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Abstract—Starting from a theoretical analysis of the resam-
pling estimation problem for image tampering detection, this
work presents a study, based on cyclostationarity theory, about
the use of prefilters to improve the estimation accuracy of the
resampling factor. Considering the methods that perform the
estimation by analyzing the spectrum of the covariance of a
resampled region, we propose an analytical framework that
allows the definition of a cost function that measures the degree
of detectability of the spectral peaks. Based on this measure,
the design of the optimum prefilters for a particular resampling
factor can be solved numerically. Experimental results validate
the developed analysis and illustrate the enhancement of the
performance in a real scenario.

I. INTRODUCTION

The presence of forged images in the news, in magazines or flow-

ing through the Internet has become prevalent these days. However,

even if today anyone can simply manipulate the information repre-

sented by a picture without leaving perceptual traces, the subsequent

change introduced in the intrinsic properties of the image may enable

the detection of such alterations. For instance, the application of

a geometric transformation (e.g. scaling, rotation or skewing) to a

portion of an image modifies the original sampling grid of this region,

producing resampling traces that can be detected and, later on, will

allow the estimation of the transformation locally applied.

To solve this problem, several techniques have been proposed in

the past few years [1]–[6], providing different ways to detect those

resampling traces and estimate the applied transformation. Although

different approaches are considered in each case, all the proposed

methods work, at some point, in the frequency domain to finally

detect or estimate the periodicities that are inherently present when

a spatial transformation is carried out in an image. Specifically, in

[3]–[6], the spectrum of the covariance of the resampled blocks is

computed to detect the frequency peaks that enable the estimation of

the applied spatial transformation. Derivative filters are used in these

resampling-based methods, to enhance the spectral lines as a way of

substantially improving the estimation performance.

Since the use of certain prefilters, like the derivatives, increases

the estimation accuracy of tampered regions, the question of whether

there exist other prefilters yielding better results becomes very

relevant. In a recent work, Dalgaard et al. show analytically that

for asymptotically large values of the resampling factor, the use of

derivative filters enhances the detection of the resampling traces [7].
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Nevertheless, in order to avoid visible distortions in the tampered

image (generated by the employed spatial transformation), the re-

sampling factor is usually near 1 and rarely larger than 2, so the

hypothesis of an asymptotically large value of this factor does not

hold in a realistic scenario. For this reason, the main goal of this paper

is to present an analytical framework that supports the definition of a

cost function which gives a measure of the detectability of resampling

traces. Using this criterion, we study different prefilters and compute

numerically their performance in the mentioned range of resampling

factors, so as to reach the optimum prefilter for each factor. Using a

database of real images, we also provide empirical results to endorse

our analysis.

The paper is organized as follows: the next section is intended to

describe the notation we will use along the paper and to introduce the

bases of the problem exposed earlier. The description of the model

used for natural images and the Fourier analysis for the detection of

the resampling traces is presented in Section III. The design of the

prefilters is considered in Section IV and the test of those with real

images is performed in Section V. Finally, Section VI concludes the

paper with comments on further research.

II. PRELIMINARIES AND PROBLEM STATEMENT

In order to create a credible image forgery, the manipulated

portions of the image must be geometrically adapted to the scene in

most of the cases. The spatial transformation applied in such regions

maps the intensity value at each pixel location of the original region

to a new one. This operation must be followed by an interpolation

to get the pixel intensity values in those intermediate locations

between source pixels. As it was shown in [6], the resampling process

introduces periodically correlated fields in the two-dimensional (2-

D) space that make possible the detection of such geometric trans-

formation. Since the analysis of these correlations is more tractable

in the one-dimensional (1-D) space, we will present the frequency

analysis using a resampled image model in the 1-D space. While

optimum results can be achieved following this model, the obtained

solution can be not perfect for real images; therefore, in Section V

experimental results with natural images are provided to show that

the results can be straightforwardly extended to the 2-D case.

A. Notation

A real-valued continuous time signal in the 1-D space will be

represented as z(t) (note the parentheses), where t ∈ R.

We will use the notation z[n] (with brackets) to represent a real-

valued 1-D discrete-index signal with n ∈ Z. The mean of z[n]
will be represented by µz[n]

.
= E{z[n]} and the covariance as

czz[n; τ ]
.
= E{(z[n] − µz[n])(z[n + τ ] − µz[n + τ ])} with τ ∈ Z.



We will denote the cyclic correlation of a zero-mean process z[n]
by Czz(αn; τ) and the Fourier Series coefficients if we have a

pure cyclostationary process with period Q will be represented by

Czz

(

2π
Q
k; τ
)

, or directly by Czz[k; τ ], with k ∈ {0, . . . , Q − 1}.

The Fourier Series coefficients of a sequence z[n] will be denoted

by Z[k].
To identify the coefficients of a digital filter of order P with l ∈

{0, . . . , P}, we will use pl. For a compact notation, we will use

mod(a, b) to denote the modulo operation: a mod b. Floor and

ceiling functions will be represented by ⌊·⌋ and ⌈·⌉, respectively.

B. Problem statement

As it was stated before, the role of prefiltering as a way to en-

hance the detectability of resampling traces in the frequency domain

has been analytically supported for asymptotically large values of

interpolation factors in [7]. However, considering that commonly the

tampered regions are just slightly rotated, scaled or skewed to mitigate

the generated visual distortions, we are more interested in the study

of which are the prefilters that provide better results for resampling

factors in the range 1 < Ns < 2 (downsampling, i.e. Ns < 1, is not
considered in this work).

The general case of sampling rate conversion of an input signal

u[n] by a factorNs = L
M

(with L andM integer values and relatively

primes1), is carried out by first performing interpolation by the factor

L and then decimating the output of the interpolator by the factor

M . The resulting resampled signal x[n], using any interpolation filter

h(t), can be expressed as:

x[n] = x(n∆) =
∑

k

u[k]h(n∆− k), (1)

where ∆ = M
L

= N−1
s represents the interval between samples in

the resampled signal. The low-pass filter used to preserve the desired

spectral characteristics of the input signal u[n] can be linear, cubic

or a truncated sinc among others; but, in this case, with the aim of

having a simplified model, we will only consider the linear filter, i.e.

h(t) =

{

1− |t|, if |t| ≤ 1
0, otherwise

.

Hence, considering this linear interpolator filter, the expression of the

resampled signal (1) can be formulated as follows:

x[n] =















u [⌊n∆⌋]h (n∆− ⌊n∆⌋)
+u [⌈n∆⌉]h (n∆− ⌈n∆⌉)

, if n∆ 6∈ Z

u [n∆] , if n∆ ∈ Z

= u [⌊n∆⌋] (1−mod(n∆, 1)) + u [⌈n∆⌉]mod(n∆, 1). (2)

Assuming that the input signal u[n] is zero-mean, the covariance

of the resampled signal corresponds to the correlation cxx[n; τ ] =
E{x[n]x[n + τ ]}. Thus, considering the simplified version of x[n]
in (2) and using v[n]

.
= mod(n∆, 1), we get

cxx[n; τ ]

= E {u [⌊n∆⌋]u [⌊(n+ τ)∆⌋]} (1− v[n])) (1− v[n+ τ ])

+ E {u [⌊n∆⌋]u [⌈(n+ τ)∆⌉]} (1− v[n]) v[n+ τ ]

+ E {u [⌈n∆⌉]u [⌊(n+ τ)∆⌋]} v[n] (1− v[n+ τ ])

+ E {u [⌈n∆⌉]u [⌈(n+ τ)∆⌉]} v[n]v[n+ τ ], (3)

that represents the general expression of the correlation of a zero-

mean signal interpolated by a linear filter.

1Note that if 1 < Ns < 2, then L > 2 with L > M .

In order to determine if the resampled signal x[n] is (wide-sense)
cyclostationary, we have to check if the above expression (3) varies

periodically. Sathe and Vaidyanathan showed in [8] that the resampled

signal, in this case, will be a cyclostationary signal with period

L/ gcd(L,M) if the input signal u[n] is wide-sense stationary and

the interpolation filter is not ideal. Note that, in the case that we

are considering, L and M are coprime, i.e. gcd(L,M) = 1, and
consequently this is equivalent to saying that the resampled signal

x[n] will be a cyclostationary process of period L if u[n] is wide-

sense stationary and the interpolator is not ideal.

Moreover, we can generalize this property by proving that the

resampled signal is (wide-sense) almost cyclostationary if the above

expression satisfies cxx
[

n+ k L
M
; τ
]

= cxx[n; τ ] with k ∈ Z. To

demonstrate that, we have to show that v[n] is periodic and also

that the four terms within expectations E{·} in (3) are periodic.

Accordingly, starting with the signal v[n], it is easy to see that:

v
[

n+ k L
M

]

= mod
((

n+ k L
M

)

∆, 1
)

= mod (n∆+ k, 1) = mod(n∆, 1) = v[n].

On the other hand, considering the expectation term

E {u [⌊n∆⌋]u [⌊(n+ τ)∆⌋]} and, taking into account that

u[n] is wide-sense stationary, we know that this expression depends

only on the difference between ⌊n∆⌋ and ⌊(n + τ)∆⌋ and such

difference has to be cyclic with period L
M
, i.e.:

⌊(

n+ k L
M

)

∆
⌋

−
⌊(

n+ k L
M

+ τ
)

∆
⌋

= ⌊n∆+ k⌋ − ⌊(n+ τ)∆ + k⌋

= (n∆+ k)−mod(n∆+ k, 1)

− ((n+ τ)∆ + k) +mod((n+ τ)∆ + k, 1)

= −mod(n∆, 1)− τ∆+mod((n+ τ)∆, 1)

= ⌊n∆⌋ − ⌊(n+ τ)∆⌋,

where we have used the relation:

⌊n∆⌋ = n∆−mod(n∆, 1). (4)

The same applies for the other three expectation terms in (3), where

additionally we have to use that

⌈n∆⌉ = n∆+mod(−n∆, 1). (5)

Therefore, since cxx[n; τ ] is cyclic with an almost-integer period L
M
,

we can conclude that if the input signal u[n] is wide-sense stationary
then the resampled signal x[n] will be almost cyclostationary.

Several works, i.e. [2]–[4] and [6], have noticed this periodicity,

considering a random i.i.d. Gaussian signal as input, but in this case

we are generalizing this fact for any wide-sense stationary input signal

and a linear interpolator. Our main goal is to analytically characterize

the correlation of the resampled signal in the frequency domain, since

the estimation of the resampling factor is performed in this domain

through the detection of the cyclic frequencies.

Taking into account that we will perform the study of the cyclic

correlation in the Fourier domain, it is apparent that a white Gaussian

signal will not lead to an accurate model for a natural image, so

we need a model that better captures the local correlation of natural

images. For this reason, we propose to use a 1-D autoregressive (AR)

process of the first order that provides a good fit to the power spectral

density of real images [9]. Next section describes the used model and

the Fourier analysis carried out that will lead us to the design of the

optimum prefilter for resampling estimation.



III. MODEL DESCRIPTION AND FOURIER ANALYSIS

Since a white Gaussian process is not very representative of a non-

compressed natural image, we use a more convenient approximation

that corresponds to a first-order AR process with a correlation

coefficient ρ that satisfies |ρ| < 1. The value of ρ enables the

adjustment of the model as necessary. For instance, values of ρ near

1 (e.g. ρ = 0.95) can be employed to model the power spectral

density of natural images, while values of ρ near zero behave like

a Gaussian process, and near -1 (e.g. ρ = −0.95) could represent

synthetic images with high frequency content [10].

Therefore, in the resampling image model, we consider that the

input signal u[n] is a sequence generated by a first-order AR model

with parameter ρ, so

u[n] = w[n] + ρu[n− 1],

where w[n] is a Gaussian process with zero-mean and unit variance.

Taking this into account, we have µu[n] = 0 and the correlation

becomes:

cuu[n; τ ] = E{u[n]u[n+ τ ]} =
ρ|τ |

1− ρ2
.

The correlation of the resampled signal x[n], given this input signal,

can be directly obtained from (3), resulting in:

cxx[n; τ ] =
1

1− ρ2

[

ρ|⌊n∆⌋−⌊(n+τ)∆⌋| (1− v[n]) (1− v[n+ τ ])

+ ρ|⌊n∆⌋−⌈(n+τ)∆⌉| (1− v[n]) v[n+ τ ]

+ ρ|⌈n∆⌉−⌊(n+τ)∆⌋|v[n] (1− v[n+ τ ])

+ρ|⌈n∆⌉−⌈(n+τ)∆⌉|v[n]v[n+ τ ]
]

. (6)

Since u[n] is wide-sense stationary, we know from the previous

analysis that the resampled signal will be almost cyclostationary with

period L
M

and if we consider only pure cyclostationary processes,

then x[n] will be cyclostationary with period L.
Fig. 1(a) shows an example of the normalized version of

cxx[n; τ ]|τ=0 for Ns = 11
10

and different values of ρ. Two periods of

size L = 11 are represented and, as we can see, the periodicity

becomes apparent for ρ = −0.95 and also for ρ ≈ 0, whereas

for ρ = 0.95 the correlation of the resampled signal seems to be

constant. From this example, it can be inferred that the estimation

in the frequency domain of the resampling factor for an AR process

with ρ = 0.95 (i.e. natural images) will be more challenging than

for ρ = 0 or ρ = −0.95 (i.e. synthetic images). In order to study the

complexity of finding the resampling traces, we have to analyze the

correlation in the frequency domain.

In view of the correlation cxx[n; τ ] is periodic over n with period

L, such signal accepts a Fourier Series expansion whose spectral

coefficients are Cxx[k; τ ] with k ∈ {0, . . . , L−1}. The development

of a closed-form expression is not straightforward, but we can derive

the spectral coefficients of (6), by determining the Discrete-Time

Fourier Series (DTFS) of the signal v[n] and then writing each term

ρ|·| as a function of v[n].
Starting from the signal v[n], we know that his DTFS corresponds

to:

V [k] =











(L−1)
2L

, if k = 0

− 1
2L

+ j 1

2L tan
(

πM̃−1

L
k
) , if 1 ≤ k ≤ (L− 1)

,

where M̃−1 is the modular multiplicative inverse of M . From the

previous relations (4) and (5), it is possible to formulate each one of
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Fig. 1. Normalized version of the correlation and cyclic correlation of the
resampled signal x[n] for Ns = 11

10
, τ = 0 and different values of ρ.

the terms ρ|·| as a function of v[n]. As an example, for the first term

we obtain the following relation:

ρ|⌊n∆⌋−⌊(n+τ)∆⌋|

= ρ⌊τ∆⌋ (1 + (ρ− 1)(1− v[τ ] + v[n]− v[n+ τ ])) .

A similar analysis for the remaining ρ|.| terms allows us to write

cxx[n; τ ] as a function of ρ, v[n] and some constants. Consequently,

by using several properties of the discrete-time Fourier series we can

obtain the theoretical expression of the Fourier coefficients Cxx[k; τ ].
For the sake of brevity, we only give the expression of the spectral

coefficients for the particular case τ = 0:

Cxx[k; 0] =
1

1− ρ2

[

B[k]− 2V [k] + 2

L−1
∑

l=0

V [l]V [k − l]

+2

(

G[k]⊛

(

V [k]−

L−1
∑

l=0

V [l]V [k − l]

))]

, (7)

where ⊛ stands for the circular convolution operation of period L,
B[k] corresponds to the DTFS of a constant signal equal to 1 and

G[k] describes the following Fourier coefficients:

G[k] =







1+(L−1)ρ
L

, if k = 0

1−ρ

L
, if 1 ≤ k ≤ (L− 1).

In Fig. 1(b), we represent the normalized magnitude of the cyclic

correlation Cxx

[

2π
L
k; τ
]

|τ=0 with k ∈ {0, . . . , L− 1}, through the

Fourier coefficients in (7), for the different values of ρ considered

before and keeping the resampling factor at Ns = 11
10
. From the

drawn results, we can assert that the magnitude of the spectral



coefficients (excluding the DC component at k = 0) is very small

for ρ = 0.95. This is due to the fact that the correlation cxx[n; 0], as
it was shown in Fig. 1(a), is almost constant and then the periodicity

is hidden. Given that the estimation of the resampling factor depends

on the magnitude of those frequencies, it is evident that those peaks

must be enhanced for a correct operation.

IV. PREFILTER DESIGN

As it has been shown in [2]–[7], the use of a prefilter before the

estimation of the cyclic correlation improves the detection ratio of

the correct resampling factor. In this section, we define a measure

that makes possible the design of prefilters that improve the estimate

of the resampling rate.

The prefiltering of a resampled signal x[n], with a FIR filter of

order P , gives a new signal y[n] with the form

y[n] =
P
∑

l=0

plx[n− l],

where pl denotes the real-valued coefficients of the prefilter. The

output correlation of this filtered version of the resampled signal x[n]
becomes

cyy[n; τ ] =
P
∑

l=0

P
∑

m=0

plpmE {x[n− l]x[n+ τ −m]}

=
P
∑

l=0

P
∑

m=0

plpmcxx[n− l; τ + l −m],

that is, a linear combination of shifted versions of the correlation

described in (6), evaluated in different values of τ . In the Fourier

domain, the general expression of the spectral coefficients Cyy[k; τ ]
can be directly expressed as

Cyy[k; τ ] =
P
∑

l=0

P
∑

m=0

plpmCxx[k; τ + l −m]e−j 2πk
L

l ,

where Cxx[k; τ ] corresponds to the Fourier series coefficients of (6),

that have been analitically characterized in the previous section.

As we have seen before, the resampled signal x[n] is almost cyclo-

stationary with period L
M

and since the prefilter used is a linear time-

invariant system, this also applies for the prefiltered signal y[n]. From
this periodicity and considering the fact that spectral coefficients are

symmetric for real-valued signals (i.e. |Cyy[i; τ ]| = |Cyy[L− i; τ ]|),
the corresponding cyclic frequencies αy

.
= 2πM

L
and the replica

α′
y

.
= 2πL−M

L
= −2πM

L
will have a larger magnitude than the rest

of frequencies (excluding the DC component). For example, given the

cyclic correlation with period Ns = 11
10

shown in Fig. 1(b), we can

check that the AC spectral coefficients with largest magnitude are

Cxx[1; 0] and Cxx[10; 0] that match with the corresponding cyclic

frequencies α′
x = 2π 1

11
and αx = 2π 10

11
, respectively.

Therefore, given that the estimation of the resampling rate can be

carried out from the AC spectral coefficients with largest magnitude,

because they identify the cyclic frequencies, we use the following

criterion to define the target function Θ as:

Θ(L,M, ρ, p0, . . . , pm)
.
=

1
2
(|Cyy[M ; 0]|2 + |Cyy[L−M ; 0]|2)

1
L−2

∑L−1
k=0

k 6=M,L−M

|Cyy[k; 0]|2
,

where, viewing this expression as an SNR, the magnitude of the cyclic

frequencies αy = 2πM
L

and α′
y = 2π L−M

L
represent the signal part

and the remaining spectral coefficients are considered as noise. In
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Fig. 2. Objective function Θ for resampling factors in 1 < Ns < 2 and for
different values of ρ.
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Fig. 3. Objective function Θ considering a first-order prefilter, varying the
coefficients p0 and p1 in the range [−5, 5], for Ns = 11
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and ρ = 0.95.

fact, Θ can be interpreted as a measure of the detectability of the

resampling traces.

Our main goal is to maximize this objective function Θ for given

values of ρ and the resampling factor Ns = L
M
, so as to obtain

the optimum prefilter. The lack of a closed-form solution to the

maximization of Θ makes it difficult to find the fixed optimum

prefilter for a range of values of Ns and ρ. Nevertheless, since all

the cyclic correlations can be straightforwardly evaluated from their

analytical expressions, we can numerically find the optimal prefilter

maximizing Θ.

In Fig. 2 we evaluate the target function for three different values

of ρ and resampling factors in the range 1 < Ns < 2, when no

prefilter is applied. As it was expected, we can observe that the worst

performance is reached when the AR process approximates that of

natural images, that is, when the correlation coefficient is ρ = 0.95.

Focusing on the case ρ = 0.95, we start considering a prefilter

of order 1 and we analyze the target function Θ for a particular

resampling factor, e.g. Ns = 11
10
. Fig. 3 shows the values of Θ for the

coefficients p0 and p1 in the range [−5, 5]. From the representation, it

is easy to perceive that the filters that satisfy the condition p0 = −p1
reach the maximum value of Θ. So, in this particular case, the first-

order derivative with p0 = 1 and p1 = −1 is optimal.

The same analysis is carried out for a FIR filter of order 2, but
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TABLE I
OPTIMUM PREFILTERS OF ORDER 3 FOR SOME VALUES OF Ns .

Range of Coefficients of the prefilter
Ns p0 p1 p2 p3

1.05 - 1.1 1 -2.4 2.4 -1
1.3 - 1.35 1 -2.75 2.75 -1
1.4 - 1.45 1 -2.8 2.8 -1
1.6 - 1.65 1 -5 7.5 -3.5
1.85 - 1.95 1 -2 1.1429 -0.1429

in order to get representable results, we fix the first coefficient p0 =
1, without loss of generality. Fig. 4 represents the variation of the

objective function Θ with respect to the prefilter coefficients p1 and

p2 in the range [−5, 5]. The largest value of Θ is achieved at p1 = −2
and p2 = 1. Then, in this case, the optimum prefilter corresponds to

the second-order derivative filter.

Thus, these results support the idea of using derivative filters to

enhance the spectral peaks. In Fig. 5, we show the values of Θ
considering different order for the derivatives. As we can see, there

is a huge gap between the results obtained without any prefilter

and the cases where the derivative filters are used. From these plots

we can conclude that the derivative filters improve the detectability

of the cyclic frequencies for all the resampling rates in the range

1 < Ns < 2.
Interestingly, the third-order derivative present lower performance

than the second-order filter for values of Ns > 1.6. Hence, the

question is, can we obtain better results with other kinds of filters?

The answer is positive, in fact, as we increase the order of the filter,

the optimum prefilter becomes more dependent on the considered

resampling rate and other types of prefilters show up. Performing

an exhaustive search for the first and second order prefilters, the

optimizers of Θ turn out to be respectively the first and second order

derivative filters. On the other hand, for third-order prefilters, the

optimal filters turn out to be dependent on the resampling factor.

Table I, shows some of the prefilters achieved for the different values

of Ns.

V. EXPERIMENTAL RESULTS

While the obtained prefilters in the previous section can be optimal

for a 1-D AR process with ρ = 0.95, it remains to evaluate how

the prefilters so-designed perform with real images. To this end,

we carried out an experiment with natural images where we study

the estimation accuracy for different scaling factors separated by a
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Fig. 5. Objective function Θ, considering different prefilters, for resampling
factors in 1 < Ns < 2 and for ρ = 0.95.

distance of 0.05, i.e. Ns ∈ {1.05, . . . , 1.95}. For the evaluation of

the prefilters, we use 150 images from a personal image database

composed of several realistic scenarios with different indoor and

outdoor scenes. All the images in this collection have been captured

in a RAW format by a Nikon D60 digital camera and have been

converted into uncompressed grayscale TIFF images. Each image

has been downsampled by a factor of two in order to avoid the

interpolation carried out by the camera, due to the color filter array,

obtaining images of size 1936× 1296.
To reproduce the conditions of the considered model, we first

resize each image by the corresponding factor Ns with a bilinear

interpolation filter and then we take a large image block of size

1024×1024 pixels. Next, we subtract the mean value of this portion

of the image in order to get a zero-mean block, we subsequently apply

the corresponding prefilter and, finally, we compute the 2-D Fourier

transform of the correlation of the block for τ = 0 (i.e. the cyclic

correlation). Be aware that to exclude the DC component, we just

subtract the mean value of the correlation before the computation of

the Fourier transform. Considering this 2-D spectrum, the resampling

rate is obtained from that frequency pair (ω1, ω2) with the largest

magnitude. Note that ω1 represents the horizontal frequency axis and

ω2 the vertical one. Since the range of resampling factors that we

employ is 1 < Ns < 2, the estimated value is computed as follows:

N̂s =
2π

2π −maxi∈{1,2} |ωi|
,

where we use maxi∈{1,2} |ωi| to avoid the case when one of both

components is equal to zero (i.e. the cyclic frequency is located over

one of the axes). We consider that the estimation is correct if the

detected cyclic frecuency (ω1, ω2) is in the range defined by the

resolution in the frequency domain, i.e.
∣

∣

∣

∣

max
i∈{1,2}

|ωi| − α

∣

∣

∣

∣

≤
2π

1024
,

where α
.
= 2π− 2π

Ns
= 2π L−M

L
is the theoretical value of the cyclic

frequency.

Fig. 6 shows the obtained estimation accuracy for the different val-

ues of Ns. From this plot we can observe that the proposed analysis

and target function yield satisfactory results, as better performance is

achieved with those prefilters that reach a larger value of Θ. For



1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

10

20

30

40

50

60

70

80

90

100

N
s
 (resampling factor)

E
s
ti
m

a
ti
o
n
 a

c
c
u
ra

c
y
 [
%

]

 

 
Without prefilter

1st−order derivative

2nd−order derivative

3rd−order derivative

3rd−order optimum filter

Fig. 6. Estimation accuracy of the resampling factor for image blocks of
size 1024× 1024 pixels, considering different prefilters.

instance, comparing the values obtained for the second and third

order prefilters we see that the performance of the former improves

when Ns > 1.6 as it was shown in Fig. 5. We can also confirm the

worse performance of the third-order derivative filter with respect to

the numerically computed third-order optimum prefilter, so we can

conclude that derivative filters are no longer the best solution once

we increase the order of the prefilter above 2.

Focusing on the estimation performance, the obtained results

cannot be considered very optimistic, since the prefilter that reach

the best results is far from the perfect estimation. This is due to our

model only capturing the deterministic value of the cyclic correlation

without considering any other effects. In this case, windowing (by

taking a block of size 1024 × 1024) introduces further components

at all frequencies, but especially those near DC (i.e. the frequencies

included in the main lobe of the window). The magnitude of the latter

is heavily influenced by the DC component, so in many cases the

cyclic frequency is incorrectly detected, due to the fact that the largest

components are located within the DC main lobe. By leaving those

components (i.e. ωi ≤ 2π/1024) out during the detection process, we

obtain the results shown in Fig. 7. As we can see, the estimation ac-

curacy is highly improved for all the prefilters considered, achieving

with our porposed design an estimation accuracy close to 90%2.

VI. CONCLUSIONS AND FURTHER WORK

In this work, the design of prefilters to improve the estimation

accuracy of the resampling factor of spatially transformed images

has been analytically investigated. Although the proposed analytical

framework only models the deterministic value of the cyclic corre-

lation, experimental results validate the use of the defined objective

function for the design of prefilters.

However, in order to obtain a better estimate of the cyclic correla-

tion for realistic scenarios, further research will focus on refining the

proposed model, taking into consideration the effects of windowing

and also the influence of the rounding operation carried out after the

resampling of a portion of an image. Moreover, although our study

has been limited to the use of a linear interpolator, the proposed

framework can be directly applied to other interpolators, such as

the cubic or for a truncated sinc. Further research will also focus

on extending this analytical framework to other interpolators and to

resampling factors less than one.

2This comes at the price of missing resampling factors 1 < Ns ≤ 1.001.
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Fig. 7. Estimation accuracy of the resampling rate, excluding near-zero
frequencies, for image blocks of size 1024× 1024, using different prefilters.
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dimensional statistical test for the presence of almost cyclostationarity
on images,” in 2010 17th IEEE International Conference on Image

Processing (ICIP), sept. 2010, pp. 1745 –1748.
[7] N. Dalgaard, C. Mosquera, and F. Pérez-González, “On the role of dif-
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