
X

σ2
X + σ2

S

]

.

The result in (4.8) says that the information that an attacker can obtain is the
same whatever the number of carriers, although the entropy of the key is a linear
function of this parameter (this result applies to a great variety of pdfs for the
key, since by the central limit theorem, the sum of the carriers tends to a Gaus-
sian). This result is also a consequence of the power normalization performed in
(4.7); independently of the number of carriers, the power of the watermark stays
constant.

In Appendix D.2, we analyze the case of one sent bit (Lb = 1), L1 = 1, when
there are several available observations (No > 1), all of them watermarked with
the same secret key. If L1 > 1 and the components are independent, the result is
also valid, after multiplying it by L1, so we can write

I(Y1, · · · ,YNo ;S1|B1, · · · ,BNo) =
L1

2
log

(

1 +
Noσ

2
S

σ2
X

)

, (4.9)
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Figure 4.3: Results of numerical integration for I(Y;S1) and I(Y;S1|B) in Add-
SS for Gaussian and uniform distribution of S1. L1 = 1 and Lb = 1.

which yields

h(S1|Y1, · · · ,YNo ,B1, · · · ,BNo) =
L1

2
log

(

2πe
σ2

Sσ2
X

Noσ2
S + σ2

X

)

. (4.10)

This result shows that I(Y1, · · · ,YNo ;S1|B1, · · · ,BNo) grows non-linearly
with the number of observations, although for large Document to Watermark
Ratios (DWR >> 1) and low values of No the growth is almost linear. Moreover,
(4.9) coincides with the capacity of a Gaussian channel with signal power σ2

S and
noise power σ2

X/No. This suggests that the best method the attacker should fol-
low for estimating S1 is just to average the observations Yi (at least this is the
case when both the host signal and the watermark are Gaussian distributed). In
Figure 4.4 the mutual information is compared with an upper-bound (which is
based on the linear approximation for small values of No) when DWR = 30 dB.

4.4.2. Comparison with the result in [30]

In [30], the security level is defined as O(N⋆
o ), where N⋆

o , Notr(FIM(θ)−1)
with FIM(θ) the Fisher Information Matrix of θ. In this section we try to link
the result obtained in that paper with the one given here for Add-SS KMA when
only one symbol is transmitted, i.e. Lb = 1.

It is shown in Appendix E that the FIM obtained when a constant multiple
(i.e., vector) parameter is estimated in the presence of i.i.d. Gaussian noise,
taking into account No independent observations in the estimate, is No

σ2
X

IL1 , where

σ2
X is the power of the interfering signal (the original host in our case). This
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is the only term considered in [30]. Nevertheless, an additional term should be
included, due to the random nature of the secret key (see [151]):

JPij
= E

[

∂ log fS1
(s1)

∂s1,i

·
∂ log fS1

(s1)

∂s1,j

]

. (4.11)

If S1 is an i.i.d. Gaussian vector, it is easy to prove that JP = 1
σ2

S

IL1 , so FIM(S1) =
(

No

σ2
X

+ 1
σ2

S

)

IL1 , yielding

N⋆
o = L1

σ2
Xσ2

S

σ2
S + σ2

X/No

,

which is obviously related to the proposed information-theoretic approach, since
(4.10) is the differential entropy of a i.i.d. Gaussian random vector with covariance
matrix N⋆

o /(NoL1)IL1 .

On the other hand, if we had considered only the FIM obtained when esti-
mating a constant multiple parameter, the obtained N⋆

o would be L1σ
2
X , which

is obviously related to h(Y1, · · · ,YNo|S1,B
1, · · · ,BNo) = L1No

2
log(2πeσ2

X); this
was the methodology followed in [30]. Therefore, it does not take into account
the entropy of the secret key neither the entropy of the watermarked signal. As
stated in Section 4.2, both terms are relevant for the analysis of the system,
so they should be considered. In fact, h(Y1, · · · ,YNo|S1,B

1, · · · ,BNo) for the
KMA case grows linearly with the number of observations, while the mutual in-
formation will not increase linearly due to the dependence between observations.
The linear approximation is actually an upper-bound; the larger the number of
observations, the worse this approximation is.
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4.4.3. Watermarked Only Attack

Due to the symmetry of the pdfs, it is possible to conclude that the compo-
nents of the watermarked vector Y are still mutually independent, so for Lb = 1
and a single observation, we can write

I(Y;S1) = L1I(Yi; S1,i) = L1 (h(Yi) − h(Yi|S1,i)) (4.12)

= L1 (h(Yi|B = 0) − h(Yi|S1,i)) . (4.13)

In order to determine this for a generic distribution of the spreading sequence
S1, numerical integration should be used, whose results are plotted in Figure 4.2.
Once again, the information the attacker can not learn (i.e., h(S1|Y)) is larger
for the shown cases when S1 is chosen to be Gaussian. Therefore, assuming S1

to be Gaussian, we can write

I(Y;S1) = L1

(

1

2
log

(

2πe(σ2
X + σ2

S)
)

− h(Yi|S1,i)

)

. (4.14)

The rightmost term of (4.14) must still be numerically computed. When
DWR << 1 we can easily analyze the asymptotic behavior of the mutual in-
formation taking into account that h(Y) ≈ h(S1) and h(Y|S1) ≈ h(X) + log(2),
yielding

I(Y;S1) ≈ h(S1) − h(X) − log(2), (4.15)

I(Y;S1|B) ≈ h(S1) − h(X). (4.16)

This explains and quantifies the asymptotic gap between the WOA and KMA
cases, which is exactly log(2) = 0.69 nats. Nevertheless, note that a very small
DWR is not practical, since it would yield unuseful watermarked images. This
case has been introduced here only to shed some light into the general behavior
of the mutual informations. On the other hand, to compute the gap between
a Gaussian and a uniform distribution for S1, h(S1) will be determined in both
cases for a constant variance σ2

S,

h(SGauss)−h(Sunif ) =
1

2
log(2πeσ2

S)− 1

2
log(12σ2

S) =
1

2
log

(πe

6

)

= 0.1765 [nats],

which will be the asymptotic gap (in residual entropy terms) between the Gaus-
sian and uniform cases for both known and unknown messages (see Figure 4.2)
when DWR >> 1, since for a large DWR both I(Y;S1) and I(Y;S1|B) are
approximately 0.

For Lb carriers and one observation, i.e. No = 1, we have, similarly to the
KMA case, the following mutual information:

I(Y;S1,S2, . . . ,SLb
) = L1I(Yi; S1,i, S2,i, . . . , SLb,i)

= L1 (h(Yi) − h(Yi|S1,i, . . . , SLb,i))

= L1

[

1

2
log(2πe(σ2

X + σ2
S)) − h(Yi|S1,i, . . . , SLb,i)

]

,
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where the second term of the last equality must be numerically computed again.

The case of one sent bit (Lb = 1), unidimensional host L1 = 1, and several
available observations (No > 1) needs very expensive numerical computations.
Practical computations demand the reduction of the number of available obser-
vations to a very small value; in that case, the mutual information will be in the
linear region, so no knowledge is available about the growth of the mutual infor-
mation for large values of No. However, it is obvious that the mutual information
in this scenario will be upper-bounded by that obtained for KMA.

4.4.4. Estimated Original Attack

In this case, the attacker will have access to an estimate of the original
host signal, with some estimation error denoted by X̃, which is assumed to be
i.i.d. Gaussian with variance σ2

E, in such a way that for No = 1 we can write

I(Y;S1, · · · ,SLb
|X + X̃) = L1

[

h(Yi|Xi + X̃i) − h(Yi|Xi + X̃i, S1,i, · · · , SLb,i)
]

.

Assuming that σ2
X >> σ2

E, X̃i will be almost orthogonal (and therefore inde-
pendent) to Xi + X̃i, so

I(Y;S1, · · · ,SLb
|X + X̃) ≈ L1

{

h

(

−1√
Lb

Lb
∑

j=1

Sj,i(−1)Bj − X̃i

)

− h

(

−1√
Lb

Lb
∑

j=1

Sj,i(−1)Bj − X̃i|S1,i, · · · , SLb,i

)}

.

This situation is equivalent to that described in 4.4.3, but replacing σ2
X by σ2

E,
so when Lb = 1 it is possible to use Figure 4.2 for obtaining numerical results,

using the Estimation error to Watermark Ratio (EWR), defined as
σ2

E

σ2
S

, instead

of the DWR, in the horizontal axis. When the estimate is perfect, i.e. σ2
E = 0,

the mutual information approaches infinity.

4.4.5. Constant Message Attack

For the case of just one observation available, i.e. No = 1, the CMA is equiva-
lent to the WOA (see Section 4.4.3), since the attacker can not take advantage of
knowing that the same message has been embedded in all the observations. On
the other hand, when several observations are available, we can write

I(Y1, · · · ,YNo ;S1, · · · ,SLb
|CM) =

h(Y1, · · · ,YNo|CM) − h(Y1, · · · ,YNo|S1, · · · ,SLb
, CM) =

h(Y1, · · · ,YNo |CM) − ∑No

i=1 h(Yi|S1, · · · ,SLb
,Y1, · · · ,Yi−1, CM),
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Figure 4.5: Block diagram of Costa’s schemes.

where the leftmost term was already computed in Appendix D.2, and the right-
most one requires numerical computation. Again, as it happened in Section 4.4.3
for WOA, practical computations demand the reduction of the number of avail-
able observations to a very small value; in that case, the mutual information will
be in the linear region, and the behavior of the mutual information for large value
of No can not be predicted.

4.5. Security Analysis of Costa’s construction

(Random codebooks)

As it is well-known, one of the main advantages of lattice-based implementa-
tions of DC-DM is their highly structured nature. This structure makes easier
the embedding and the decoding; but on the other hand, it could be also used
by the attacker to gain knowledge about the complete codebook, making easier
a security attack, so it can be also seen as a security flaw of these methods. We
will talk about the security of lattice-based DC-DM methods in Section 4.6, but
in this section we will try to analyze the performance of side-informed methods
when this structure is removed. In this way we could compare the two extreme
cases: completely structured codebooks, and codebooks without structure at all;
this comparison could provide some insight on the security performance of inter-
mediate situations. Obviously, a codebook without structure can be achieved by
choosing a random codebook. This is the case of Costa’s construction, where the
codebook is random by definition.

In Figure 4.5 the considered framework is represented. The randomness can
be parameterized by a secret key Θ, resulting in a codebook U = f(Θ). This
codebook is partitioned in as many bins as possible messages. Depending on the
sent message b, the corresponding bin in the codebook will be chosen, namely
Ub = g(U , b). Taking into account the host signal X and the distortion compen-
sation parameter α (which belongs to the interval [0,1]) the encoder will look for
a sequence U = h(Ub,X) belonging to Ub such that |(U − αX)tX| ≤ δ, for some
arbitrarily small δ. The watermark signal will be W = U − αX, and the water-
marked signal Y = X + W. Finally, the decoder will observe Z = X + W + N,
where N is the channel noise, independent of both X and W. The random vec-
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tors X, W and N are also i.i.d., with distributions N (0, σ2
XIL1), N (0, σ2

W IL1)
and N (0, σ2

NIL1), respectively, where IL1 denotes the L1-th order identity matrix.

4.5.1. Known Message Attack

4.5.1.1. One available observation (No = 1)

Since knowledge of the codebook and the sent symbol implies knowledge of
the bin in the codebook (i.e., Ub), we can write

I(Y;U|B) = h(Y) − I(Y; B) − h(Y|UB).

In Appendix F.1, we show that if α > 0.2, then

I(Y;U|B) =
L1

2
log

[

σ2
W + σ2

X

(1 − α)2σ2
X

]

,

so

h(U|Y, B) = h(U) − L1

2
log

[

σ2
W + σ2

X

(1 − α)2σ2
X

]

. (4.17)

Since each component of each sequence U follows a Gaussian distribution with
power σ2

W + α2σ2
X , and all of them are mutually independent, it follows that

h(U) =
|U|L1

2
log

[

2πe(σ2
W + α2σ2

X)
]

,

where |U| = eI(U;Z) =
(

[σ2
W +σ2

X+σ2
N ][σ2

W +α2σ2
X ]

σ2
W

σ2
X

(1−α)2+σ2
N

(σ2
W

+α2σ2
X

)

)L1/2

.

Equation (4.17) shows that the higher the DWR is, the higher the residual
entropy becomes, because the host signal is making difficult the estimation of the
secret key. On the other hand, the larger α, the smaller the residual entropy,
since the self-noise is reduced and the estimation becomes easier. In Figures 4.6
and 4.7, the theoretical results are plotted for different values of α and the DWR.

4.5.1.2. Multiple observations (No ≥ 1)

In order to have a first approximation, we will assume that the attacker knows
the index of the codeword related to each observation, which we will denote by the
random vector J . Taking this into account the residual entropy can be written
as

h(U|Y1, · · · ,YNo , B1, · · · , BNo ,J ) = h(U|B1, · · · , BNo ,J )

− I(Y1, · · · ,YNo ;U|B1, · · · , BNo ,J )

≤ h(U|Y1, · · · ,YNo , B1, · · · , BNo).
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Figure 4.6: I(Y;U|B) for Costa in nats vs. DWR, for different values of α and
L1 = 1.

Since the message and the index of the observed codeword are independent of the
codebook, we have that h(U|B1, · · · , BNo ,J ) = h(U). On the other hand,

I(Y1, · · · ,YNo ;U|B1, · · · , BNo ,J ) =

h(Y1, · · · ,YNo|B1, · · · , BNo ,J ) − h(Y1, · · · ,YNo|U , B1, · · · , BNo ,J ) =
∑No

i=1 h(Yi|B1, · · · , BNo ,J ,Y1, · · · ,Yi−1) − h(Yi|U , B1, · · · , BNo ,J ,Y1, · · · ,Yi−1),

but the i-th observation is independent of the previous observations which are not
related to the same codeword. Furthermore, we can arrange the codewords of the
j-th message in such a way that if we denote by Li,j the number of observations
related to the i-th codeword of the j-th message, Li1,j ≥ Li2,j for all i2 > i1 with
1 ≤ i1, i2 ≤ |Uj|, without modifying the entropy. Therefore, for a given realization
of the sequence of messages {B1, · · · , BNo} and J , the previous equation yields

P−1
∑

j=0

|Uj |
∑

i=1

Li,j
∑

k=1

h(Yj,i,k|Yk−1
j,i ) − h(Yj,i,k|Uj,Y

k−1
j,i ,Y

Li−1,j

j,i−1 , · · · ,Y
L1,j

j,1 ), (4.18)

where Yj,i,k is the k-th observation related to the i-th codeword of the j-th
message, and Yk

j,i is the vector containing the k first observations related to such
codeword (the notation has been changed in order to clarify our exposition).

The leftmost term in (4.18) can be developed as

h(Yj,i,k|Yk−1
j,i ) = h(Yj,i,k|Yk−1

j,i ,Uj,i) + I(Yj,i,k;Uj,i|Yk−1
j,i )

= h(Yj,i,k|Uj,i) + h(Uj,i|Yk−1
j,i ) − h(Uj,i|Yk−1

j,i ,Yj,i,k)

= h(Yj,i,k|Uj,i) + h(Uj,i|Yk−1
j,i ) − h(Uj,i|Yk

j,i),
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Figure 4.7: I(Y;U|B) for Costa in nats vs. α, for different values of DWR and
L1 = 1.

where we have taken into account that Yj,i,k given Uj,i is independent of Yk−1
j,i ,

so h(Yj,i,k|Yk−1
j,i ,Uj,i) = h(Yj,i,k|Uj,i). The uncertainty about the value of

one observation when one knows the codeword related to that observation, i.e.
h(Yj,i,k|Uj,i), is identical for all codewords and for all the observations. There-
fore, and for the sake of simplicity, we will remove the subscripts; in that case,
recalling that

U = W + αX

Y = X + W,

we know that the covariance matrix of Y given U can be written as Cov{Y|U} =
(1−α)2σ2

W σ2
X

σ2
W

+α2σ2
X

IL1 (see Appendix F.1); furthermore h(Uj,i|Yk
j,i) is the same for all the

codewords, so we can write U = dY + Y⊥, where Y⊥ is the component of U
which is orthogonal to Y, so Y⊥ = U− dY = (α − d)X + (1 − d)W; due to the
orthogonality of Y and Y⊥,

||U||2 = L1(σ
2
W + ασ2

X) = L1(d
2σ2

X + d2σ2
W + (1 − d)2σ2

W + (α − d)2σ2
X)

= d2||Y||2 + ||Y⊥||2,

yielding d =
σ2

W +ασ2
X

σ2
W

+σ2
X

, and Cov{U|Y} = Cov{Y⊥} =
(1−α)2σ2

W σ2
X

σ2
W

+σ2
X

IL1 . It is also

straightforward to see that Cov{U|Yk
j,i} =

(1−α)2σ2
W σ2

X

k(σ2
W

+σ2
X

)
IL1 .

Finally, the rightmost term in Equation (4.18) can be shown to be
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h(Yj,i,k|Uj,Y
k−1
j,i ,Y

Li−1,j

j,i−1 , · · · ,Y
L1,j

j,1 )

=

{

log(|Uj| − i + 1) + h(Y|U), if k = 1
h(Y|U), if k > 1

.

In order to obtain I(Y1, · · · ,YNo ;U|B1, · · · , BNo ,J ), (4.18) has to be av-
eraged over all possible realizations of {B1, · · · , BNo} and J . We will show
now that the probability of those realizations with Li,j > 1, for any (i, j) ∈
{1, · · · , |Uj|} × {0, · · · , P − 1} goes to 0, when L1 goes to infinity, as long as the
number of observations No verifies a constraint depending on L1. First of all, we
will upperbound the probability of having 2 or more observations related to a
codeword; a possible upperbound is given by

P
{

(i, j) ∈ {1, · · · , |Uj|} × {0, · · · , P − 1} : Li,j ≥ 2
}

≤ [1 − (1 − p)No ]No , Pu,KMA,

where

p ,
1

|U| =

(

σ2
W σ2

X(1 − α)2 + σ2
N(σ2

W + α2σ2
X)

(σ2
W + σ2

X + σ2
N)(σ2

W + α2σ2
X)

)L1/2

.

Then, it can be shown that if No is such that No ≤ (1/p)L1/8, then

lim
L1→∞

Pu,KMA = pL1/4,

i.e., even for the above described exponential increase in the number of obser-
vations, the probability of having 2 or more observations related to the same
codeword decreases exponentially.

Finally, for large values of L1, if |Uj| >> No, which is reasonable since |Uj|
increases also exponentially with L1, then I(Y1, · · · ,YNo ;U|B1, · · · , BNo) can be
accurately approximated as

I(Y1, · · · ,YNo ;U|B1, · · · , BNo) ≈ I(Y1, · · · ,YNo ;U|B1, · · · , BNo ,J )

≈ No

[

h(Y|U) + h(U) − h(U|Y)

− log(|Ub|) − h(Y|U)
]

= No

[

h(U) − h(U|Y) − log(|Ub|)
]

,

since the information provided by J does not change the value of (4.18), given
that, as we have shown, the probability of having more than one observation
related to the same codeword decreases exponentially with L1. In this way,
I(Y1, · · · ,YNo ;U|B1, · · · , BNo) for Costa’s scheme linearly increases with the
number of observations, contrarily to the observed behaviour for Add-SS or DC-
DM (see [127] for this last case, where the dither is the parameter to be estimated).
This can be explained because in those schemes the codewords are repeated for all
the observations, whereas for Costa’s schemes the number of different codewords
is huge, thus reducing significantly the probability of observing twice the same
one.
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4.5.2. Watermarked Only Attack

4.5.2.1. One available observation (No = 1)

Again, knowledge of the codebook and the sent symbol implies knowledge of
the bin in the codebook (i.e., Ub). Therefore, we can write

I(Y;U) = h(Y) − I(Y; B|U) − h(Y|UB). (4.19)

In Appendix F.2, it is shown that if α > 0.2

I(Y;U) =
L1

2
log

[

(σ2
W + σ2

X) (σ2
W σ2

X(1 − α)2 + σ2
N(σ2

W + α2σ2
X))

σ2
W (σ2

W + σ2
X + σ2

N)(1 − α)2σ2
X

]

. (4.20)

Be aware that we are assuming that the embedder transmits at the maximum
reliable rate allowed, thus the expected power of the channel noise will affect the
information leakage (this is further explained in Appendix F.2). For instance,
when σ2

N = 0, the supremum of the maximum reliable rates is achieved, so the
uncertainty about the sent symbol is also maximum, which complicates the at-
tacker’s work, yielding in this case I(Y;U) = 0 (perfect secrecy in the Shannon’s
sense [140]). In any case, using (4.20) we can write

h(U|Y) = h(U) − L1

2
log

[

(σ2
W + σ2

X) (σ2
W σ2

X(1 − α)2 + σ2
N(σ2

W + α2σ2
X))

σ2
W (σ2

W + σ2
X + σ2

N)(1 − α)2σ2
X

]

.

Theoretical results are plotted in Figures 4.8, 4.9, and 4.10, showing their depen-
dence on the DWR, the WNR and α. Since I(Y;U) depends on the transmission
rate and this depends in turn on the expected WNR, the WNR has been fixed in
order to plot the results. Under the light of these plots, several conclusions can
be drawn:

The information leakage increases with α, because a smaller self-noise power
is introduced.

Conversely, the information leakage decreases for growing DWRs, because
the uncertainty about the watermarked signal given the chosen U sequence
is increased. Furthermore, when the DWR is increased, the number of
codewords in the codebook U is also increased, therefore increasing the a
priori uncertainty.

The larger the expected WNR, the smaller the mutual information, because
the embedder can achieve a higher reliable rate, thus increasing the uncer-
tainty of the attacker about the sent symbol, which makes more difficult
his/her job.
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Figure 4.8: I(Y;U) vs. DWR in Costa, for different values of α and WNR = 0
dB. L1 = 1.

4.5.2.2. Multiple observations (No ≥ 1)

In this case, the mutual information can be written as

I(Y1, · · · ,YNo ;U) = h(Y1, · · · ,YNo)

− h(Y1, · · · ,YNo |B1, · · · , BNo ,U)

− I(Y1, · · · ,YNo ; B1, · · · , BNo |U), (4.21)

where I(Y1, · · · ,YNo ; B1, · · · , BNo |U) = NoI(Y; B|U) due to the independence
of the observations. On the other hand, and taking into account the argument
introduced in Section 4.5.1.2, we can see that

h(Y1, · · · ,YNo) ≈ h(Y1, · · · ,YNo|B1, · · · , BNo), (4.22)

since the probability of having two observations related to the same codeword
U (this is the case where the entropy could be reduced with respect to the case
of independent Y’s) exponentially goes to 0; therefore, the fact of knowing the
message each observation is related to does not to help in gaining any knowledge
about Y n.
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Figure 4.9: I(Y;U) vs. α in Costa, for different values of DWR and WNR = 0
dB. L1 = 1.

From (4.21) and (4.22), we can write

I(Y1, · · · ,YNo ;U) ≈ h(Y1, · · · ,YNo|B1, · · · , BNo)

− h(Y1, · · · ,YNo|B1, · · · , BNo ,U)

− NoI(Y; B|U)

= I(Y1, · · · ,YNo ;U|B1, · · · , BNo) − NoI(Y; B|U),

where the leftmost term is the information leakage for the KMA case (see Sec-
tion 4.5.1.2).

4.5.3. Estimated Original Attack

4.5.3.1. One available observation (No = 1)

In Appendix F.3 it is shown that if α > 0.2, then

I(Y;U|X̂) ≈ L1

2
log

[

(σ2
W + σ2

E) {σ2
W σ2

E(1 − α)2 + σ2
N(σ2

W + α2σ2
E)}

σ2
W (σ2

W + σ2
E + σ2

N)(1 − α)2σ2
E

]

,(4.23)

so

h(U|Y, X̂) ≈ h(U) − L1

2
log

[

(σ2
W + σ2

E) {σ2
W σ2

E(1 − α)2 + σ2
N(σ2

W + α2σ2
E)}

σ2
W (σ2

W + σ2
E + σ2

N)(1 − α)2σ2
E

]

.
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Figure 4.10: I(Y;U) vs. α in Costa, for different values of WNR, setting DWR
= 30 dB. L1 = 1.

Therefore, when the attacker has perfect knowledge of the original host signal,
σ2

E = 0 so I(Y;U|X̂) = ∞. The minimum value of the mutual information
corresponds to α = 0.

It can be seen that (4.23) is equivalent to (4.20) but replacing σ2
X by σ2

E.
For that reason, Figures 4.8, 4.9 and 4.10 are still valid, but replacing the DWR
by the EWR. In fact, when an estimate of the original host signal is available,
the actual host signal can be thought of as being on a sphere centered at that
estimate and with squared radius equal to the variance of the estimation error.
Since such a shift should not modify the results, this problem must be equivalent
to having the host on a sphere with squared radius equal to the variance of the
estimation error, but centered at the origin (so σ2

X should be replaced by σ2
E).

Nevertheless, note that the codebook is not designed for this scenario, but for
the original one (where the host signal is completely unknown), so the analysis
performed in Appendix F.3 is still pertinent.
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4.5.3.2. Multiple observations (No ≥ 1)

In this case, the mutual information can be written as

I(Y1, · · · ,YNo ;U , X̂1, · · · , X̂No
) = h(Y1, · · · ,YNo|X̂1, · · · , X̂No

)

− h(Y1, · · · ,YNo|B1, · · · , BNo ,U , X̂1, · · · , X̂No
)

− I(Y1, · · · ,YNo ; B1, · · · , BNo |U , X̂1, · · · , X̂No
),

(4.24)

where

I(Y1, · · · ,YNo ; B1, · · · , BNo |U , X̂1, · · · , X̂No
) ≈ NoI(Y; B|U , X̂),

due to the independence of the observations, and the righmost term was studied in
Appendix F.3. Recalling again the argument introduced in Section 4.5.1.2, where
now σ2

X must be replaced by σ2
E, one can see that the probability of having two

observations related to the same codeword can be upper bounded by Pu,EOA ,

[1− (1− p)No ]No, in such a way that when L1 goes to infinity and No ≤ (1/p)L1/8

lim
L1→∞

Pu,EOA = pL1/4,

with

p ,
1

|U ˆX
| =

(

σ2
W σ2

E(1 − α)2 + σ2
N(σ2

W + α2σ2
E)

(σ2
W + σ2

E + σ2
N)(σ2

W + α2σ2
E)

)L1/2

,

where we have denoted by |U ˆX
| the cardinality of the set of codewords of the

codebook U which are in a hypersphere of radius L1σ
2
E. Be aware that this

hypershpere will be centered at different points X̂
n

for different observations,
so the probability of having two observations related to the same codeword is
even smaller than the estimated one. We would also like to remark that the
bound on No is necessary to ensure the exponential decrease of Pu,EOA, and this
decrease itself has a different argument p for this case and the KMA one studied
in Section 4.5.3.2.

Taking these considerations into account, one can realize that when the num-
ber of observations is exponentially bounded, the mutual information for the EOA
is that obtained for the WOA, but replacing σ2

X by σ2
E.

4.5.4. Constant Message Attack

4.5.4.1. One available observation (No = 1)

Since in this case the attacker does not know which was the embedded symbol,
this scenario is equivalent to the WOA; be aware that this equivalence does not
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hold for the case of multiple observations (No ≥ 2), because in the CMA scenario
the attacker will take advantage of the additional information provided by the
fact that all the observations are related to codewords belonging to the same bin,
as it will be shown next.

4.5.4.2. Multiple observations (No ≥ 1)

Following an approach similar to that of Section 4.5.1.2, the residual entropy
when the attacker knows the index of the observed codeword can be written as

h(U|Y1, · · · ,YNo , CM,J ) = h(U|CM,J ) − I(Y1, · · · ,YNo ;U|CM,J )

≤ h(U|Y1, · · · ,YNo , CM),

and given that the constant message and the index of the observed codeword are
independent of the codebook, we have that h(U|CM,J ) = h(U). On the other
hand,

I(Y1, · · · ,YNo ;U|CM,J ) = h(Y1, · · · ,YNo |CM,J ) − h(Y1, · · · ,YNo |U , CM,J )

=
No
∑

i=1

h(Yi|CM,J ,Y1, · · · ,Yi−1)

− h(Yi|U , CM,J ,Y1, · · · ,Yi−1),

but the i-th observation is independent of the previous observations which are
not related to the same codeword, so for a given constant message b and index
J the previous equation yields

|Ub|
∑

i=1

Li,b
∑

k=1

h(Yb,i,k|Yk−1
b,i ) − h(Yb,i,k|U , CM,Yk−1

b,i ,Y
Li−1,b

b,i−1 , · · · ,Y
L1,b

b,1 ), (4.25)

where we have followed the notation introduced in Section 4.5.1.2. The leftmost
term was already computed there. Assuming that α is chosen in such a way that
perfect decoding is possible, the righmost one can be seen to be

h(Yb,i,k|U , CM,Yk−1
b,i ,Y

Li−1,b

b,i−1 , · · · ,Y
L1,b

b,1 ) =







log(|U|) + h(Y|U), if i = 1, k = 1
log(|Ub| − i + 1) + h(Y|U), if i > 1, k = 1
h(Y|U), if k > 1

.

Similarly to Section 4.5.1.2, one must average (4.25) over all possible realiza-
tions of B and J , so, following the same reasoning, we can see that the probability
of Li,b > 1 for a fixed b and any 1 ≤ i ≤ |Ub| can be upperbounded by

P
(

i ∈ {1, · · · , |Ub|} : Li,b ≥ 2
)

≤ [1 − (1 − p)No ]No , Pu,CMA,
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where

p ,
1

|Ub|
=

(

σ2
W

σ2
W + α2σ2

X

)L1/2

.

Thus, recalling that if No is such that No ≤ (1/p)L1/8, then limL1→∞ Pu,CMA =
pL1/4, so the probability of having 2 or more observations related to the same
codeword decreases exponentially. Therefore, for large values of L1, if |Ub| >>
No, which is reasonable since |Ub| increases also exponentially with L1, then
I(Y1, · · · ,YNo ;U|CM) can be accurately approximated as

I(Y1, · · · ,YNo ;U|CM) ≈ I(Y1, · · · ,YNo ;U|CM,J )

≈ No

[

h(Y|U) + h(U) − h(U|Y)

− log(|Ub|) − h(Y|U)
]

− log(|U|) + log(|Ub|)
= I(Y1, · · · ,YNo ;U|B1, · · · , BNo) − I(U;Z) + I(U;X)

= I(Y1, · · · ,YNo ;U|B1, · · · , BNo) − I(Y; B|U),

4.6. DC-DM security and comparison

In this section, we will briefly review the results obtained by Pérez-Freire et al.
for DC-DM schemes (see [127] and [128]) following the same information theoretic
approach that was used in this thesis to analyze Add-SS and Costa’s scheme. In
order to get the general picture, the results obtained for all three schemes will be
compared, achieving interesting conclusions.

Before starting to enumerate the results about DC-DM security, we would like
to remark that, contrarily to the random nature of Costa’s codebook, DC-DM is
based on a highly structured codebook. In fact, this is one of its advantages, since
this structure dramatically reduces the complexity of embedding and decoding, al-
lowing practical implementations, that are not possible at all for Costa’s scheme,
given that it requires an exhaustive search over the set of possible codewords.
Nevertheless, this structure of DC-DM also reduces the number of parameters
that uniquely characterizes the codebook, therefore reducing the a priori uncer-
tainty about it.4 But the differences from a security point of view are not just
constrained to this reduction in the a priori uncertainty, but also affect the infor-
mation leakage (i.e. mutual information), as it will be shown in the following by
comparing the results obtained by Pérez-Freire for DC-DM with those exposed
above in this work for Add-SS and Costa’s scheme.

4The a priori uncertainty about the parameters of the system could be increased by aug-
menting the dimensionality of the space of those parameters. A way of doing so, is the rotation
of the lattice proposed by Goteti and Moulin in [81] and [117].
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In [127] and [128] Pérez-Freire analyzed the security of lattice-based DC-DM;
in his approach, the security of the system relies only on the secret dither vector
D, which is just known by embedder and decoder. Taking into account some
of the results of his analyses, the following comparison and conclusions can be
driven for the different attacks:

Known Message Attack (KMA):

For one observation, i.e. No = 1, the mutual information for DC-DM, when
σ2

X >> ∆, i.e. under the flat-host assumption, is given by [128]

I(Y;D|B) = −L1 log(1 − α).

Unfortunately, a similar closed formula is not available in general when
No > 1; nevertheless, for Λ = Z

L1 and α ≥ 0.5, Pérez-Freire showed (see
[127]) that

I(Y1, · · · ,YNo ;D|B1, · · · ,BNo) = L1

(

− log(1 − α) +
No
∑

i=2

1

i

)

.

Be aware that in this case the mutual information is clearly non-linear and
concave with the number of observations No; this is due to the fact that in
DC-DM the attacker is always estimating the same codeword, meaning the
same dither vector. On the other hand, in Costa’s scheme each observation
is related to a different codeword, so the previously learned information will
not provide any information about the codeword to be estimated with the
present observation; this implies the observed linear growth of the mutual
information. A behavior somewhat similar to that of DC-DM can be also
observed in Add-SS, where the same set of spreading vectors is estimated
for all the observations, yielding a clearly concave non-linear (logarithmic)
growth rate.

Figure 4.11 shows the information leakage of Add-SS, Costa’s scheme and
DC-DM when only one observation and unidimensional hosts are consid-
ered (i.e., No = 1 and L1 = 1). In Figure 4.12, these results are plotted
again, but using linear ordinate axis; this allows better comparison between
the results of Costa’s scheme and DC-DM. It is specially remarkable the
large resemblance between the theoretical results for Costa and the results
numerically obtained by Pérez-Freire for DC-DM. Furthermore, it is inter-
esting to note the similarity of both Costa and DC-DM with Add-SS at the
range of small DWRs and small values of the distortion compensation pa-
rameter α. As it was already discussed above, one can see the dependence
of the mutual information with α (the largest α, the largest the mutual
information), and with the DWR (the largest the DWR, the smallest the
mutual information). Finally, Figure 4.13 shows the residual entropy of
the three methods when No = 1 and L1 = 1. Probably the most interesting
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Figure 4.11: Comparison of information leakage for Add-SS, Costa’s scheme and
DC-DM, with L1 = 1 and No = 1, for the KMA case.

result of this plot, is the quick increase of the residual entropy with DWR
for Costa. The explanation is that the a priori uncertainty is also increased
with the DWR; the number of codewords needed by Costa’s scheme is in-
creased with the DWR, and the larger the number of codewords, the larger
the a priori uncertainty about the codebook will be. Furthermore, if No ≥ 1
were considered, we could observed how the number of codewords needed
for Costa (and therefore the a priori uncertainty) really explodes with the
number of observations, specially for large DWRs.

Watermarked Only Attack (WOA):

For DC-DM with Λ = Z
L1 , P = 2, and α ≥ 0.5 the mutual information

when one observation is available can be written as [127]

I(Y;D) = −L1 log(2(1 − α)),

and when more observations are at hand, if α ≥ 0.75, then

I(Y1, · · · ,YNo ;D) = L1

(

− log(1 − α) − log(2) +
No
∑

i=2

1

i

)

= I(Y1, · · · ,YNo ;D|B1, · · · ,BNo) − L1 log(2).

Be aware that when α = 0.5, then I(Y;D) = 0, meaning that no knowl-
edge about the dither can be learnt from the observation of watermarked
contents.
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Figure 4.12: Comparison of information leakage for Costa’s scheme and DC-DM,
with L1 = 1 and No = 1, for the KMA case.

Furthermore, the differences with Costa’s scheme results are also clear. On
one hand, the result obtained for Costa differs with respect to that obtained
in the KMA scenario in the total rate that could be transmitted using
No usages of the channel. On the other hand, the difference between the
mutual information for the KMA and WOA scenarios for binary DC-DM
is just the achievable rate in one usage of the channel, i.e. L1 bits. The
explanation to this phenomenon is straightforward. When an attacker gets
the first observation in DC-DM, he/she has uncertainty about the value
of the bit it is related to. Due to this uncertainty, there are two possible
values of Di, 1 ≤ i ≤ L1 for each dimension; therefore, there are 2L1 possible
choices, i.e. L1 information bits. This uncertainty is not increased with the
subsequent observations, since they must be coherent with the first one.
On the other hand, when an attacker gets the first observation in Costa’s
scheme, he/she has an equivalent uncertainty about the value of the message
such that observation is related to. The difference is that this uncertainty
is increased when more observations are available; even if the attacker were
told the message the first observation is related to, he/she would have the
same uncertainty about the message to which the second observation is
related. This would not be obviously the case for binary DC-DM, with
Λ = Z

L1 and α ≥ 0.75, where such information would uniquely determine
the message the subsequent observations are related to. This explains why
the difference between the KMA and WOA cases is linear with No for Costa,
but constant for DC-DM.
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Figure 4.13: Comparison of residual entropy for different data hiding schemes,
with L1 = 1 and No = 1, for the KMA case.

Estimated Original Attack (EOA):

The Estimated Original Attack does not seem to make sense for DC-DM
data hiding methods. Even when some approximations were computed in
[63], they are just valid when the estimation error is uniformly distributed in
a small fraction of the quantization step. Given that this assumption will
be rarely verified in practical scenarios, since it implies a really accurate
estimate of the host, the corresponding comparison will not be made here.

Constant Message Attack (CMA):

As it was previously discussed, CMA with No = 1 is completely equivalent
to WOA with No = 1, so we will focus on the case of No ≥ 1. When No ≥ 1,
the mutual information for DC-DM can be bounded as [128]

I(Y1, · · · ,YNo ;D|CM) ≥ I(Y1, · · · ,YNo ;D|B1, · · · ,BNo) − log(PLb),

where the rightmost term is the mutual information obtained for the KMA
case, minus the logarithm of the messages that can be transmitted in one
usage of the channel, i.e. PLb . Thus, the relation between this result and
that obtained for Costa is evident.
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4.7. Conclusions

In this chapter we have focused on watermarking security. First of all, a brief
historical introduction showed the evolution of this concept on watermarking
research community. Taking into account this discussion, a new watermarking
security definition was proposed, and related to this, an information theoretic
measure was used for the first time to analyze the security of Add-SS and Costa’s
scheme (based on random codebooks). Both schemes’ security is compared with
that of DC-DM obtained by Pérez-Freire. At the sight of these results, we can say
that the host interference can be positive from a security point of view; effectively,
the host makes more difficult the estimation of the system parameters (spreading
sequence, codebook or dither vector, depending on the algorithm), in such a
way that the information leakage for a given DWR is minimized for Add-SS;
for the side-informed methods (both Costa and DC-DM) one can observe that
the smaller the distortion compensation parameter α (and therefore the greater
the host intereference due to the self-noise), the smaller the information leakage.
Furthermore, for all the three methods, the information leakage is reduced when
the DWR is increased. It is also noticeable that the information leakage is reduced
when the rate of the watermarking system is increased; this has an easy intuitive
idea: the higher the rate, the more uncertainty the attacker will have about the
sent symbol, making more difficult the estimate of the system parameters.

Nevertheless, one should also consider that the watermarking security is not
just a function of the information leakage, but the a priori uncertainty about the
system parameters has also to be taken into account; in this sense, the attacker
can take advantage of the highly structured nature of practical watermarking
codes, as those used by Add-SS or lattice-based DC-DM, since in that case the
code is usually uniquely characterized by a reduced (in fact just linear with the
number of dimensions) number of parameters , in such a way that the search
space, and therefore the associated a priori uncertainty, is also reduced. This is
not the case of Costa’s scheme, where the codewords, whose number is increased
exponentially with the number of dimensions, are independently randomly gener-
ated, achieving a huge a priori uncertainty. Unfortunately, it is well-known that
Costa’s scheme is not practical, since it requires exhaustive search over this huge
set of possible codewords.



Chapter 5

Dirty Paper Codes: when
channel-coding meets
source-coding

Structured codes are known to be necessary in practical implementations of
capacity-approaching “dirty paper schemes”. In this chapter we study the perfor-
mance of a recently proposed dirty paper technique, by Erez and ten Brink which
is firstly applied to data-hiding, and compare it with other existing approaches.
Specifically, we compare this technique with conventional side-informed schemes
previously used in data-hiding based on repetition and turbo coding. We show
that a significant improvement can be achieved using Erez and ten Brink’s pro-
posal. We also discuss the adaptation of these codes to data hiding, mainly
related with perceptual questions.

5.1. Introduction

In the last years the usefulness of approaching watermarking as a communica-
tion problem with side information known at the encoder but not at the decoder
has been proven. This model with i.i.d. Gaussian random variables was shown
by Costa [50] to achieve the same capacity as if the side information were also
made available to the decoder. Nevertheless, the main problem with Costa’s con-
struction is that it relies on random codes, which require an exhaustive search
strategy for selecting the codeword to be used, something that is largely imprac-
tical. Due to the importance of Costa’s result, not only to watermarking, but also
to many other applications in communications, a large number of papers dealing
with the possibility of approaching the same result using structured codes have
been written [32, 70].

157
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Erez and Zamir have recently shown [70] that Costa’s result can be achieved
with nested lattices. In fact, they have proven a stronger result in which a
modulo-lattice transformation of the received signal is considered at the decoder;
this result obviously links with the lattice-based DC-DM using lattice decoding
already introduced in this thesis in Section 2.5. As is explained there, lattice de-
coding allows a huge reduction in complexity, as well as the possibility of achiev-
ing capacity without explicitly knowing the pdf of the host signal. Nevertheless,
the question of code construction is not completely solved: Erez and Zamir’s
result applies to lattices verifying quite strict conditions which require that the
fundamental regions approach hyperspheres asymptotically as the number of di-
mensions is increased. Unfortunately, those conditions fall short of being met
by the simplest (and mostly used) lattices, such as the cubic ones. Therefore,
practical solutions demand the use of strategies whose complexity does not rely
exclusively on these simple lattices.

The usually followed solution is to encode the information bits with a near-
Shannon-limit channel code and then take the output bits to index the sub-lattice
used to quantize the host signal (i.e., DC-DM with channel coding). Due to the
redundancy introduced by the channel code, this lattice can be a very simple one,
even allowing for scalar quantization. The good results obtained with this kind
of schemes can be explained from the fact that the channel code concatenated
with a simple lattice is equivalent to a better (and also more involved) lattice.

Summarizing, most of the practical schemes that use structured (in the sense
of lattice-based) codes to approach Costa’s result are composed of a good channel
code concatenated with a quite simple lattice. The encoding and decoding with
the channel code is usually relatively easy, and the same applies when a simple
lattice is chosen, in such a way that the resulting dirty paper coding schemes fall
quite close to Shannon’s limit, while keeping a reasonable computational cost.

Nevertheless, as it was already introduced in Section 3.6.3, if a truly capacity
approaching system is to be designed, the gap to capacity due to the shaping
gain must be reduced. In order to measure this gap, in Figure 5.1 we plot the
achievable rate of a system based on scalar lattices (for both uniform and binary
input distributions) versus the ratio between the energy per bit and the power
spectral density of the noise. The energy per bit will be denoted by Eb, and it
is computed as Eb = σ2

W /R, with R rate of the system. On the other hand, the
power spectral density of the noise is usually denoted by N0/2, and it is computed
as N0 = 2σ2

N . Therefore, the aforementioned ratio Eb/N0 can be expressed as

Eb

N0

=
σ2

W

2Rσ2
N

= WNR
1

2R
. (5.1)

The resulting plot is typically used in the literature to measure the gap to capacity,
since it normalizes the SNR by the achieved rate, so it is a good measure of the
efficency of the system. Retaking Figure 5.1, we can see again, as shown in
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Figure 5.1: Achievable rate vs. Eb/N0 for scalar dirty paper codes, with binary
and uniform input. Costa’s result is also plotted for comparison purposes.

Section 3.6.3, that the achievable rate for the case of binary input is upper-
bounded by 1 bit per use of the channel, whereas the gap to capacity for the case
of uniformly distributed input and scalar quantizers goes to 1.53 dB for large
rates. Nevertheless, the main problem of a scheme based on scalar quantizers
lies in the range of small rates, which in fact are the most used in data-hiding
applications. There, the gap to capacity is unbounded; this explains why it would
be more advantageous to use a spreading sequence in order to follow a STDM-like
strategy. Those strategies are represented in Figure 5.1 by a vertical line from the
point corresponding to the base channel code, meaning that all the rates lower
than that of the used code are achievable for the same Eb/N0; this is based on the
fact that spreading does not modify the Eb/N0, since the WNR needed to achieve
the same performance as the no-spreading case is reduced by the same amount as
the spreading rate. Taking this into account, if scalar quantizers without shaping
are to be used, a smart strategy seems to be using a code of rate about 1/3, and
then spreading in order to improve robustness. Furthermore, binary signalling
yields almost the same results as a uniformly distributed input. This kind of
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Figure 5.2: Achievable rate vs. Eb/N0 for scalar dirty paper codes and uniform
input, compared with the lower bounds obtained for different shaping gain values.
Concretely, the values of shaping gain considered were 0.5 dB, 1.0 dB, 1.25 dB
and 1.5 dB. Furthermore, we have plotted the point corresponding to the code
proposed in [69], i.e. (1.1, 0.25), and that will the used in Section 5.4.

strategy is sometimes called time-sharing in the literature [69].

Finally, following an approach similar to that in [69], where the achievable
rate is lower-bounded by a function of the shaping gain as

I(B; (Z mod Λ)) ≥ 1

2

[

log2(1 + WNR) − log2

(

2πe

12
· 10−gs(Λ)/10

)]

, (5.2)

we have plotted in Figure 5.2 these bounds to the achievable rate against the
Eb/N0 for different values of the shaping gain. Furthermore, we have plotted
the point corresponding to the code proposed in [69], which will be used in Sec-
tion 5.4, and that achieves error-free decoding for rate 1/4, and Eb/N0 = 1.1 dB
(WNR = −1.9 dB), using a 4-QAM constellation combined with trellis-shaping
for reducing the gap to capacity. Summarizing, if a dirty paper code really ap-
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Figure 5.3: General structure of a dirty-paper encoder.

proaching capacity is to be designed, not just channel coding but also source
coding must be employed.

Firstly, some modifications to the notation used throughout this thesis will
be introduced. Afterwards, classical approaches which only use channel coding
will be reviewed. Finally, the method proposed by Erez and ten Brink [68, 69]
that is based on the combination of source coding and channel coding will be
introduced, and its gain over the previous works explained. A fundamental part
of our work consists in the experimental results; they will show the goodness of
the studied method by comparing its performance on a real framework with those
side-informed methods just using channel coding.

5.2. Notation and Unified Framework

The general diagram of the dirty-paper coding schemes is plotted in Figure 5.3.
As it was explained in Section 2.1, we will assume that the host signal is modeled
by a zero-mean random vector Xo = (Xo

1 , · · · , Xo
L1

)T , and prior to embedding we
apply a key-dependent pseudorandom permutation Π(·) to Xo. The permuted
host, denoted by X , Π(Xo), could be projected onto a L3-dimensional space
(L3 ≤ L1), see Section 2.7; this yields Xp = ST ·X, where S is a L1 ×L3 matrix.
Be aware that the concatenation of the permutation matrix and ST can be seen
as a simple projection matrix; nevertheless, we have preferred to separately define
both the permutation and the projection matrix S in order to establish a special
structure on S (diagonal or block-diagonal) without losing generality.

Since channel coding is considered, the length Lb infomation message b could
go through a channel encoder f(·), so c = f(b) is the length Lc channel-coded
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message. For the sake of simplicity, we will assume that both b and c are binary
vectors (P = 2).

The source coding part will be performed by a vector quantizer, whose code
will be denoted by h(·, ·); this will transform the length Lc channel-coded binary
message c into a length L3 vector r, with elements in the alphabet W . The vector
r will depend on both c and Xp. Therefore, h(·, ·) will only make sense when
the vector quantizer is really used; for example, in Section 5.3, where Cartesian
products of scalar vectors are used, its output r will be just a mapping from c.

Let

Λ , |W|ZL3 , (5.3)

then, given r, a shifted-lattice quantizer, Qr(·), based on a minimum Euclidean
distance criterion is defined as

Qr(a) = QΛ (a − v(r)) + v(r), for any a ∈ R
L3 (5.4)

where QΛ(·) is the minimum Euclidean distance quantizer induced by the lattice
Λ, and v(r) = r + d. Vector d is a realization of a key-dependent pseudorandom
dither vector D, which is uniformly distributed over the Voronoi region of Λ, so
in the j-th component Dj ∼ U(−|W|/2, |W|/2], 1 ≤ j ≤ L3.

The watermark in the projected domain Wp becomes

Wp , Qr(αXp) − αXp, (5.5)

which is nothing but the quantization error resulting when quantizing αXp with
the quantizer Qr(·) corresponding to the message r. Considering the structure of
the lattice defined in (5.3), it is clear that the quantization in (5.5) can be imple-
mented in a sample-by-sample basis. The distortion-compensation parameter α,
0 < α ≤ 1, is an optimizable variable akin to the one in Costa’s paper. We would
like to recall that the watermarking scheme resulting from (5.5) is exactly that
introduced in Section 2.7, where the power of the watermark is kept constant
independently of α by inflating the lattice with a factor 1/α (see Appendix A for
the proof).

The inverse projection will be given by the L1 × L3-matrix T, so

W = TWp, (5.6)

where T could be any matrix verifying

ST · T = IL3×L3 , (5.7)

although the matrix simultaneously verifying the last equality and minimizing the
norm of W is the pseudoinverse S(STS)−1. Considering the last formula, (5.6)
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and (5.3), one realizes that the joint design of S and T needs to take into account
the human perceptual feature, in order not to produce perceptually noticeably
watermarks. In this sense, we will see that both of them will depend on the
perceptual mask γ, introduced in Section 2.1.

On the other hand, the received signal Z will be projected using S to obtain
Zp = ST · Z, the projected signal which will be used in the decoding process. In
a similar way, Np = ST · N denotes the projected noise. Both the channel and
predecoder are plotted in Figure 5.4.

5.3. Classical approaches

Once the general framework for decoding has been introduced, we will show
how classical approaches fit in this framework. These methods are typically based
on the use of scalar quantizers instead of a vector one, and the differences among
them are given by their specific values of S, T, f(·) and h(·, ·).

5.3.1. Repetition coding with no projection

In this case, the following identities apply:

S = diag(1/γ1, · · · , 1/γL1),

T = diag(γ1, · · · , γL1),

cj = bi, (i − 1)L1/Lb < j ≤ iL1/Lb, and 1 ≤ i ≤ Lb,

rj = cj, 1 ≤ j ≤ L1, (5.8)

in such a way that any bit bj is repeated L1/Lb times1, so Lc = L1 = L3. Note also
that given (5.8), r will not depend on Xp but only on c, since a scalar quantizer
is being used.

Summarizing, the initial values of X are normalized by the corresponding
value of the perceptual mask γ in order to take into account the perceptual
constraints in the embedding, and the input bits are repeated L1/Lb times.

1We will assume that L1/Lb is an integer.
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5.3.2. Repetition coding with projection

For this method, we have:

sij =

{ Lb

L1

qj

γj
, if (i − 1)L1/Lb < j ≤ iL1/Lb, and 1 ≤ i ≤ Lb

0, otherwise
,

tij =

{

qiγi, if (j − 1)L1/Lb < i ≤ jL1/Lb, and 1 ≤ j ≤ Lb

0, otherwise
,

cj = bj, 1 ≤ j ≤ L1,

rj = cj, 1 ≤ j ≤ L1, (5.9)

with qj ∈ {−1, +1} a pseudorandomly generated spreading sequence, known to
both encoder and decoder. Note that q could follow any other zero-mean unit-
variance distribution (e.g., a Gaussian). The definition of T is also based on
perceptual constraints. The fact of not having a vector quantizer, but a scalar
one is again reflected in (5.9).

Be aware that both of these methods could be seen as extreme cases of a
general one, where the repetition rate L1/Lb is achieved by a first step which
projects from L1 dimensions to L3 and then a repetition channel code which
transforms the Lb bits into L3. Nevertheless, the optimal value for L3 when all
the samples are i.i.d. is L3 = Lb, i.e. no repetition coding, but only projection,
as was shown in [132].

5.3.3. Channel coding with no projection

In this case, we have:

S = diag(1/γ1, · · · , 1/γL1),

T = diag(γ1, · · · , γL1),

c = f(b),

rj = cj, 1 ≤ j ≤ L1. (5.10)

As it can be clearly seen, repetition coding without projection is just a partic-
ular case of the previous methods. Nevertheless, it is interesting to address it
separately due to its practical importance. In practical situations f(·) could be
any kind of channel code: turbo [23, 88], serially concatenated [22], block [108],
LDPC [79], etc.
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Figure 5.5: Structure of f(·) for Erez and Ten Brink’s scheme.

5.3.4. Channel coding with projection

Finally, a last alternative could be:

sij =

{ Lc

L1

qj

γj
, if (i − 1)L1/Lc < j ≤ iL1/Lc, and 1 ≤ i ≤ Lc

0, otherwise
,

tij =

{

qiγi, if (j − 1)L1/Lc < i ≤ jL1/Lc, and 1 ≤ j ≤ Lc

0, otherwise
,

c = f(b),

rj = cj, 1 ≤ j ≤ L1, (5.11)

where the same comments made in Section 5.3.3 are still valid.

5.4. Erez and ten Brink’s approach

Erez and ten Brink’s scheme [68, 69] can be regarded to as one of the foremost
existing dirty paper codes, which to the best of our knowledge has not been
applied yet in data hiding scenarios.

It consists of a check-biregular, repeat-irregular nonsystematic repeat-
accumulate code concatenated with a vector quantizer. In other words, the
encoder is composed of a variable node encoder (VNE), which is nothing but
a variable-rate repetition encoder, whose output is permuted using Π2(·) to be-
come the input of a check node encoder (CNE), which is a single parity check
encoder. The variable node encoder has 64.36% of the nodes of degree 3, 31.24%
of degree 10 and 4.4% of degree 76. 80% of the check nodes have degree 1 and
20% degree 3. The concatenation of both of them, yields a total rate 1/6. The
bits in the output of this check node encoder go through a recursive accumulator
(ACC). All the variable node encoder, the permuter, the check node encoder and
the recursive accumulator can be seen as a channel code f(·) and its output c
constitutes the input of a vector quantizer, that will be explained in Section 5.4.1.
The structure of f(·) for this scheme is plotted in Figure 5.5.

This quantizer finds that centroid of a lattice (which depends on the input bits)
which minimizes the distortion between the side information X and the output
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signal Y. This distortion measure can be changed depending on the requirements
of our system, although for Erez and ten Brink’s paper the Euclidean distance
between both signals is employed. The search of this centroid implies using
a Viterbi algorithm, so the embedding process is computationally much more
expensive than for turbo-codes. In the data-hiding problem, a typical choice
for the distortion measure could be a perceptual measure, which will obviously
depend on the nature of the host signal. For example, when X is the 8× 8 block-
wise DCT of an image, the perceptual measure by Watson could be used [160].
Other alternative could be a weighted Euclidean distance, which normalizes the
distortion in each dimension by the perceptual mask γ. In our implementation,
we have followed the last strategy for the sake of simplicity.

Another problem to be solved is how to increase the redundancy for a fixed
structure (which implies a fixed rate) of the channel code and vector quantizer.
The solution we have adopted is based on projecting the initial vector X onto a
lower-dimensional space (using S). In this way the SNR per dimension will be
increased in average by L1/L3.

As a consequence of the previous discussion, we can write

sij =

{ L3

L1

qj

γj
, if (i − 1)L1/L1 < j ≤ iL1/L3, and 1 ≤ i ≤ L3

0, otherwise
,

tij =

{

qiγi, if (j − 1)L1/L3 < i ≤ jL1/L3, and 1 ≤ j ≤ L3

0, otherwise
,

The decoding is carried out by the iterative decoding of three blocks: vector
quantizer and accumulator (VQ + ACC), check node decoder (CND), and variable
node decoder (VND). In exchange for this increase in complexity, significant
performance gains can be achieved, as it is shown in Section 5.5. Figure 5.6
shows the structure of the decoder.

5.4.1. Vector Quantizer

The vector quantizer proposed by Erez and ten Brink [68, 69] (see Figure 5.7)
groups the bits into triplets. One bit per triplet is duplicated and combined with
the output of a non-systematic convolutional code with feedforward polynomials
078 and 058, whose input are the virtual bits. These virtual bits are not informa-
tion bits but a tool to shape the quantization region of the vector quantizer; they
can be arbitrarily flipped and give a degree of freedom to modify the watermark in
such a way that a distortion measure between the original host signal and the wa-
termarked one is minimized. The presence of these virtual bits is what accounts for
the difference between a scalar quantizer and a vector one. The optimal sequence
of virtual bits, i.e. that minimizing the target distortion measure, is computed
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Figure 5.7: Structure of Erez and ten Brink’s vector quantizer.

using a Viterbi algorithm, and the resulting output is combined with the infor-
mation coded bits, yielding 4 bits which are used to index two 4-PAM symbols
(or, equivalently, a 16-QAM symbol) with alphabet W = {−3/2,−1/2, 1/2, 3/2},
obtaining r, wich is used in (2.21) to get Wp. Moreover, r is taken into account
to measure the distortion, which is used by a Viterbi algorithm to determine the
optimal virtual bits sequence. Bearing this structure in mind, the total rate of
the scheme is 1/4.

This vector quantizing resembles the method proposed by Miller et al.[115],
since both of them try to find a watermark which minimizes a distortion measure
taking into account all the components of the watermark. Nevertheless, the
differences are evident: Miller et al.’s method is based on an heuristic trellis
coding, while the search of the optimal watermark is more systematic in Erez
and ten Brink’s scheme.
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5.5. Experimental results

For the experimental part of this section we have watermarked Lena 256×256
in the mid-frequencies of the 8 × 8-DCT domain [93], using a perceptual mask
based on Watson’s distortion [160]. In all experiments each information bit was
hidden in 20 coefficients, giving a total payload of 1, 122 bits. The channel-noise
was chosen to be Gaussian with the same power in all coefficients (i.i.d.). In
order to address a real scenario, a value of α was set for each experiment and
held constant for the entire range of WNR’s.

First of all, we have compared the repetition coding schemes, both with and
without projecting. The values of α were 0.5 and 0.9 respectively. This difference
is due to the different SNR per dimension in each scheme, since the optimal α
in the first case is computed by taking into account the SNR in the projected
domain, which is increased by 10 log10 of the projection factor. In Figure 5.8
the improvement due to projecting is shown. Both schemes were decoded using
Maximum Likelihood (ML) lattice decoding [70].

In order to compare dirty paper schemes which use repetition coding with
those using channel coding, we have chosen a serially concatenated code proposed
by Benedetto et al. [22] with outer code Go(D) = [1 + D, 1 + D + D3] and inner
Gi(D) = [1, (1 + D + D3)/(1 + D)], giving a total rate 1/4, which is used with
projection of rate 1/5. In Figure 5.9 the turbo-cliff of this code for dirty paper
coding when all the components are i.i.d. is shown. Figure 5.9 also shows the
turbo-cliff of Erez and ten Brink’s scheme for the same scenario. In the paper
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Figure 5.9: Comparison between a serially-concatenated code concatenated (α =
0.5) with a scalar quantizer and Erez and ten Brink’s scheme (α = 0.42) when
the noise components are i.i.d.. Lb/Lc = 1/4 and Lc/L1 = 1/5 with projection.

by Erez and ten Brink[68] the turbo-cliff was at WNR = −1.9 dB (1.93 dB
from capacity limit) or, equivalently, Eb/N0 = 1.1 dB, so taking into account the
increase in the WNR due to the projection, one would expect such turbo-cliff
to show up at −8.9 dB (2.55 dB from capacity limit). Nevertheless, Figure 5.9
(where we use α = 0.42) shows it around −7.8 dB. In fact, we can decompose
the gap to the capacity limit (3.64 dB) into a gap due to the method itself (1.92
dB), another part due to projecting instead of using a more sophisticated code
(0.63 dB), and finally the part corresponding to the use of a limited-size permuter
(1.09 dB). In any case, the gain achieved by using Erez and ten Brink’s scheme
compared with the serially concatenated codes is around 1.3 dB, see Figure 5.9.

Figure 5.10 shows the results when noise samples are Gaussian and indepen-
dent but not identically distributed. The gain by using Erez and ten Brink’s
scheme is still around 1.5 dB, but both plots are now shifted almost 2 dB to the
right, so the turbo-cliffs are found now at −5.8 dB and −4.5 dB. Finally, it is in-
teresting to remark that the gain due to projecting when the serially concatenated
codes are used, is almost negligible, as can be seen in Figure 5.10.
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Figure 5.10: Comparison between a serially-concatenated code concatenated with
projection (α = 0.6) and with no projection (α = 0.3) with a scalar quantizer, and
Erez and ten Brink’s scheme (α = 0.415) when the noise components after nor-
malizing by the perceptual mask are independent but not identically distributed.
Lb/Lc = 1/4 and Lc/L1 = 1/5.

5.6. Subsequent works on the combination of

source-coding and channel coding

After the publication of the paper that constitutes the main part of this chap-
ter, i.e. [47], other works have appeared dealing with the problem of combining
source coding and channel coding for approaching the capacity of the dirty-paper
problem. First, in [146] Sun et al. show that the gap-to-capacity in [69] can be
reduced about 0.5 dB; the technique proposed is based on choosing “a strong
source coding first and then focusing on designing near-capacity channel codes”.
As the authors of [146] show, the source coding proposed in [69] is far from being
optimal, achieving a shaping gain of 1.22 dB (and a distance of 1.32 dB to the
SNR yielding a capacity of 0.25 bits) for the proposed 64-state vector quantizer,
and 1.28 dB (1.15 dB distance to the SNR yielding a capacity of 0.25) for the
256-state one. Su et al. conjecture that this is due to the use of a 16-QAM con-
stellation and the introduction of systematic doping. Taking this into account,
their proposal uses a 16-PAM constellation and a vector quantizer with a high
number of states (the implemented case has 1024 states), achieving a shaping
gain of 1.38 dB, which is translated into a distance of 0.83 dB to the SNR needed
to achieve a capacity of 0.25 bits.

The main ideas of this paper are used by Yang et al. in [163] for designing
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an image data-hiding scheme. In that paper the authors follow a strategy similar
to that introduced in [47] (and exposed previously here) for adapting the dirty-
paper coding scheme to the data-hiding problem. In fact, they use the same mid-
frequencies as in [47], and normalize each dimension by the corresponding value
of Watson’s mask, following also a similar projecting strategy for simulating time-
sharing. Nevertheless, due to the specific design of the dirty-paper codes for this
problem, where the authors also took into account the error floor phenomenon due
to the small codeword lengths, the authors obtained a data-hiding scheme with
performance similar to that based on Erez and ten Brink’s structure and described
in this chapter, but with reduced redundancy. In fact, while our adaptation of the
method by Erez and ten Brink has the ratios Lb/Lc = 1/4, and Lc/L1 = 1/5, that
introduced in [163] is characterized by Lb/LC = 1/5 and Lc/L1 = 1/3, increasing
the possible payload by 33%.

5.7. Conclusions

In this chapter we have proposed a framework that encompasses many side-
informed methods with coding for data-hiding, and reviewed state-of-the-art
methods, specifying two possible ways to increase the operating SNR: repetition
coding with and without projection. Moreover, we have introduced for the first
time in watermarking a capacity-approaching dirty-paper scheme by Erez and ten
Brink. The gap to capacity of this scheme is measured for Gaussian i.i.d. noise,
showing the different causes of this loss. Experimental results comparing the
performance of that scheme with serially concatenated codes and repetition, with
and without projection, have been also introduced for non-i.i.d. noise, showing
again a similar improvement when the new scheme is used.
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Chapter 6

Application to a Video
Surveillance Authentication
System

Apart from the theoretical results presented so far, in this thesis we have also
paid special attention to the practical implementation of watermarking applica-
tions. In this sense, we have designed an algorithm for the authentication of
images in a video surveillance application; the main features are summarized in
this chapter. First of all, the video surveillance system we took under consid-
eration is described. Taking its peculiarities into account, the requirements of
our system are explained. Afterwards, we introduce the proposed solutions, and
finalize this chapter describing the main problems found.

6.1. Framework

The considered video surveillance system (which is plotted in Figure 6.1)
is constituted by a set of cameras placed at different locations and a central
server, where the images are stored. This server could be located at the client’s
place or at the facilities of a service provider. Since the cameras usually output
images with a high redundancy, in order to reduce the space needed to store the
videos the images can undergo a lossy compression process before storing them.
The objective of storing the videos is that if a theft were peperpetrated, they
could provide information about the thieves’ identities. Nevertheless, a smarter
burglar could try to fool this system; for example, he/she could replace the live
images by previously recorded ones, or even just replace the particular piece
that compromises him/her. Therefore, this makes evident the need of additional
methods which guarantee the integrity of the stored images; that is obviously the
problem to be solved by digital watermarking.
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X1/Y1

X2/Y2

X3/Y3

X4/Y4

Network

Server

Figure 6.1: Video surveillance system model. If the images are watermarked in
the camera, its output is Y; in other case, X, i.e. the original host signal.

Digital watermarking could be used to detect modifications in the original
image; in fact, we will show in this chapter that we can even use it to detect
which part of the image was modified, or to detect the replacement of the original
video sequence by a previous one.

Concerning the place where the embedding is performed, two basic choices
are available: at the camera itself or at the server. The first choice is possible due
to the existence of smart cameras, i.e. cameras which have an operative system,
allowing low-computational demanding programs to be run. Furthermore, this
choice seems to be the most secure one; as long as the original host signal (with-
out watermark) is output, the burglar could try to forge it in the midway to the
server. Therefore, if the embedding were to be performed at the server, a secure
communication channel should be established between the camera and the server
(based on cryptographic tools). Just another advantage of using smart cameras
for embedding is that then the server could check for the presence of the water-
mark in the received signal; if the watermark were not detected, this would mean
that the image had been modified in the communication channel, and the server
could make the alarm. In this last case, the trade-off between probability of false
alarm and missed detection should be carefully evaluated: the client wants to be
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warned when an intruder goes in his/her business, but probably he/she would
not like to be woken up in the middle of the night because a transcoding artifact
removed the watermark.

In any case, in both cases one should pay special attention to the security and
reliability of the channel between the camera and the server; it is usually said
that the security of a system is given by the security of its weakest link, and this
channel seems to be one of the weakest parts of our system. In the remainder
of this chapter we will just focus on the watermarking application, making some
technical assumptions whose solution lies outside the scope of this work (as the
camera-server channel, storage needs and security, legal issues, etc.).

6.2. Requirements

In this section, we will enumerate the requirements for our system, and in the
next one we will describe the proposed solutions to meet such requirements. We
will require our system to verify the following:

As it was explained in Section 1.1, authentication systems may be based on
the so-called fragile watermarks; this means that the detector should warn
of modifications in the watermarked signal. Nevertheless, due to the nature
of our application, we are not just interested in the detector to tell whether
the image was modified or not, but also in signaling the modified regions. In
that way, we could determine which part of the image the attacker wanted
to remove/change, and take further actions. This is obviously a detection
(binary hypothesis) watermarking problem.

Another important point is the temporal ordering; the watermarked image
must depend on the instant it is produced, in such a way that a video
sequence can not be replaced by a previous one.

We would also like the watermark to convey some data; in this way we
could hide in the image itself information about the camera that took it,
other data that the client may consider relevant, or even enable future
extensions. It is straightforward to see that this constitutes a decoding
(multiple hypothesis) data hiding problem.

The detector should be robust against some simple synchronization prob-
lems. Even when this requirement is apparently opposed to the fragile
nature of the watermark, sometimes certain rows or columns of the water-
marked image could be accidentally removed, and we would be still inter-
ested in detecting if there was a further malevolent modification.
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Figure 6.2: Scheme of the proposed solution.

The system should be robust to unintentional attacks, such as transcoding;
specifically, we have imposed our system to be robust to the conversion
from MJPEG to MPEG formats.

6.3. Proposed Solution

As it was shown in the previous section, the proposed system will require both
decoding and detection features, and in addition the synchronization of the blocks
in the image must be also possible. Taking this into account, we have divided
the watermark in three parts: synchronization, data hiding and integrity (the
authenticacion itself). In the following, we describe how we met the requirements
introduced in the last section, and which of those three parts is related to each
requirement. Fine-grain details concerning parameters, coefficients, etc., will be
reported elsewhere.

The problem of temporal ordering can be solved by introducing a time
stamp in each frame, and making the watermark depend on that stamp. In
this way, the decoder can easily verify if the received frame is in the correct
sequencial order, or if it is a repeated or an old one; this can be implemented
by a simple counter. The part of the watermark performing the authenti-
cation can be made dependent on the time stamp by modifying some of its
parameters (e.g., projecting sequences, dither vector). This entails a risk,
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since, as it was discussed, the system should be robust, especially against
unintentional attacks, such as transcoding, and if this time stamp is not
correctly decoded, the system parameters that the detector will use will be
incorrect, yielding invalid results. Therefore, we have decided to introduce
a high redundancy in order to protect that data; the embedding mechanism
is explained next.

The time stamp is coded as a 35-bit length vector; this enables one to
distinguish every frame for about 40 years, assuming that the frame rate
is 25 frames/second. Be aware that in real video surveillance applications
the rate will be typically lower, so this is a conservative figure. In order
to prevent decoding errors, those 35 bits go through a channel code with
rate 7/8, obtaining a vector with 40 encoded bits. Each of those bits is
pseudorandomly assigned to a large set of coefficients of the 8 × 8-block
DCT transformed host all over the image; the vector with those coefficients
is projected to a lower dimensional domain, where it is quantized using
repetition coding and the Cartesian product of uniform scalar quantizers.
The projecting sequences should be the same for all frames, or, at most,
there could exist a reduced number of possible sets of projecting sequences.
In any case, they depend on the secret key, which is only shared by embedder
and decoder.

The deprojected version of a fraction α of the quantization error is added
back to the original host signal. Note that this scheme is a particular case
of generalized version of STDM described in [132], and that was described
in Section 2.7 in this work.

The additional data hiding corresponding to information about the camera
(we proposed to hide its IP address, that represents a 32 bits payload),
and the user data (in the current implementation 28 bits are allowed) are
hidden using a strategy similar to that used for hiding the time stamp.
Nevertheless, the projecting rate is not so small as in that case, since an
error here is not as crucial as in the time stamp; in fact, no additional
channel coding is used.

In order to solve the synchronization problem, the use of a synchronization
pattern repeated block-wise is proposed. The pattern is fixed independently
of time. By doing so, the detector can tune the shift or cropping the image
has undergone without having to estimate the temporal stamp.

One can realize that the fact of repeating the pattern implies a security flaw.
Nevertheless, collusion-like attacks are not a problem in this case, since even
when the attacker could estimate the pattern, he/she is not interested in
removing it.

Finally, integrity is implemented by a watermarking detection system sim-
ilar to that in [126]. First, the 8 × 8-block DCT image is arranged in
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macroblocks. These macroblocks are constituted by neighbor 8 × 8 blocks,
and the detection of the watermark will be performed over each of them.
In this way, the detector will decide in what of the macroblocks the water-
mark is present (i.e., the watermarked signal is assumed to have not been
strongly modified in those macroblocks), and in which of them the water-
mark is absent (i.e., the watermarked signal has been modified so much
that the watermark has been removed). In the embedding and detection
processes, the coefficients of a macroblock devoted to checking integrity are
projected to a smaller dimensional domain. In this case, the projecting se-
quence will depend on the time stamp and the secret key, ensuring that the
attacker will not have access to the watermarking channel. Furthermore,
the spreading sequences will change from frame to frame, disabling an at-
tack oriented to estimate the spreading sequences by observing different
watermarked frames.

The embedding is also based on quantization in the projected domain, and
adding back a fraction α of the quantization error, similarly to the data
hiding part. Nevertheless, the detection stage is clearly different of the
decoding performed for recovering the time stamp or the additional data.
In this case, the detector is just interested in knowing if the watermark is
present or not. In order to do so, we establish a region around the centroids
of the quantizing lattice, and, if the projected received signal is inside one
of those regions, the detector will state that the watermark is present (or
absent if the received signal is out of the region). The size of those regions
is strongly related to the probability of false alarm and missed detection
of the scheme. Depending on the level of accuracy desired by the client,
different thresholds can be established to play with these probabilities.

6.4. Main problems found and conclusions

In the design and later implementation of this scheme [48], several problems
have been found. First of all, the dependence of the quantization noise due to
transcoding and the watermarked signal invalidates most of the results in the
literature for the quantization based methods. As a direct consequence of this
dependence, we had to assume that the embedder knows the target image format,
so the amplitude of the projecting and deprojecting sequences can depend on the
quantization step of that image format; by doing so, the embedder can envisage
the signal received by the detector, and therefore, the result of the detection.
This assumption would not be necessary if the watermark were very much larger
that the transcoding quantization step; unfortunately, this is not usually the case,
since a figure-of-merit of the system will be its storage capacity, and if the size
of the host signal is wanted to be reduced, large transcoding quantization steps
must be used.
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Another parameter we played with was the number of DCT coefficients of each
8 × 8-block we used to embed the watermark. We have observed that the larger
this number is, the larger the perceptual distortion will be. This is especially
harmful on the high frequencies, where very large quantization steps are used,
and the amplitude distortion due to the embedding must be also proportional to
those steps. On the other hand, the performance of the system will be increased
with the number of coefficients devoted to convey the watermark, where the
performance can be measured as the robustness to transcoding, or the probality
of false alarm for a given probability of missed detection (ROC).

Other parameter that must be taken into account is the watermark power at a
given coefficient. As in the previous case, the larger the power of the watermark
is, the better the perfomance will be, but also the larger the distortion that
is introduced. Therefore, the typical trade-off distortion vs. performance is also
observed in this case; the choice of the operating point of the system will typically
depend on the client’s choice.

6.5. Results

In this section we show the behavior of our system when modifications are
introduced. In Figure 6.3 some original frames are plotted, and their watermarked
versions were depicted in Figure 6.4. The watermarked video was modified in
order to remove the man coming into the room, change the date in the upper
part of the frame, and remove the dark square in the background; the resulting
frames, corresponding to the images in Figures 6.3 and 6.4, are depicted in Figure
6.5. Finally, in Figure 6.6 we have plotted the result of performing the detection
of the modified signal, depicting in white the macroblocks that the algorithm
detected to have been altered. It can be observed that the three modifications
are detected when the sequence number is correctly decoded; when this is not the
case, i.e. when the frame is so strongly modified that the sequence number can
not be properly decoded, a “sequence number not in order” error is raised, and
given that the spreading sequence for the integrity part depends on that sequence
number, all the frame is found to be modified.
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(a) (b)

(c) (d)

Figure 6.3: Original frames.

(a) (b)

(c) (d)

Figure 6.4: Watermarked frames.
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(a) (b)

(c) (d)

Figure 6.5: Modified frames.

(a) (b)

(c) (d)

Figure 6.6: Frames result of the integrity check. Those macroblocks that are
detected to have been modified are plotted in white.
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Chapter 7

Conclusions

In this thesis, we have focused on the analysis of two of the main characteristics
of data hiding systems: robustness and security. Moreover, even though our
main attention was paid to side-informed methods, we have also introduced and
analyzed other schemes, such as spread-spectrum based, when the comparison
was judged to be valuable.

Among the main contributions of this work, we will now emphasize those that
we consider to be more representative and useful:

Computation of the exact probability of decoding error for DC-DM based
on uniform scalar quantizers and repetition coding under additive noise
attacks: even for that scheme, that could be considered to be the simplest
version of DC-DM with channel coding, there was a lack of literature dealing
with its exact performance. In fact, the previous works usually provided
upper bounds to that probability of error. In contrast, in this thesis we
have obtained for the first time the exact probability of decoding error for
DC-DM based on uniform scalar quantizers and repetition coding. This
result, which is based on the modulo-reduced version of the total noise, i.e.
self-noise plus channel noise, is completed with the proposal of some bounds
and approximations to that probability of error, whose computational cost is
significantly reduced compared to the exact computation. Considering these
approximations, some improved decoding weights are proposed, noticeably
improving the performance of the studied scheme.

Computation of the exact probability of decoding error for DC-DM based
on uniform scalar quantizers and repetition coding under coarse quantiza-
tion attacks: we have statistically analyzed the probability of error of that
version of DC-DM by considering the pdf of the watermarked signal, and
the way coarse quantization modifies that pdf.
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The performance analysis of SSTDM under cropping attacks constitutes
also a novel approach: previously in the literature it was assumed that
SSTDM was more robust that DC-DM based on uniform scalar quantizers
and repetition coding; nevertheless, this was shown not to be the case for
this kind of attacks. Furthermore, the performance degradation of SSTDM
has been compared with that of Add-SS, and a new method has been pro-
posed trying to encompass the advantages of SSTDM against additive noise
attacks and those of DC-DM with uniform scalar quantizers and repetition
coding against the cropping attack.

Proposal of a sensitivity attack which has been shown to be suitable for
attacking most of state-of-the-art data hiding methods. The proposed
method, termed Blind Newton Sensitivity Attack (BNSA), was used both
for removing the watermark from watermarked contents and for creating
forgeries (i.e., falsely watermarked contents). The main advantages of
BNSA compared with previous proposals in the literature lie on the fact
of just needing the binary output of the detector, since it does not require
any knowledge about the detection function. The effectivity of BNSA was
shown with several experiments.

Trying to address smarter attacks, we have also studied Add-SS, DC-DM
with uniform scalar quantizers and repetition coding, and SSTDM from
a game-theoretic approach. Nevertheless, due to the complexity of the
resulting expressions, closed formulas were only obtained in some particular
cases.

Computation of the worst case (from an information theoretic point of view)
additive attack for scalar DC-DM. These results show how far is the optimal
attack in that scenario from being Gaussian, as it is usually the case in most
of communications frameworks.

Concerning security, definitions of both robustness and security (two con-
cepts usually mistaken in the literature) were proposed. Later, information
theoretic measures were used for quantifying the security of Add-SS and
Costa’s scheme, comparing the results obtained following this novel ap-
proach with existing ones. As the main conclusions of this analysis, we can
enumerate:

1. The host interference can be profitable from a security point of view:
the host interference makes more difficult the communication between
embedder and decoder, but it also complicates the estimate of the
secret key by the attacker.

2. For both Costa and DC-DM, the smaller the distortion compensation
parameter α, the smaller the information leakage: this is a direct con-
sequence of the increase in the self-noise.

3. The information leakage is reduced when the DWR is increased.
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4. The information leakage is reduced when the rate of the watermarking
system is increased: a higher rate increases the uncertainty about the
sent symbol, making more difficult the estimate of the secret parame-
ters.

5. For a given information leakage, the security of the system could be
increased by increasing the a priori uncertainty about the parameters
to be estimated. This last point can be achieved by increasing the
number of parameters to be estimated, whose upper bound is given by
Costa’s scheme, where all the codewords are independently randomly
generated.

6. The structure of the codebook helps to obtain feasible embedding and
decoding algorithms, but it also makes easier the attacker’s job: in
both Add-SS and DC-DM the attacker has to estimate just a codeword
for each sent message, since the remaining ones can be written as a
function of that codeword. Nevertheless, when there is a complete lack
of structure, as it happens for Costa’s scheme, the information learnt
from one observation is applicable just to the codeword related to that
observation, saying nothing about any other codeword.

Summarizing, several trade-off’s can be established when security is ana-
lyzed: security vs. host interference (with interesting links to performance),
security vs. self-noise, security vs. structure of the codebook, etc.

Another topic which has been paid special attention in this thesis is the
need of combining channel coding and source coding in the design of any
data hiding system truly approaching capacity. In fact, a dirty paper coding
scheme aproaching capacity designed by Erez and ten Brink was adapted to
data hiding, comparing the obtained results with those of the typical strate-
gies followed so far, where just channel coding was considered. Although the
results obtained for the adaptation of Erez and ten Brinks’s scheme clearly
outperform those methods just based on serially-concatenated codes, the
gap to capacity of the former is still quite large.

Finally, another contribution of this thesis is the design of a video surveil-
lance authentication system. With the proposed scheme the detector is not
just able to determine if a given frame was modified or not, but it can also
define what parts of the image were tampered with.

7.1. Future Research Lines

In this section we will enumerate some topics that stay as possible future
research lines:
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Information theoretic analysis of sensitivity attacks: in order to obtain the
final performance of sensitivity attacks, it seems to be reasonable to try to
analyze those attacks from an information-theoretic point of view.

Computation of the Worst Case Additive Attack for lattice based quantiza-
tion methods more general than that described in this work: some research
groups are already currently working on this topic, replacing the unidimen-
sional lattice by a bidimensional one [117]. In any case, closed-form results
seem to be difficult to obtain in this field; moreover, increasing the number
of dimensions also seems to be hard, since the number of parameters to be
optimized exponentially increases with such dimensionality.

Relation between attacks to security and attacks to robustness: As it was
previously introduced in this work, attacks to security could be performed
as a previous step to attacks to robustness. Therefore, it makes sense to
try to define some measure that quantifies the goodness of a security attack
from that point of view, as well as the design of attacks to robustness which
take advantage of knowing an estimate of the secret parameters.

Security analysis of other methods in the literature, for example the Ra-
tional Dither Modulation [134], QIM-based methods with rotated lattices
[81, 117], or methods based on quantization on a projected domain (like
STDM) [32].

Concerning the joint use of channel coding and source coding, one could
think of replacing the distortion compensation parameter α by its optimal
value, i.e., the Wiener filter. This would improve the system performance
in the case of Gaussian, independent but not identically distributed noise.
Another challenge is the design of similar methods to those introduced in
this thesis, by specifying different repetition and checking rates for the VNE
and CNE respectively, in order to use them in scenarios with lower SNRs,
instead of increasing the operating SNR through projection.

Detailed analysis and proposal of new data hiding methods for emerging
applications, as authentication and fingerprinting: in the last years these
two applications have been paid an increasing attention by the academy, and
specially by the industry. A consequence of this interest is the appearance
of some commercial applications dealing with these problems. Nevertheless,
we think that large improvements can still be obtained.



Appendix A

Comparison of two lattice
schemes

In this section we will compare the embedding and decoding scheme used in
this work, with a similar one used in the literature by Erez and colleagues (see
for example [166, 70, 69]). Following the notation introduced in Section 2.5, we
can write the watermarked signal as

Y = (1 − α)X + α
[

QΛ

(

x − v(b)
)

+ v(b)
]

= X + α
[

QΛ

(

X − v(b)
)

− X + v(b)
]

= X + α
[

(

− X + v(b)
)

mod Λ
]

;

if the modulo-Λ reduced host signal is uniformly distributed over V(Λ), then the
power of the watermark is

Dw =
α2

L2

∫

V ||x||2dx

Vol(V)
, (A.1)

where Vol(V) denotes the volume of V . In decoding, the modulo reduced received
signal is given by

Zmod , Z mod Λ =
{

X + N + α
[

(

− X + v(b)
)

mod Λ
]}

mod Λ

=
{

N mod Λ + (1 − α)
[

(

X − v(b)
)

mod Λ
]

+ v(b)
}

mod Λ.

The corresponding block diagram is plotted in Figure A.1.

On the other hand, the scheme described in [166, 70, 69] computes the water-
mark as

W = [−αX + v(b)] mod Λ,
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Figure A.1: Lattice Scheme used in this work.

so assuming (αX) mod Λ to be uniformly distributed over V(Λ), the power of
the watermark is now

Dw =
1

L2

∫

V ||x||2dx

Vol(V)
, (A.2)

that is, α2 times smaller than that obtained in (A.1). Finally, the modulo reduced
received signal reads as,

Zmod = Z mod Λ =
[

α
(

W + X + N
)

]

mod Λ

=
{

(αN) mod Λ + α
(

[

− αX + v(b)
]

mod Λ
)

+
[

αX − v(b)
]

mod Λ + v(b)
}

mod Λ

=
{

(αN) mod Λ + (1 − α)
(

[

αX − v(b)
]

mod Λ
)

+v(b)
}

mod Λ,

and its block diagram is shown in Figure A.2.

Considering these analyses, if we want to make a fair comparison between the
two schemes, i.e., with both of them yielding the same watermark power, the
lattice and shifting vectors v(b) of the first scenario should be inflated by 1/α;
by doing this, and taking into account that

α[X mod (Λ/α)] = (αX) mod Λ, (A.3)

since

α[X − QΛ/α(X)] = αX − QΛ(αX), (A.4)

and αQΛ/α(X) = QΛ(αX), it is straightforward to see the equivalent performance
of both approaches.
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v(b)

−αX

mod Λ mod Λ
α

W

X

Y

N

Z Zmod

Figure A.2: Lattice Scheme used in [166, 70, 69].
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Appendix B

Characteristic Function for the
Beaulieu Approach under
Gaussian Distortion

We derive next the characteristic function FU+
i
(u+

i ) required for computing

Pe in front of Gaussian noise following Beaulieu’s method. Let σGi
,

σNi

∆i
be the

standard deviation of the Gaussian attack after the normalization by ∆i. Taking
into account (2.29), (2.30) and (3.3), the pdf of U+

i can be written as

fU+
i
(u+

i ) =















∑∞
k=−∞

1
µi

[

Q
(

u+
i −(1−α)−2k

σGi

)

−Q
(

u+
i +(1−α)−2k

σGi

)]

, if 0 ≤ u+
i ≤ 1,

0, otherwise,

,

191



192

with µi , 1−α
σGi

. For the sake of simplicity we define Mi ,
U+

i

σGi

, whose characteristic

function is

FMi
(ω) =

∫ δi

0

ejωmi

∞
∑

k=−∞

1

µi

[Q (mi − µi − 2kδi)

− Q (mi + µi − 2kδi)] dmi =

=
j

2µiω

{

− erf

(−µi − 2kδi√
2

)

+ erf

(

µi − 2kδi√
2

)

+ ejδiω

[

erf

(

δi − 2kδi − µi√
2

)

− erf

(

δi − 2kδi + µi√
2

)]

+ e−ω(ω
2
−j(µi+2kδi))

[

− erf

(

µi + 2kδi + jω√
2

)

+ erf

(−δi + µi + 2kδi + jω√
2

)]

+ e−ω(ω
2
−j(−µi+2kδi))

[

− erf

(−µi + 2kδi + jω√
2

)

+ erf

(−δi − µi + 2kδi + jω√
2

)]}

(B.1)

with δi , 1
σGi

. It is straightforward to see that FU+
i
(ω) = FMi

(ω · σGi
). The erf(·)

function is defined as

erf(z) =
2√
π

∫ z

0

e−t2/2dt =
2z√
π

M

(

1

2
,
3

2
,−z2

)

,

with z ∈ C, (B.2)

with M(·, ·, ·) the Kummer confluent hypergeometric function of the first kind.
The evaluation of (B.1) presents numerical problems due to the evaluation
of (B.2), which is computed as

erf(x + jy) ≈ erf(x) +
e−x2

2πx
[(1 − cos(2xy) + j sin(2xy)]

+
2

π
e−x2

∞
∑

n=1

e−n2/4

n2 + 4x2
[fn(x, y) + jgn(x, y)],

where

fn(x, y) = 2x − 2x cosh(ny) cos(2xy) + n sinh(ny) sin(2xy),

gn(x, y) = 2x cosh(ny) sin(2xy) + n sinh(ny) cos(2xy).



Appendix C

BNSA explanation

In this Appendix we show that (3.42) is equivalent to

arg min
s∈RL1

d⋆
y(hy(s)), (C.1)

with d⋆
y(t) the restriction of dy(t) to those t ∈ ∂B, i.e.,

d⋆
y(t) : ∂B → R

+

t → dy(t),

and hy(s) is a surjection from R
L1 to ∂B,1 i.e., hy(s) : R

L1 → ∂B, such that
hy(RL1) = ∂B, verifying that hy(s) = s for all s ∈ ∂B; we will also assume that
hy(s) ∈ C2, i.e., its second derivative exists and is continuous, in a neighborhood
of s (this last point is related to the differentiability of g ◦ f). Note that hy(s)
just maps the vector s to a point on ∂B; following this approach the constraint
in (3.42) is straightforwardly verified and we no longer have to care about it. In
this way, if t∗1 is a solution to (3.42), it will verify g ◦ f(y + t∗1) = η, so t∗1 ∈ ∂B
and we can define the set of vectors S1 , {s∗1 ∈ R

L1 : hy(s∗1) = t∗1}. Taking into
account that hy is a surjection there will be at least one such vector s∗1 ∈ S1, so
that d⋆

y(hy(s∗1)) = dy(t∗1), and s∗1 is a solution to (C.1). On the other hand, if
s∗2 is a solution to (C.1), we can define t∗2 = hy(s∗2), which minimizes d⋆

y(t) over
∂B, so t∗2 also minimizes dy(t) for all t ∈ ∂B, and is a solution to (3.42).

Therefore, a vector s is a solution to (C.1) if and only if hy(s) is a solution
to (3.42), in such a way that we can restrict our problem to look for a function
hy and an algorithm which finds a solution to (C.1).

1This means that for all b ∈ ∂B, there is an a ∈ R
L1 such that hy(a) = b.
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Appendix D

Calculation of mutual
information for spread spectrum

D.1. Known Message Attack (KMA) for a sin-

gle observation

For a single observation (No = 1) and Lb = 1, we have

I(Y;S1|B) =

L1
∑

i=1

L1
∑

j=1

I(Yi; S1,j|B, Yi−1, . . . , Y1, S1,j−1, . . . , S1,1) (D.1)

=

L1
∑

i=1

I(Yi; S1,i|B, Yi−1, . . . , Y1) (D.2)

=

L1
∑

i=1

I(Yi; S1,i|B) (D.3)

= L1I(Yi; S1,i|B), (D.4)

where (D.2) follows from the fact that Yi and S1,j are independent for all i 6= j;
(D.3) follows from the independence between the components of Y given the
message, and (D.4) follows from the fact that Y and S1 are i.i.d. processes. The
analytical expression for (D.4) is easy to calculate:

I(Yi; S1,i|B) = I(Yi; S1,i|B = 0) = h(Yi|B = 0) − h(Yi|B = 0, S1,i),

where h(Yi|B = 0) will obviously depend on the distribution of S1,i. Assuming
S1 to be Gaussian, i.e. S1 ∼ N (0, σ2

SIL1), we can write

I(Yi; S1,i|B) = h(N (0, σ2
X + σ2

S)) − h(N (0, σ2
X)) =

1

2
log

(

1 +
σ2

S

σ2
X

)

.
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196 D.2. Known Message Attack (KMA) for multiple observations

Next, the case of multiple carriers is analyzed. When Lb > 1, we can write

I(Y;S1,S2, . . . ,SLb
|B) = L1I(Yi; S1,i, S2,i, . . . , SLb,i|B)

= L1 {h(Yi|B) − h(Yi|S1,i, . . . , SLb,i,B)}
= L1

{

h
(

Xi +
∑Lb

j=1(Lb)
−1/2Sj,i

)

− h(Xi)
}

= L1

{

h(N (0, σ2
X + σ2

S)) − h(N (0, σ2
X))

}

=
L1

2
log

(

1 +
σ2

S

σ2
X

)

. (D.5)

D.2. Known Message Attack (KMA) for multi-

ple observations

When L1 = 1, there are several available observations (No > 1) watermarked
with the same secret key and there is one embedded bit for each observation
(Lb = 1) which we will assume without loss of generality to be the same for all
the observations,1 it can be seen that the covariance matrix of (Y1, · · · ,YNo),
denoted by RY, becomes

RY =











σ2
X + σ2

S σ2
S · · · σ2

S

σ2
S σ2

X + σ2
S · · · σ2

S
...

...
. . .

...
σ2

S σ2
S · · · σ2

X + σ2
S











,

so its entropy is [51]

h(Y1, · · · ,YNo) =
1

2
log

(

(2πe)No|RY|
)

=
1

2
log

(

(2πe)No

[

Noσ
2
S

σ2
X

+ 1

]

σ2No

X

)

,

and we can write I(Y1, · · · ,YNo ;S1|B1, · · · ,BNo) = 1
2
log

(

1 +
Noσ2

S

σ2
X

)

.

1If the embedded bits are different, it will be enough to multiply the observations by −1
when the embedded bit is 0.



Appendix E

Fisher Information Matrix for
SS-KMA

In this section we will compute the Fisher Information Matrix of the esti-
mate of the constant multiple parameter θ taking into account the observations
Y1, · · · ,YNo . Let us consider Yj = Xj + θ, with Xj ∼ N (0, σ2

XIL1), and the
Xj’s to be mutually independent for 1 ≤ j ≤ No

1. Following the definition of
Fisher Information Matrix [151], we can write

FIMii(θ) =

∫

f(y1, · · · ,yNo|θ)

(

∂

∂θi

log f(y1, · · · ,yNo |θ)

)2

dy1 · · · dyNo ,

where f(y1, · · · ,yNo|θ) =
∏L1

k=1

∏No

j=1
1√

2πσ2
X

e
−(y

j
k
−θk)2

2σ2
X , in such a way that

∂

∂θi

log f(y1, · · · ,yNo|θ) =
No
∑

j=1

yj
i − θi

σ2
X

=

∑No

j=1 xj
i

σ2
X

,

and, finally, after a change of variable,

FIMii(θ) =

∫

(

∑No

j=1 xj
i

σ2
X

)2 No
∏

j=1

1
√

2πσ2
X

e
−(x

j
i
)2

2σ2
X dx1

i · · · dxNo

i =
No

σ2
X

, 1 ≤ i ≤ L1.

1Be aware that this is the case described in Section 4.4.1 for Lb = 1, after multiplying the

j-th observation by −(−1)B
j

1 . In that case, the parameter to be estimated is S1.
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On the other hand,

FIMik(θ) =

∫

f(y1, · · · ,yNo|θ)

(

∂

∂θi

log f(y1, · · · ,yNo |θ)

)

(

∂

∂θk

log f(y1, · · · ,yNo |θ)

)

dy1 · · · dyNo

=

(

∫

∑No

j=1 xj
i

σ2
X

No
∏

j=1

1
√

2πσ2
X

e
−(x

j
i
)2

2σ2
X dx1

i · · · dxNo

i

)

·
(

∫
∑No

l=1 xl
k

σ2
X

No
∏

l=1

1
√

2πσ2
X

e
−(xl

k
)2

2σ2
X dx1

k · · · dxNo

k

)

= 0, for all i 6= k,

so, we can conclude FIM(θ) = No

σ2
X

IL1 .



Appendix F

Mutual information for a single
observation in Costa’s scheme

F.1. Known Message Attack (KMA)

The mutual information between the received signal and the codebook when
the sent message is known by the attacker can be written as

I(Y;U|B) = h(Y|B) − h(Y|U , B) = h(Y) − I(Y; B) − h(Y|UB). (F.1)

Studying the second term, I(Y; B) = h(Y) − h(Y|B), it can be seen to be 0
whenever fY(y) = fY|B(y|B = b) for all the possible values of b. Taking into

account that Y = f1(U , B,X), this will be true in several cases. For example, if
UB is a lattice shifted by a random variable uniform over its Voronoi region (as
in [70]), since the value of that random variable is not known by the attacker, the
former equality is verified and I(Y; B) = 0. This will be also the case when UB is
a random codebook [50]; the attacker could know exactly all the u’s in U , but if
he/she does not know the value of B corresponding to each of them, so the best
he/she can do is to apply his/her a priori knowledge about P (B = b), implying
I(Y; B) = 0 again; this is the scenario studied here. Nevertheless, in the general
case 0 ≤ I(Y; B) ≤ I(Y; B|U).

To compute h(Y|UB) we will focus on the implementations using random
codebooks. In those schemes every u in UB has the same probability of being
chosen. In order to facilitate the analysis, we will see y as the combination of a
scaled version of u and a component orthogonal to u, y = cu+u⊥; recalling that
u = w + αx, we can write u⊥ = x + w − cw − cαx. Therefore, the value of c
can be computed taking into account that σ2

X + σ2
W = c2(σ2

W + α2σ2
X) + σ2

X(1 −
cα)2 + σ2

W (1 − c)2; after some trivial algebraic operations, one obtains

c =
σ2

W + ασ2
X

σ2
W + α2σ2

X

.
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200 F.2. Watermarked Only Attack (WOA)

Since all the variables are Gaussian, if L1 is large enough the samples of y will

be very close to a sphere with radius
√

L1Var{U⊥} centered at some cuo; these

spheres will be disjoint if1 Var{U⊥}
c2

< σ2
W , which is true for any DWR if α > 0.2.

If this is the case, then we can write h(Y|UB) = h(Y|U)+ log(|UB|). Concerning
log(|UB|), it is easy to see that

|UB| ≈ eI(U;X) =

(

σ2
W + α2σ2

X

σ2
W

)L1/2

. (F.2)

On the other hand,

h(Y|U) = h(U⊥) =
L1

2
log

[

2πe
(1 − α)2σ2

W σ2
X

σ2
W + α2σ2

X

]

, (F.3)

so,

h(Y|UB) =
L1

2
log

[

2πe
(1 − α)2σ2

W σ2
X

σ2
W + α2σ2

X

]

+
L1

2
log

[

σ2
W + α2σ2

X

σ2
W

]

=
L1

2
log

[

2πe(1 − α)2σ2
X

]

. (F.4)

Note that this value is just an upper bound when the spheres described above
are not disjoint.

Finally, the information leakage is given by

I(Y;U|B) =
L1

2
log

[

2πe(σ2
W + σ2

X)
]

− L1

2
log

[

2πe(1 − α)2σ2
X

]

=
L1

2
log

[

σ2
W + σ2

X

(1 − α)2σ2
X

]

. (F.5)

F.2. Watermarked Only Attack (WOA)

In this case, the mutual information between the observations and the code-
book is

I(Y;U) = h(Y) − h(Y|U) = h(Y) − I(Y; B|U) − h(Y|U , B)

= h(Y) − I(Y; B|U) − h(Y|UB) = I(Y;U|B) − I(Y; B|U).

The only term that has not been analyzed yet is I(Y; B|U), which is the
reliable rate that can be reached when the codebook is known. Note that the fact
of not knowing the transmitted message produces a decrease in I(Y;U) equal to

1It can be shown that this is a sufficient, but not necessary, condition.
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the transmission rate I(Y; B|U), since the increase in the uncertainty of the sent
symbol complicates the attacker’s work. In [50] it is shown that

I(Y; B|U) =
L1

2
log

[

σ2
W (σ2

W + σ2
X + σ2

N)

σ2
W σ2

X(1 − α)2 + σ2
N(σ2

W + α2σ2
X)

]

. (F.6)

So in this case, assuming again α > 0.2, we can write

I(Y;U) =
L1

2
log

[

2πe(σ2
W + σ2

X)
]

− L1

2
log

[

σ2
W (σ2

W + σ2
X + σ2

N)

σ2
W σ2

X(1 − α)2 + σ2
N(σ2

W + α2σ2
X)

]

− L1

2
log

[

2πe(1 − α)2σ2
X

]

=
L1

2
log

[

(σ2
W + σ2

X) {σ2
W σ2

X(1 − α)2 + σ2
N(σ2

W + α2σ2
X)}

σ2
W (σ2

W + σ2
X + σ2

N)(1 − α)2σ2
X

]

. (F.7)

F.3. Estimated Original Attack (EOA)

In this Appendix we compute

I(Y;U|X̂) = h(Y|X̂) − h(Y|U , X̂), (F.8)

where X̂ , X+X̃ is an estimate of X and X̃ is the estimation error; X̃ is assumed
to be i.i.d. Gaussian with power σ2

E and independent of X. In this way, we can
write

h(Y|X̂) = h(X + W|X + X̃) < h(W − X̃). (F.9)

In fact, if σ2
X >> σ2

E, X̃ will be almost independent of X + X̃ and

h(Y|X̂) ≈ h(W − X̃) =
L1

2
log

[

2πe(σ2
W + σ2

E)
]

. (F.10)

For the rightmost term in (F.8), we can write

h(Y|U , X̂) = I(Y; B|U , X̂) + h(Y|U , B, X̂). (F.11)

Adapting the achievable rate from [50] we have

I(Y; B|U , X̂) = I(U;Z|X̂) − I(U;X|X̂), (F.12)

where I(U;Z|X̂) = h(Z|X̂) − h(Z|X̂,U), with

h(Z|X̂) = h(X + W + N|X̂) ≈ L1

2
log(2πe(σ2

E + σ2
W + σ2

N)), (F.13)

where it has been assumed σ2
X >> σ2

E. On the other hand, Z conditioned on U
and X̂ will be a Gaussian variable, so the computation of its entropy is done by
simply determining its variance. Therefore, we can write

Y ˆX
= c ˆX

U ˆX
+ U⊥

ˆX
(F.14)
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where the notation implies that X̂ is given. Since U ˆX
= W+αX ˆX

, Var(U ˆX
) =

Var(U|X̂) = Var(W + α(X + X̃) − αX̃|X + X̃) ≈ σ2
W + α2σ2

E, where we have
assumed that σ2

X >> σ2
E; in the same way, U⊥

ˆX
= X ˆX

(1 − c ˆX
α) + W(1 − c ˆX

),

so Var(U⊥
ˆX
) ≈ σ2

E(1 − c ˆX
α)2 + σ2

W (1 − c ˆX
)2. Therefore, c ˆX

must verify

σ2
W + σ2

E = c2
ˆX
(σ2

W + α2σ2
E) + σ2

E(1 − c ˆX
α)2 + σ2

W (1 − c ˆX
)2, (F.15)

so

c2
ˆX

=
σ2

W + ασ2
E

σ2
W + α2σ2

E

. (F.16)

Taking this into account,

Var(Z|X̂,U) = Var(Y ˆX
|U ˆX

) + Var(N) = Var(U⊥
ˆX
) + Var(N) ≈ σ2

W σ2
E(1 − α)2

σ2
W + α2σ2

E

+ σ2
N ,

so we can write

h(Z|X̂,U) ≈ L1

2
log

(

2πe

[

σ2
W σ2

E(1 − α)2

σ2
W + α2σ2

E

+ σ2
N

])

. (F.17)

Going back to (F.12), we should compute

I(U;X|X̂) = h(U|X̂) − h(U|X, X̂) = h(W + αX|X̂) − h(W + αX|X, X̂)

≈ L1

2
log

(

σ2
W + α2σ2

E

σ2
W

)

(F.18)

Finally, the last needed term is h(Y|U , B, X̂). Under the same assumption made
in Appendix F.1 (α > 0.2), we obtain it as

h(Y|U , B, X̂) = h(Y|UB, X̂) = h(Y|U, X̂) + log(|UB ˆX
|) (F.19)

where |UB ˆX
| is the number of centroids associated with symbol B needed to verify

the watermark power restriction when X̂ is given, and h(Y|U, X̂) coincides with
h(Z|U, X̂) (see (F.17)) when σ2

N = 0. It can be shown that

log(|UB ˆX
|) = I(U;X|X̂) (F.20)

which has already already been derived in (F.18). Summarizing, I(Y;U|X̂) will
be

I(Y;U|X̂) ≈ L1

2
log

[

2πe(σ2
W + σ2

E)
]

− L1

2
log

[

σ2
W (σ2

W + σ2
E + σ2

N)

σ2
W σ2

E(1 − α)2 + σ2
N(σ2

W + α2σ2
E)

]

− L1

2
log

[

2πe(1 − α)2σ2
E

]

=
L1

2
log

[

(σ2
W + σ2

E) {σ2
W σ2

E(1 − α)2 + σ2
N(σ2

W + α2σ2
E)}

σ2
W (σ2

W + σ2
E + σ2

N)(1 − α)2σ2
E

]

, (F.21)
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which is (F.7), but replacing σ2
X by σ2

E. This is explained because the uncertainty
about the host signal, which makes difficult the attack, is reduced, being X̃ (with
power σ2

E) the only unknown component (recall that in the WOA case, it was X,
with power σ2

X). Following this idea, WOA could be also seen as a particular case
of EOA where the power of the estimation error is just σ2

X . Notice in any case
that in several equations we have assumed σ2

X >> σ2
E to ensure the independence

between X̂ and X̃. Examining the final result and the equivalent one for WOA,
this condition does not seem to be critical, perhaps because of the cancellation
of this dependence between different terms.
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return of the sensitivity attack. In Mauro Barni, Ingemar Cox, Ton Kalker,
and Hyoung Joong Kim, editors, International Workshop on Digital Wa-
termarking, volume 3710 of Lecture Notes in Computer Science, pages 260–
274, Siena, Italy, September 2005. Springer.
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input channels and zero-threshold detection under constraints of power and
divergence. IEEE Transactions on Information Theory, 43(4):1256–1264,
July 1997.

[113] Andrew L. McKellips and Sergio Verdú. Maximin performance of binary-
input channels with uncertain noise distributions. IEEE Transactions on
Information Theory, 44(3):947–972, May 1998.

[114] Neri Merhav. An information-theoretic view of watermark embedding-
detection and geometric attacks. Barcelona, Spain, June 2005. WaCha.
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[126] Luis Pérez-Freire, Pedro Comesaña, and Fernando Pérez-González. Detec-
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[127] Luis Pérez-Freire, Pedro Comesaña, and Fernando Pérez-González.
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nando Pérez-González, editors, Information Hiding International Work-
shop, volume 3727 of Lecture Notes in Computer Science, pages 131–145,
Barcelona, Spain, June 2005. Springer.
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Pun, and Fernando Pérez-González. Worst Case Additive Attack against
Quantization-Based Watermarking Techniques. In IEEE Workshop on Mul-
timedia Signal Processing, pages 135–138, Siena, Italy, September-October
2004.

[159] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli.
Image quality assessment: From error visibility to structural similarity.
IEEE Trans. on Image Processing, 13(4):600–612, April 2004.



220 Bibliography

[160] A. B. Watson. DCT quantization matrices visually optimized for individual
images. In Proceedings of SPIE, volume 1913-14, pages 202–216, 1993.
Human Vision, Visual Processing and Digital Display IV.

[161] Wavila. D.WVL.1 First summary report on fundamentals. Technical report,
ECRYPT. European Network of Excellence in Cryptology, 2005.

[162] Stefan Winkler, Elisa Drelie Gelasca, and Touradj Ebrahimi. Toward per-
ceptual metrics for video watermark evaluation. In Andrew G. Tescher,
editor, Proceedings of SPIE, volume 5203 of Applications of Digital Image
Processing XXVI, pages 371–378, San Diego, CA, USA, August 2003. SPIE.

[163] Yang Yang, Yong Sun, Vladimir Stankovic, and Zixiang Xiong. Image data
hiding based on capacity-approaching dirty-paper coding. In Edward J.
Delp III and Ping W. Wong, editors, Proceedings of SPIE, volume 6072
of Security, Steganography and Watermarking of Multimedia contents VIII,
San Jose, CA, USA, January 2006. SPIE.

[164] Wei Yu, Arak Sutivong, David Julian, Thomas M. Cover,
and Mung Chiang. Writing on colored paper. Available at
http://www.comm.toronto.edu/ weiyu/publications.html.

[165] Ram Zamir and Meir Feder. On lattice quantization noise. IEEE Transac-
tions on Information Theory, 42(4):1152–1159, July 1996.

[166] Ram Zamir, Shlomo Shamai, and Uri Erez. Nested linear/lattice codes
for structured multiterminal binning. IEEE Transactions on Information
Theory, 48(6):1250–1276, June 2002.
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